Venn Diagram Examples, Problems and Solutions

On this page:

  • What is Venn diagram? Definition and meaning.
  • Venn diagram formula with an explanation.
  • Examples of 2 and 3 sets Venn diagrams: practice problems with solutions, questions, and answers.
  • Simple 4 circles Venn diagram with word problems.
  • Compare and contrast Venn diagram example.

Let’s define it:

A Venn Diagram is an illustration that shows logical relationships between two or more sets (grouping items). Venn diagram uses circles (both overlapping and nonoverlapping) or other shapes.

Commonly, Venn diagrams show how given items are similar and different.

Despite Venn diagram with 2 or 3 circles are the most common type, there are also many diagrams with a larger number of circles (5,6,7,8,10…). Theoretically, they can have unlimited circles.

Venn Diagram General Formula

n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

Don’t worry, there is no need to remember this formula, once you grasp the meaning. Let’s see the explanation with an example.

This is a very simple Venn diagram example that shows the relationship between two overlapping sets X, Y.

X – the number of items that belong to set A Y – the number of items that belong to set B Z – the number of items that belong to set A and B both

From the above Venn diagram, it is quite clear that

n(A) = x + z n(B) = y + z n(A ∩ B) = z n(A ∪ B) = x +y+ z.

Now, let’s move forward and think about Venn Diagrams with 3 circles.

Following the same logic, we can write the formula for 3 circles Venn diagram :

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(C ∩ A) + n(A ∩ B ∩ C)

Venn Diagram Examples (Problems with Solutions)

As we already know how the Venn diagram works, we are going to give some practical examples (problems with solutions) from the real life.

2 Circle Venn Diagram Examples (word problems):

Suppose that in a town, 800 people are selected by random types of sampling methods . 280 go to work by car only, 220 go to work by bicycle only and 140 use both ways – sometimes go with a car and sometimes with a bicycle.

Here are some important questions we will find the answers:

  • How many people go to work by car only?
  • How many people go to work by bicycle only?
  • How many people go by neither car nor bicycle?
  • How many people use at least one of both transportation types?
  • How many people use only one of car or bicycle?

The following Venn diagram represents the data above:

Now, we are going to answer our questions:

  • Number of people who go to work by car only = 280
  • Number of people who go to work by bicycle only = 220
  • Number of people who go by neither car nor bicycle = 160
  • Number of people who use at least one of both transportation types = n(only car) + n(only bicycle) + n(both car and bicycle) = 280 + 220 + 140 = 640
  • Number of people who use only one of car or bicycle = 280 + 220 = 500

Note: The number of people who go by neither car nor bicycle (160) is illustrated outside of the circles. It is a common practice the number of items that belong to none of the studied sets, to be illustrated outside of the diagram circles.

We will deep further with a more complicated triple Venn diagram example.

3 Circle Venn Diagram Examples:

For the purposes of a marketing research , a survey of 1000 women is conducted in a town. The results show that 52 % liked watching comedies, 45% liked watching fantasy movies and 60% liked watching romantic movies. In addition, 25% liked watching comedy and fantasy both, 28% liked watching romantic and fantasy both and 30% liked watching comedy and romantic movies both. 6% liked watching none of these movie genres.

Here are our questions we should find the answer:

  • How many women like watching all the three movie genres?
  • Find the number of women who like watching only one of the three genres.
  • Find the number of women who like watching at least two of the given genres.

Let’s represent the data above in a more digestible way using the Venn diagram formula elements:

  • n(C) = percentage of women who like watching comedy = 52%
  • n(F ) = percentage of women who like watching fantasy = 45%
  • n(R) = percentage of women who like watching romantic movies= 60%
  • n(C∩F) = 25%; n(F∩R) = 28%; n(C∩R) = 30%
  • Since 6% like watching none of the given genres so, n (C ∪ F ∪ R) = 94%.

Now, we are going to apply the Venn diagram formula for 3 circles. 

94% = 52% + 45% + 60% – 25% – 28% – 30% + n (C ∩ F ∩ R)

Solving this simple math equation, lead us to:

n (C ∩ F ∩ R)  = 20%

It is a great time to make our Venn diagram related to the above situation (problem):

See, the Venn diagram makes our situation much more clear!

From the Venn diagram example, we can answer our questions with ease.

  • The number of women who like watching all the three genres = 20% of 1000 = 200.
  • Number of women who like watching only one of the three genres = (17% + 12% + 22%) of 1000 = 510
  • The number of women who like watching at least two of the given genres = (number of women who like watching only two of the genres) +(number of women who like watching all the three genres) = (10 + 5 + 8 + 20)% i.e. 43% of 1000 = 430.

As we mentioned above 2 and 3 circle diagrams are much more common for problem-solving in many areas such as business, statistics, data science and etc. However, 4 circle Venn diagram also has its place.

4 Circles Venn Diagram Example:

A set of students were asked to tell which sports they played in school.

The options are: Football, Hockey, Basketball, and Netball.

Here is the list of the results:

The next step is to draw a Venn diagram to show the data sets we have.

It is very clear who plays which sports. As you see the diagram also include the student who does not play any sports (Dorothy) by putting her name outside of the 4 circles.

From the above Venn diagram examples, it is obvious that this graphical tool can help you a lot in representing a variety of data sets. Venn diagram also is among the most popular types of graphs for identifying similarities and differences .

Compare and Contrast Venn Diagram Example:

The following compare and contrast example of Venn diagram compares the features of birds and bats:

Tools for creating Venn diagrams

It is quite easy to create Venn diagrams, especially when you have the right tool. Nowadays, one of the most popular way to create them is with the help of paid or free graphing software tools such as:

You can use Microsoft products such as:

Some free mind mapping tools are also a good solution. Finally, you can simply use a sheet of paper or a whiteboard.

Conclusion:

A Venn diagram is a simple but powerful way to represent the relationships between datasets. It makes understanding math, different types of data analysis , set theory and business information easier and more fun for you.

Besides of using Venn diagram examples for problem-solving and comparing, you can use them to present passion, talent, feelings, funny moments and etc.

Be it data science or real-world situations, Venn diagrams are a great weapon in your hand to deal with almost any kind of information.

If you need more chart examples, our posts fishbone diagram examples and what does scatter plot show might be of help.

About The Author

solving problem using venn diagram

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

' src=

Well explained I hope more on this one

' src=

WELL STRUCTURED CONTENT AND ENLIGHTNING AS WELL

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Venn Diagram Word Problems

Related Pages Venn Diagrams Intersection Of Two Sets Intersection Of Three Sets More Lessons On Sets More GCSE/IGCSE Maths Lessons

In these lessons, we will learn how to solve word problems using Venn Diagrams that involve two sets or three sets. Examples and step-by-step solutions are included in the video lessons.

What Are Venn Diagrams?

Venn diagrams are the principal way of showing sets in a diagrammatic form. The method consists primarily of entering the elements of a set into a circle or ovals.

Before we look at word problems, see the following diagrams to recall how to use Venn Diagrams to represent Union, Intersection and Complement.

Venn Diagram

How To Solve Problems Using Venn Diagrams?

This video solves two problems using Venn Diagrams. One with two sets and one with three sets.

Problem 1: 150 college freshmen were interviewed. 85 were registered for a Math class, 70 were registered for an English class, 50 were registered for both Math and English.

a) How many signed up only for a Math Class? b) How many signed up only for an English Class? c) How many signed up for Math or English? d) How many signed up neither for Math nor English?

Problem 2: 100 students were interviewed. 28 took PE, 31 took BIO, 42 took ENG, 9 took PE and BIO, 10 took PE and ENG, 6 took BIO and ENG, 4 took all three subjects.

a) How many students took none of the three subjects? b) How many students took PE but not BIO or ENG? c) How many students took BIO and PE but not ENG?

How And When To Use Venn Diagrams To Solve Word Problems?

Problem: At a breakfast buffet, 93 people chose coffee and 47 people chose juice. 25 people chose both coffee and juice. If each person chose at least one of these beverages, how many people visited the buffet?

How To Use Venn Diagrams To Help Solve Counting Word Problems?

Problem: In a class of 30 students, 19 are studying French, 12 are studying Spanish and 7 are studying both French and Spanish. How many students are not taking any foreign languages?

Probability, Venn Diagrams And Conditional Probability

This video shows how to construct a simple Venn diagram and then calculate a simple conditional probability.

Problem: In a class, P(male)= 0.3, P(brown hair) = 0.5, P (male and brown hair) = 0.2 Find (i) P(female) (ii) P(male| brown hair) (iii) P(female| not brown hair)

Venn Diagrams With Three Categories

Example: A group of 62 students were surveyed, and it was found that each of the students surveyed liked at least one of the following three fruits: apricots, bananas, and cantaloupes.

34 liked apricots. 30 liked bananas. 33 liked cantaloupes. 11 liked apricots and bananas. 15 liked bananas and cantaloupes. 17 liked apricots and cantaloupes. 19 liked exactly two of the following fruits: apricots, bananas, and cantaloupes.

a. How many students liked apricots, but not bananas or cantaloupes? b. How many students liked cantaloupes, but not bananas or apricots? c. How many students liked all of the following three fruits: apricots, bananas, and cantaloupes? d. How many students liked apricots and cantaloupes, but not bananas?

Venn Diagram Word Problem

Here is an example on how to solve a Venn diagram word problem that involves three intersecting sets.

Problem: 90 students went to a school carnival. 3 had a hamburger, soft drink and ice-cream. 24 had hamburgers. 5 had a hamburger and a soft drink. 33 had soft drinks. 10 had a soft drink and ice-cream. 38 had ice-cream. 8 had a hamburger and ice-cream. How many had nothing? (Errata in video: 90 - (14 + 2 + 3 + 5 + 21 + 7 + 23) = 90 - 75 = 15)

Venn Diagrams With Two Categories

This video introduces 2-circle Venn diagrams, and using subtraction as a counting technique.

How To Use 3-Circle Venn Diagrams As A Counting Technique?

Learn about Venn diagrams with two subsets using regions.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

  • + ACCUPLACER Mathematics
  • + ACT Mathematics
  • + AFOQT Mathematics
  • + ALEKS Tests
  • + ASVAB Mathematics
  • + ATI TEAS Math Tests
  • + Common Core Math
  • + DAT Math Tests
  • + FSA Tests
  • + FTCE Math
  • + GED Mathematics
  • + Georgia Milestones Assessment
  • + GRE Quantitative Reasoning
  • + HiSET Math Exam
  • + HSPT Math
  • + ISEE Mathematics
  • + PARCC Tests
  • + Praxis Math
  • + PSAT Math Tests
  • + PSSA Tests
  • + SAT Math Tests
  • + SBAC Tests
  • + SIFT Math
  • + SSAT Math Tests
  • + STAAR Tests
  • + TABE Tests
  • + TASC Math
  • + TSI Mathematics
  • + ACT Math Worksheets
  • + Accuplacer Math Worksheets
  • + AFOQT Math Worksheets
  • + ALEKS Math Worksheets
  • + ASVAB Math Worksheets
  • + ATI TEAS 6 Math Worksheets
  • + FTCE General Math Worksheets
  • + GED Math Worksheets
  • + 3rd Grade Mathematics Worksheets
  • + 4th Grade Mathematics Worksheets
  • + 5th Grade Mathematics Worksheets
  • + 6th Grade Math Worksheets
  • + 7th Grade Mathematics Worksheets
  • + 8th Grade Mathematics Worksheets
  • + 9th Grade Math Worksheets
  • + HiSET Math Worksheets
  • + HSPT Math Worksheets
  • + ISEE Middle-Level Math Worksheets
  • + PERT Math Worksheets
  • + Praxis Math Worksheets
  • + PSAT Math Worksheets
  • + SAT Math Worksheets
  • + SIFT Math Worksheets
  • + SSAT Middle Level Math Worksheets
  • + 7th Grade STAAR Math Worksheets
  • + 8th Grade STAAR Math Worksheets
  • + THEA Math Worksheets
  • + TABE Math Worksheets
  • + TASC Math Worksheets
  • + TSI Math Worksheets
  • + AFOQT Math Course
  • + ALEKS Math Course
  • + ASVAB Math Course
  • + ATI TEAS 6 Math Course
  • + CHSPE Math Course
  • + FTCE General Knowledge Course
  • + GED Math Course
  • + HiSET Math Course
  • + HSPT Math Course
  • + ISEE Upper Level Math Course
  • + SHSAT Math Course
  • + SSAT Upper-Level Math Course
  • + PERT Math Course
  • + Praxis Core Math Course
  • + SIFT Math Course
  • + 8th Grade STAAR Math Course
  • + TABE Math Course
  • + TASC Math Course
  • + TSI Math Course
  • + Number Properties Puzzles
  • + Algebra Puzzles
  • + Geometry Puzzles
  • + Intelligent Math Puzzles
  • + Ratio, Proportion & Percentages Puzzles
  • + Other Math Puzzles

How to Solve Problems Using Venn Diagrams

Venn diagrams are visual tools often used to organize and understand sets and the relationships between them. They're named after John Venn, a British philosopher, and logician who introduced them in the 1880s. Venn diagrams are frequently used in various fields, including mathematics, statistics, logic, computer science, etc. They're handy for solving problems involving sets and subsets, intersections, unions, and complements.

How to Solve Problems Using Venn Diagrams

A Step-by-step Guide to Solving Problems Using Venn Diagrams

Here’s a step-by-step guide on how to solve problems using Venn diagrams:

Step 1: Understand the Problem

As with any problem-solving method, the first step is to understand the problem. What sets are involved? How are they related? What are you being asked to find?

Step 2: Draw the Diagram

Draw a rectangle to represent the universal set, which includes all possible elements. Each set within the universal set is represented by a circle. If there are two sets, draw two overlapping circles. If there are three sets, draw three overlapping circles, and so forth. Each section in the overlapping circles represents different intersections of the sets.

Step 3: Label the Diagram

Each circle (set) should be labeled appropriately. If you’re dealing with sets of different types of fruits, for example, one might be labeled “Apples” and another “Oranges”.

Step 4: Fill in the Values

Start filling in the values from the innermost part of the diagram (where all sets overlap) to the outer parts. This helps to avoid double-counting elements that belong to more than one set. Information provided in the problem usually tells you how many elements are in each set or section.

Step 5: Solve the Problem

Now, you can use the diagram to answer the question. This might involve counting the number of elements in a particular set or section of the diagram, or it might involve noticing patterns or relationships between the sets.

Step 6: Check Your Answer

Make sure your answer makes sense in the context of the problem and that you’ve accounted for all elements in the diagram.

by: Effortless Math Team about 11 months ago (category: Articles )

Effortless Math Team

Related to this article, more math articles.

  • Overview of the CLEP College Mathematics Test
  • TExES Core Subjects Math Formulas
  • The Ultimate 6th Grade SOL Math Course (+FREE Worksheets)
  • 10 Most Common 8th Grade FSA Math Questions
  • Understanding Quadrants
  • 6th Grade AZMerit Math Worksheets: FREE & Printable
  • FREE ISEE Middle Level Math Practice Test
  • The Unit Circle
  • 10 Most Common SSAT Upper-Level Math Questions
  • How to Dividing Fractions by Whole Numbers in Recipes!

What people say about "How to Solve Problems Using Venn Diagrams - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Mastering Grade 6 Math Word Problems The Ultimate Guide to Tackling 6th Grade Math Word Problems

Mastering grade 5 math word problems the ultimate guide to tackling 5th grade math word problems, mastering grade 7 math word problems the ultimate guide to tackling 7th grade math word problems, mastering grade 2 math word problems the ultimate guide to tackling 2nd grade math word problems, mastering grade 8 math word problems the ultimate guide to tackling 8th grade math word problems, mastering grade 4 math word problems the ultimate guide to tackling 4th grade math word problems, mastering grade 3 math word problems the ultimate guide to tackling 3rd grade math word problems.

  • ATI TEAS 6 Math
  • ISEE Upper Level Math
  • SSAT Upper-Level Math
  • Praxis Core Math
  • 8th Grade STAAR Math

Limited time only!

Save Over 45 %

It was $89.99 now it is $49.99

Login and use all of our services.

Effortless Math services are waiting for you. login faster!

Register Fast!

Password will be generated automatically and sent to your email.

After registration you can change your password if you want.

  • Math Worksheets
  • Math Courses
  • Math Topics
  • Math Puzzles
  • Math eBooks
  • GED Math Books
  • HiSET Math Books
  • ACT Math Books
  • ISEE Math Books
  • ACCUPLACER Books
  • Premium Membership
  • Youtube Videos

Effortless Math provides unofficial test prep products for a variety of tests and exams. All trademarks are property of their respective trademark owners.

  • Bulk Orders
  • Refund Policy

1.3 Understanding Venn Diagrams

Learning objectives.

After completing this section, you should be able to:

  • Utilize a universal set with two sets to interpret a Venn diagram.
  • Utilize a universal set with two sets to create a Venn diagram.
  • Determine the complement of a set.

Have you ever ordered a new dresser or bookcase that required assembly? When your package arrives you excitedly open it and spread out the pieces. Then you check the assembly guide and verify that you have all the parts required to assemble your new dresser. Now, the work begins. Luckily for you, the assembly guide includes step-by-step instructions with images that show you how to put together your product. If you are really lucky, the manufacturer may even provide a URL or QR code connecting you to an online video that demonstrates the complete assembly process. We can likely all agree that assembly instructions are much easier to follow when they include images or videos, rather than just written directions. The same goes for the relationships between sets.

Interpreting Venn Diagrams

Venn diagrams are the graphical tools or pictures that we use to visualize and understand relationships between sets. Venn diagrams are named after the mathematician John Venn, who first popularized their use in the 1880s. When we use a Venn diagram to visualize the relationships between sets, the entire set of data under consideration is drawn as a rectangle, and subsets of this set are drawn as circles completely contained within the rectangle. The entire set of data under consideration is known as the universal set .

Consider the statement: All trees are plants. This statement expresses the relationship between the set of all plants and the set of all trees. Because every tree is a plant, the set of trees is a subset of the set of plants. To represent this relationship using a Venn diagram, the set of plants will be our universal set and the set of trees will be the subset. Recall that this relationship is expressed symbolically as: Trees ⊂ Plants . Trees ⊂ Plants . To create a Venn diagram, first we draw a rectangle and label the universal set “ U = Plants . U = Plants . ” Then we draw a circle within the universal set and label it with the word “Trees.”

This section will introduce how to interpret and construct Venn diagrams. In future sections, as we expand our knowledge of relationships between sets, we will also develop our knowledge and use of Venn diagrams to explore how multiple sets can be combined to form new sets.

Example 1.18

Interpreting the relationship between sets in a venn diagram.

Write the relationship between the sets in the following Venn diagram, in words and symbolically.

The set of terriers is a subset of the universal set of dogs. In other words, the Venn diagram depicts the relationship that all terriers are dogs. This is expressed symbolically as T ⊂ U . T ⊂ U .

Your Turn 1.18

So far, the only relationship we have been considering between two sets is the subset relationship, but sets can be related in other ways. Lions and tigers are both different types of cats, but no lions are tigers, and no tigers are lions. Because the set of all lions and the set of all tigers do not have any members in common, we call these two sets disjoint sets , or non-overlapping sets.

Two sets A A and B B are disjoint sets if they do not share any elements in common. That is, if a a is a member of set A A , then a a is not a member of set B B . If b b is a member of set B B , then b b is not a member of set A A . To represent the relationship between the set of all cats and the sets of lions and tigers using a Venn diagram, we draw the universal set of cats as a rectangle and then draw a circle for the set of lions and a separate circle for the set of tigers within the rectangle, ensuring that the two circles representing the set of lions and the set of tigers do not touch or overlap in any way.

Example 1.19

Describing the relationship between sets.

Describe the relationship between the sets in the following Venn diagram.

The set of triangles and the set of squares are two disjoint subsets of the universal set of two-dimensional figures. The set of triangles does not share any elements in common with the set of squares. No triangles are squares and no squares are triangles, but both squares and triangles are 2D figures.

Your Turn 1.19

Creating venn diagrams.

The main purpose of a Venn diagram is to help you visualize the relationship between sets. As such, it is necessary to be able to draw Venn diagrams from a written or symbolic description of the relationship between sets.

To create a Venn diagram:

  • Draw a rectangle to represent the universal set, and label it U = set name U = set name .
  • Draw a circle within the rectangle to represent a subset of the universal set and label it with the set name.

If there are multiple disjoint subsets of the universal set, their separate circles should not touch or overlap.

Example 1.20

Drawing a venn diagram to represent the relationship between two sets.

Draw a Venn diagram to represent the relationship between each of the sets.

  • All rectangles are parallelograms.
  • All women are people.
  • The set of rectangles is a subset of the set of parallelograms. First, draw a rectangle to represent the universal set and label it with U = Parallelograms U = Parallelograms , then draw a circle completely within the rectangle, and label it with the name of the set it represents, R = Rectangles R = Rectangles .

In this example, both letters and names are used to represent the sets involved, but this is not necessary. You may use either letters or names alone, as long as the relationship is clearly depicted in the diagram, as shown below.

  • The universal set is the set of people, and the set of all women is a subset of the set of people.

Your Turn 1.20

Example 1.21, drawing a venn diagram to represent the relationship between three sets.

All bicycles and all cars have wheels, but no bicycle is a car. Draw a Venn diagram to represent this relationship.

Step 1: The set of bicycles and the set of cars are both subsets of the set of things with wheels. The universal set is the set of things with wheels, so we first draw a rectangle and label it with U = Things with Wheels U = Things with Wheels .

Step 2: Because the set of bicycles and the set of cars do not share any elements in common, these two sets are disjoint and must be drawn as two circles that do not touch or overlap with the universal set.

Your Turn 1.21

The complement of a set.

Recall that if set A A is a proper subset of set U U , the universal set (written symbolically as A ⊂ U A ⊂ U ), then there is at least one element in set U U that is not in set A A . The set of all the elements in the universal set U U that are not in the subset A A is called the complement of set A A , A ' A ' . In set builder notation this is written symbolically as: A ' = { x ∈ U | x ∉ A } . A ' = { x ∈ U | x ∉ A } . The symbol ∈ ∈ is used to represent the phrase, “is a member of,” and the symbol ∉ ∉ is used to represent the phrase, “is not a member of.” In the Venn diagram below, the complement of set A A is the region that lies outside the circle and inside the rectangle. The universal set U U includes all of the elements in set A A and all of the elements in the complement of set A A , and nothing else.

Consider the set of digit numbers. Let this be our universal set, U = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } . U = { 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 } . Now, let set A A be the subset of U U consisting of all the prime numbers in set U U , A = { 2 , 3 , 5 , 7 } . A = { 2 , 3 , 5 , 7 } . The complement of set A A is A ' = { 0 , 1 , 4 , 6 , 8 , 9 } . A ' = { 0 , 1 , 4 , 6 , 8 , 9 } . The following Venn diagram represents this relationship graphically.

Example 1.22

Finding the complement of a set.

For both of the questions below, A A is a proper subset of U U .

  • Given the universal set U = { Billie Eilish, Donald Glover, Bruno Mars, Adele, Ed Sheeran} U = { Billie Eilish, Donald Glover, Bruno Mars, Adele, Ed Sheeran} and set A = { Donald Glover, Bruno Mars, Ed Sheeran} A = { Donald Glover, Bruno Mars, Ed Sheeran} , find A ' . A ' .
  • Given the universal set U = { d|d is a dog } U = { d|d is a dog } and B = { b ∈ U|b is a beagle } B = { b ∈ U|b is a beagle } , find B ' . B ' .
  • The complement of set A A is the set of all elements in the universal set U U that are not in set A . A . A ' = { Billie Eilish, Adele } A ' = { Billie Eilish, Adele } .
  • The complement of set B B is the set of all dogs that are not beagles. All members of set B ′ B ′ are in the universal set because they are dogs, but they are not in set B , B , because they are not beagles. This relationship can be expressed in set build notation as follows: B ′ = { All dogs that are not beagles .} B ′ = { All dogs that are not beagles .} , B ′ = { d ∈ U | d is not a beagle .} B ′ = { d ∈ U | d is not a beagle .} , or B ′ = { d ∈ U | d ∉ B } . B ′ = { d ∈ U | d ∉ B } .

Your Turn 1.22

Check your understanding, section 1.3 exercises.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
  • Authors: Donna Kirk
  • Publisher/website: OpenStax
  • Book title: Contemporary Mathematics
  • Publication date: Mar 22, 2023
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/contemporary-mathematics/pages/1-introduction
  • Section URL: https://openstax.org/books/contemporary-mathematics/pages/1-3-understanding-venn-diagrams

© Dec 21, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

solving problem using venn diagram

  • HW Guidelines
  • Study Skills Quiz
  • Find Local Tutors
  • Demo MathHelp.com
  • Join MathHelp.com

Select a Course Below

  • ACCUPLACER Math
  • Math Placement Test
  • PRAXIS Math
  • + more tests
  • 5th Grade Math
  • 6th Grade Math
  • Pre-Algebra
  • College Pre-Algebra
  • Introductory Algebra
  • Intermediate Algebra
  • College Algebra

Venn Diagrams: Exercises

Intro Set Not'n Sets Exercises Diag. Exercises

Venn diagram word problems generally give you two or three classifications and a bunch of numbers. You then have to use the given information to populate the diagram and figure out the remaining information. For instance:

Out of forty students, 14 are taking English Composition and 29 are taking Chemistry.

  • If five students are in both classes, how many students are in neither class?
  • How many are in either class?
  • What is the probability that a randomly-chosen student from this group is taking only the Chemistry class?

Content Continues Below

MathHelp.com

Need a personal math teacher?

There are two classifications in this universe: English students and Chemistry students.

First I'll draw my universe for the forty students, with two overlapping circles labelled with the total in each:

(Well, okay; they're ovals, but they're always called "circles".)

Five students are taking both classes, so I'll put " 5 " in the overlap:

I've now accounted for five of the 14 English students, leaving nine students taking English but not Chemistry, so I'll put " 9 " in the "English only" part of the "English" circle:

I've also accounted for five of the 29 Chemistry students, leaving 24 students taking Chemistry but not English, so I'll put " 24 " in the "Chemistry only" part of the "Chemistry" circle:

This tells me that a total of 9 + 5 + 24 = 38 students are in either English or Chemistry (or both). This gives me the answer to part (b) of this exercise. This also leaves two students unaccounted for, so they must be the ones taking neither class, which is the answer to part (a) of this exercise. I'll put " 2 " inside the box, but outside the two circles:

The last part of this exercise asks me for the probability that a agiven student is taking Chemistry but not English. Out of the forty students, 24 are taking Chemistry but not English, which gives me a probability of:

24/40 = 0.6 = 60%

  • Two students are taking neither class.
  • There are 38 students in at least one of the classes.
  • There is a 60% probability that a randomly-chosen student in this group is taking Chemistry but not English.

Years ago, I discovered that my (now departed) cat had a taste for the adorable little geckoes that lived in the bushes and vines in my yard, back when I lived in Arizona. In one month, suppose he deposited the following on my carpet:

  • six gray geckoes,
  • twelve geckoes that had dropped their tails in an effort to escape capture, and
  • fifteen geckoes that he'd chewed on a little

In addition:

  • only one of the geckoes was gray, chewed-on, and tailless;
  • two were gray and tailless but not chewed-on;
  • two were gray and chewed-on but not tailless.

If there were a total of 24 geckoes left on my carpet that month, and all of the geckoes were at least one of "gray", "tailless", and "chewed-on", how many were tailless and chewed-on, but not gray?

If I work through this step-by-step, using what I've been given, I can figure out what I need in order to answer the question. This is a problem that takes some time and a few steps to solve.

They've given me that each of the geckoes had at least one of the characteristics, so each is a member of at least one of the circles. This means that there will be nothing outside of the circles; the circles will account for everything in this particular universe.

There was one gecko that was gray, tailless, and chewed on, so I'll draw my Venn diagram with three overlapping circles, and I'll put " 1 " in the center overlap:

Two of the geckoes were gray and tailless but not chewed-on, so " 2 " goes in the rest of the overlap between "gray" and "tailless".

Two of them were gray and chewed-on but not tailless, so " 2 " goes in the rest of the overlap between "gray" and "chewed-on".

Since a total of six were gray, and since 2 + 1 + 2 = 5 of these geckoes have already been accounted for, this tells me that there was only one left that was only gray.

This leaves me needing to know how many were tailless and chewed-on but not gray, which is what the problem asks for. But, because I don't know how many were only chewed on or only tailless, I cannot yet figure out the answer value for the remaining overlap section.

I need to work with a value that I don't yet know, so I need a variable. I'll let " x " stand for this unknown number of tailless, chewed-on geckoes.

I do know the total number of chewed geckoes ( 15 ) and the total number of tailless geckoes ( 12 ). After subtracting, this gives me expressions for the remaining portions of the diagram:

only chewed on:

15 − 2 − 1 − x = 12 − x

only tailless:

12 − 2 − 1 − x = 9 − x

There were a total of 24 geckoes for the month, so adding up all the sections of the diagram's circles gives me: (everything from the "gray" circle) plus (the unknown from the remaining overlap) plus (the only-chewed-on) plus (the only-tailless), or:

(1 + 2 + 1 + 2) + ( x )

+ (12 − x ) + (9 − x )

= 27 − x = 24

Solving , I get x = 3 . So:

Three geckoes were tailless and chewed on but not gray.

(No geckoes or cats were injured during the production of the above word problem.)

For more word-problem examples to work on, complete with worked solutions, try this page provided by Joe Kahlig of Texas A&M University. There is also a software package (DOS-based) available through the Math Archives which can give you lots of practice with the set-theory aspect of Venn diagrams. The program is not hard to use, but you should definitely read the instructions before using.

URL: https://www.purplemath.com/modules/venndiag4.htm

Page 1 Page 2 Page 3 Page 4

Standardized Test Prep

College math, homeschool math, share this page.

  • Terms of Use
  • About Purplemath
  • About the Author
  • Tutoring from PM
  • Advertising
  • Linking to PM
  • Site licencing

Visit Our Profiles

solving problem using venn diagram

Venn Diagram Questions

Venn diagram questions with solutions are given here for students to practice various questions based on Venn diagrams. These questions are beneficial for both school examinations and competitive exams. Practising these questions will develop a skill to solve any problem on Venn diagrams quickly.

Venn diagrams were first introduced by John Venn to represent various propositions in a diagrammatic way. Venn diagrams are used for representing relationships between given sets. For example, natural numbers and whole numbers are subsets of integers represented by the Venn diagram:

Using Venn diagrams, we can easily understand whether given sets are subsets of each other or disjoint sets or have something in common.

  • Intersection of Sets
  • Union of Sets
  • Complement of Set
  • Set Operations

Following are some set operations and their meaning useful while solving problems on the Venn diagram:

Some important formulae:

Venn Diagram Questions with Solution

Let us practice some questions based on Venn diagrams.

Question 1: If A and B are two sets such that number of elements in A is 24, number of elements in B is 22 and number of elements in both A and B is 8, find:

(i) n(A ∪ B)

(ii) n(A – B)

(ii) n(B – A)

Given, n(A) = 24, n(B) = 22 and n(A ∩ B) = 8

The Venn diagram for the given information is:

(i) n(A ∪ B) = n(A) + n(B) – n(A ∩ B) = 24 + 22 – 8 = 38.

(ii) n(A – B) = n(A) – n(A ∩ B) = 24 – 8 = 16.

(iii) n(B – A) = n(B) – n(A ∩ B) = 22 – 8 = 14.

Question 2: According to the survey made among 200 students, 140 students like cold drinks, 120 students like milkshakes and 80 like both. How many students like atleast one of the drinks?

Number of students like cold drinks = n(A) = 140

Number of students like milkshake = n(B) = 120

Number of students like both = n(A ∩ B) = 80

Number of students like atleast one of the drinks = n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

= 140 + 120 – 80

Question 3: In a group of 500 people, 350 people can speak English, and 400 people can speak Hindi. Find how many people can speak both languages?

Let H be the set of people who can speak Hindi and E be the set of people who can speak English. Then,

n(H ∪ E) = 500

We have to find n(H ∩ E).

Now, n(H ∪ E) = n(H) + n(E) – n(H ∩ E)

⇒ 500 = 400 + 350 – n(H ∩ E)

⇒ n(H ∩ E) = 750 – 500 = 250.

∴ 250 people can speak both languages.

Questions 4: The following Venn diagram shows games played by the number of students in a class:

How many students like only cricket and only football?

As per the given Venn diagram,

Number of students only like cricket = 7

Number of students only like football = 14

∴ Number of students like only cricket and only football = 7 + 14 = 21.

Question 5: In a class of 40 students, 20 have chosen Mathematics, 15 have chosen mathematics but not biology. If every student has chosen either mathematics or biology or both, find the number of students who chose both mathematics and biology and the number of students chose biology but not mathematics.

Let, M ≡ Set of students who chose mathematics

B ≡ Set of students who chose biology

n(M ∪ B) = 40

n(B) = n(M ∪ B) – n(M)

⇒ n(B) = 40 – 20 = 20

n(M – B) = 15

n(M) = n(M – B) + n(M ∩ B)

⇒ 20 = 15 + n(M ∩ B)

⇒ n(M ∩ B) = 20 – 15 = 5

n(B – M) = n(B) – n(M ∩ B)

⇒ n(B – M) = 20 – 5 = 15

Question 6: Represent The following as Venn diagram:

(i) A’ ∩ (B ∪ C)

(ii) A’ ∩ (C – B)

Question 7: In a survey among 140 students, 60 likes to play videogames, 70 likes to play indoor games, 75 likes to play outdoor games, 30 play indoor and outdoor games, 18 like to play video games and outdoor games, 42 play video games and indoor games and 8 likes to play all types of games. Use the Venn diagram to find

(i) students who play only outdoor games

(ii) students who play video games and indoor games, but not outdoor games.

Let V ≡ Play video games

I ≡ Play indoor games

O ≡ Play outdoor games

n(V) = 60, n(I) = 70, n(O) = 75

n(I ∩ O) = 30, n(V ∩ O) = 18, n(V ∩ I) = 42

n(V ∩ I ∩ O) = 8

Hence, by Venn diagram

Number of students only like to play only outdoor games = 35

Number of students like to play video games and indoor games but not outdoor games = 34

Note : Always begin to fill the Venn diagram from the innermost part.

Question 8: Using the Venn diagrams, verify (P ∩ Q) ∪ R = (P ∪ R) ∩ (Q ∪ R).

The shaded portion represents (P ∩ Q) ∪ R in the Venn diagram.

Comparing both the shaded portion in both the Venn diagram, we get (P ∩ Q) ∪ R = (P ∪ R) ∩ (Q ∪ R).

Question 9: Prove using the Venn diagram: (B – A) ∪ (A ∩ B) = B.

From the Venn diagram, it is clear that (B – A) ∪ (A ∩ B) = B

Question 10: In a survey, it is found that 21 people read English newspaper, 26 people read Hindi newspaper, and 29 people read regional language newspaper. If 14 people read both English and Hindi newspapers; 15 people read both Hindi and regional language newspapers; 12 people read both English and regional language newspaper and 8 read all types of newspapers, find:

(i) How many people were surveyed?

(ii) How many people read only regional language newspapers?

Let A ≡ People who read English newspapers.

B ≡ People who read Hindi newspapers.

C ≡ People who read Hindi newspapers.

n(A) = 21, n(B) = 26, n(C) = 29

n(A ∩ B) = 14, n(B ∩ C) = 15, n(A ∩ C) = 12

n(A ∩ B ∩ C) = 8

(i) Number of people surveyed = n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) = 21 + 26 + 29 – 14 – 15 – 12 + 8 = 43

(ii) By the Venn diagram, number of people who only read regional language newspapers = 10.

Video Lesson on Introduction to Sets

solving problem using venn diagram

Practice Questions on Venn Diagrams

1. Verify using the Venn diagram:

(i) A – B = A ∩ B C

(ii) (A ∩ B) C = A C ∪ B C

2. For given two sets P and Q, n(P – Q) = 24, n(Q – P) = 19 and n(P ∩ Q) = 11, find:

(iii) n (P ∪ Q)

3. In a group of 65 people, 40 like tea and 10 like both tea and coffee. Find

(i) how many like coffee only and not tea?

(ii) how many like coffee?

4. In a sports tournament, 38 medals were awarded for 500 m sprint, 15 medals were awarded for Javelin throw, and 20 medals were awarded for a long jump. If these medals were awarded to 58 participants and among them only three medals in all three sports, how many received exactly two medals?

Keep visiting BYJU’S to get more such Maths lessons in a simple, concise and easy to understand way. Also, register at BYJU’S – The Learning App to get complete assistance for Maths preparation with video lessons, notes, tips and other study materials.

solving problem using venn diagram

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

What is a Venn Diagram

What are your venn diagram needs.

Creating Venn diagrams is super simple and easy with our Venn diagram maker. Learn the essentials of Venn diagrams, along with their long history, versatile purposes and uses, examples and symbols, and steps to draw them. 

7 minute read

Want to make a Venn diagram of your own? Try Lucidchart. It's quick, easy, and completely free.

What is a Venn diagram?

A Venn diagram uses overlapping circles or other shapes to illustrate the logical relationships between two or more sets of items. Often, they serve to graphically organize things, highlighting how the items are similar and different.

Venn diagrams, also called Set diagrams or Logic diagrams, are widely used in mathematics, statistics, logic, teaching, linguistics, computer science and business. Many people first encounter them in school as they study math or logic, since Venn diagrams became part of “new math” curricula in the 1960s. These may be simple diagrams involving two or three sets of a few elements, or they may become quite sophisticated, including 3D presentations, as they progress to six or seven sets and beyond. They are used to think through and depict how items relate to each within a particular “universe” or segment. Venn diagrams allow users to visualize data in clear, powerful ways, and therefore are commonly used in presentations and reports. They are closely related to Euler diagrams, which differ by omitting sets if no items exist in them. Venn diagrams show relationships even if a set is empty.

Venn diagram history

Venn diagrams are named after British logician John Venn. He wrote about them in an 1880 paper entitled “On the Diagrammatic and Mechanical Representation of Propositions and Reasonings” in the Philosophical Magazine and Journal of Science.

But the roots of this type of diagram go back much further, at least 600 years. In the 1200s, philosopher and logician Ramon Llull (sometimes spelled Lull) of Majorca used a similar type of diagram, wrote author M.E. Baron in a 1969 article tracing their history. She also credited German mathematician and philosopher Gottfried Wilhelm von Leibnitz with drawing similar diagrams in the late 1600s.

In the 1700s, Swiss mathematician Leonard Euler (pronounced Oy-ler) invented what came to be known as the Euler Diagram, the most direct forerunner of the Venn Diagram. In fact, John Venn referred to his own diagrams as Eulerian Circles, not Venn Diagrams. The term Venn Diagrams was first published by American philosopher Clarence Irving (C.I.) Lewis in his 1918 book, A Survey of Symbolic Logic.

Venn Diagrams continued to evolve over the past 60 years with advances by experts David W. Henderson, Peter Hamburger, Jerrold Griggs, Charles E. “Chip” Killian and Carla D. Savage.  Their work concerned symmetric Venn Diagrams and their relationship to prime numbers, or numbers indivisible by other numbers except 1 and the number itself. One such symmetric diagram, based on prime number 7, is widely known in math circles as Victoria.

Other notable names in the development of Venn Diagrams are A.W.F. Edwards, Branko  Grunbaum and Henry John Stephen Smith. Among other things, they changed the shapes in the diagrams to allow simpler depiction of Venn Diagrams at increasing numbers of sets.

Example Venn diagram

Say our universe is pets, and we want to compare which type of pet our family might agree on.

Set A contains my preferences: dog, bird, hamster.

Set B contains Family Member B’s preferences: dog, cat, fish.

Set C contains Family Member C’s preferences: dog, cat, turtle, snake.

The overlap, or intersection, of the three sets contains only dog. Looks like we’re getting a dog.

Of course, Venn diagrams can get a lot more involved than that, as they are used extensively in various fields.

Venn diagram purpose and benefits

To visually organize information, to compare two or more choices, to solve complex mathematical problems., to compare data sets,, to reason through the logic, venn diagram use cases, statistics and probability:, linguistics:, teaching reading comprehension:, computer science:, venn diagram glossary, on a lighter note: venn diagrams hit the small screen.

Not many diagrams have crossed over into popular culture, but the esteemed Venn diagram has.

Steps to draw and use a basic Venn diagram

  • Determine your goal. What are you comparing, and why? This will help you to define your sets.
  • Brainstorm and list the items in your sets, either on paper or with a platform like Lucidchart.
  • Now, use your diagram to compare and contrast the sets. You may see things in new ways and be able to make observations, choices, arguments or decisions.

Additional Resources

  • Venn Diagram Templates
  • How to Create a Venn Diagram in PowerPoint

Lucidchart lets you create professional-looking Venn diagrams with easy-to-use software. With all editing taking place in the cloud, it’s easy to collaborate with colleagues on a Venn diagram. You can even import images and share your diagram digitally or via print.

IMAGES

  1. Solving Problem using Venn Diagram Part 1

    solving problem using venn diagram

  2. Problem Solving of Sets with 2 circles Venn Diagram

    solving problem using venn diagram

  3. how to solve venn diagram problems

    solving problem using venn diagram

  4. how to solve venn diagram problems

    solving problem using venn diagram

  5. Math 7 Week 2

    solving problem using venn diagram

  6. Venn Diagrams in Solving Math Word Problems Part 5 [With English subtitles]

    solving problem using venn diagram

VIDEO

  1. Problem Solving Involving Venn Diagram

  2. Problems Involving Sets │Using Venn Diagrams │Math 7

  3. Solving Conditional Probability Problem Using Venn Diagram

  4. Problem Solving Using Venn Diagram

  5. Solving word problems Venn Diagrams 3 sets

  6. venn diagram

COMMENTS

  1. Venn Diagram Examples, Problems and Solutions

    The best way to explain how the Venn diagram works and what its formulas show is to give 2 or 3 circles Venn diagram examples and problems with solutions. Problem-solving using Venn diagram is a widely used approach in many areas such as statistics, data science, business, set theory, math, logic and etc.

  2. 15 Venn Diagram Questions And Practice Problems With Solutions

    We will also cover problem-solving questions. Each question is followed by a worked solution. How to solve Venn diagram questions. ... In middle school, students learn to use set notation with Venn diagrams and start to find probabilities using Venn diagrams. The questions below are examples of questions that students may encounter in 6th, 7th ...

  3. Venn Diagram Word Problems

    Here is an example on how to solve a Venn diagram word problem that involves three intersecting sets. 90 students went to a school carnival. 3 had a hamburger, soft drink and ice-cream. 24 had hamburgers. 5 had a hamburger and a soft drink. 33 had soft drinks. 10 had a soft drink and ice-cream. 38 had ice-cream. 8 had a hamburger and ice-cream.

  4. How to Solve Problems Using Venn Diagrams

    How to Solve Problems Using Venn Diagrams. Venn diagrams are visual tools often used to organize and understand sets and the relationships between them. They're named after John Venn, a British philosopher, and logician who introduced them in the 1880s. Venn diagrams are frequently used in various fields, including mathematics, statistics ...

  5. Venn Diagram Examples for Problem Solving

    A simple Venn diagram example. The overlapping areas between the two boundaries describe the elements which are common between the two, while the areas that aren't overlapping house the elements that are different. Venn diagrams are used often in math that people tend to assume they are used only to solve math problems.

  6. 1.3 Understanding Venn Diagrams

    To represent this relationship using a Venn diagram, the set of plants will be our universal set and the set of trees will be the subset. Recall that this relationship is expressed symbolically as: Trees ⊂ Plants. Trees ⊂ Plants. To create a Venn diagram, first we draw a rectangle and label the universal set " U = Plants. U = Plants.

  7. Venn Diagrams: Exercises

    Purplemath. Venn diagram word problems generally give you two or three classifications and a bunch of numbers. You then have to use the given information to populate the diagram and figure out the remaining information. For instance: Out of forty students, 14 are taking English Composition and 29 are taking Chemistry.

  8. Venn diagrams

    GCSE; WJEC; Venn diagrams - WJEC Solving problems using Venn diagrams. Venn diagrams are a useful tool in the world of statistics. Once you have got to grips with these, you will be able to ...

  9. Venn diagram

    Two Set Example. The following diagram is a Venn diagram for sets and : . The red region contains all the elements that are in only. The blue region contains all the elements that are in only. The black region contains all the elements in both and which is called the intersection of and , denoted .The red, black, and blue regions together represent the elements that are in , , or both.

  10. Art of Problem Solving: Venn Diagrams with Two Categories

    Art of Problem Solving's Richard Rusczyk introduces 2-circle Venn diagrams, and using subtraction as a counting technique.Learn more: http://bit.ly/ArtofProb...

  11. PDF Solving Problems using Venn Diagrams LESSON

    Worksheet Solving problems using Venn diagrams Qu 1-3 9-1 class textbook: p246 M8.7 Qu 1-6 (Look at Qu 2 and 5 in class) A*-G class textbook: No exercise 9-1 homework book: p84 M8.7 Qu 1-5 A*-G homework book: No exercise Summary When completing the Venn diagram, fill in the number in the overlap or outside the circles first.

  12. Venn Diagrams (Survey Problem Examples)

    This math tutorial video explains Venn diagram problem solving. We show you how to solve Venn diagram survey problems, and we work a few examples (both two ...

  13. Solving Word Problems With Venn Diagrams Three Sets

    This video shows how to solve applications using Venn Diagrams.Example 1: https://www.youtube.com/watch?v=oSLitQKUPiY

  14. Venn Diagram Questions With Solution

    Venn diagram questions with solutions are given here for students to practice various questions based on Venn diagrams.These questions are beneficial for both school examinations and competitive exams. Practising these questions will develop a skill to solve any problem on Venn diagrams quickly.. Venn diagrams were first introduced by John Venn to represent various propositions in a ...

  15. What is a Venn Diagram

    The Ultimate Venn Diagram Guide - Includes the history of Venn diagrams, benefits to using them, examples, and use cases. Learn about terminology and how to draw a basic Venn diagram. ... They're also used in advanced mathematics to solve complex problems and have been written about extensively in scholarly journals. Set theory is an entire ...

  16. PDF Set Theory: Venn Diagrams for Problem Solving

    Create a Venn diagram with two sets. To do this, first draw two intersecting circles inside a rectangle. Be sure to label the circles accordingly. Now, work from the inside out. That is, begin by determining the number of cars in the intersection of the two sets. Since 6 out of the 50 cars needed no repairs, leaving.

  17. Solving Problems with Venn Diagrams

    This video solves two problems using Venn Diagrams. One with two sets and one with three sets.Complete Video List at http://www.mathispower4u.com

  18. Dynamically Created Venn Diagram Worksheets

    These Venn Diagram Worksheets will produce three problems with a maximum of 4 questions for each Venn Diagram for the students to answer. Set Notation Problems Using Three Sets Worksheets These Venn Diagram Worksheets are great for practicing solving set notation problems of different sets, unions, intersections, and complements with three sets.

  19. PDF Solving problems using Venn diagrams

    The Venn diagram alongside illustrates the number of students in a particular class who study Chemistry (C) 5 17 4 and History (H). Determine the number of students: a in the class b who study both subjects e who study at least one of the subjects d who only study Chemistry. In a survey at an alpine resort, people were

  20. Lesson Plan: Venn Diagrams

    use a Venn diagram to solve real-world problems. Prerequisites. Students should already be familiar with. factors, multiples, and primes. Exclusions. Students will not cover. ... and exclusions of the lesson teaching students how to interpret Venn diagrams that show relationships between two or more groups that are overlapping or nonoverlapping.

  21. Solving Problems Using Venn Diagram || Grade 7 Mathematics Q1

    ‼️FIRST QUARTER‼️🟢 GRADE 7: SOLVING PROBLEMS USING VENN DIAGRAMGRADE 7 PLAYLISTFirst Quarter: https://tinyurl.com/yyzdequa Second Quarter: https://tinyurl.c...

  22. Solving Problems Using Venn Diagram

    Education. 1 of 14. Download now. Download to read offline. Solving Problems Using Venn Diagram - Download as a PDF or view online for free.

  23. Solving Problems Using Venn Diagram

    Math in the Modern World Playlist:https://www.youtube.com/playlist?list=PLbZl6MGLeYnsoaxa2L-xouDPHcoe9z23xBusiness Statistics Playlist:https://www.youtube.co...