Case studies
Companies have applied serverless architectures to use cases from stock trade validation to e-commerce website construction to natural language processing. AWS serverless portfolio offers the flexibility to create a wide array of applications, including those requiring assurance programs such as PCI or HIPAA compliance.
The following sections illustrate some of the most common use cases but are not a comprehensive list. For a complete list of customer references and use case documentation, see Serverless Computing .

Serverless websites, web Apps, and mobile backends
Serverless approaches are ideal for applications where the load can vary dynamically. Using a serverless approach means no compute costs are incurred when there is no end-user traffic while still offering instant scale to meet high demand, such as a flash sale on an e-commerce site or a social media mention that drives a sudden wave of traffic.
Compared to traditional infrastructure approaches, it is also often significantly less expensive to develop, deliver, and operate a web or mobile backend when architected in a serverless fashion.
AWS provides the services developers need to construct these applications rapidly:
Amazon Simple Storage Service (Amazon S3) and AWS Amplify offer a simple hosting solution for static content.
AWS Lambda, in conjunction with Amazon API Gateway, provides support for dynamic API requests using functions.
Amazon DynamoDB offers a simple storage solution for the session and per-user state.
Amazon Cognito provides an easy way to handle end-user registration, authentication, and access control to resources.
Developers can use AWS Serverless Application Model (SAM ) to describe the various elements of an application.
AWS CodeStar can set up a CI/CD toolchain with just a few clicks.
To learn more, see the whitepaper AWS Serverless Multi-Tier Architectures , which provides a detailed examination of patterns for building serverless web applications. For complete reference architectures, see Serverless Reference Architecture for creating a Web Application and Serverless Reference Architecture for creating a Mobile Backend on GitHub.
Customer example – Neiman Marcus
A luxury household name, Neiman Marcus has a reputation for delivering a first-class, personalized customer service experience. To modernize and enhance that experience, the company wanted to develop Connect, an omnichannel digital selling application that would empower associates to view rich, personalized customer information with the goal of making each customer interaction unforgettable.
Choosing a serverless architecture with mobile development solutions on Amazon Web Services (AWS) enabled the development team to launch the app much faster than in the 4 months it had originally planned. “Using AWS cloud-native and serverless technologies, we increased our speed to market by at least 50 percent and were able to accelerate the launch of Connect,” says Sriram Vaidyanathan, senior director of omni engineering at Neiman Marcus.
This approach also greatly reduced app-building costs and provided developers with more agility for the development and rapid deployment of updates. The app elastically scales to support traffic at any volume for greater cost efficiency, and it has increased associate productivity. For more information, see the Neiman Marcus case study .
IoT backends
The benefits that a serverless architecture brings to web and mobile apps make it easy to construct IoT backends and device-based analytic processing systems that seamlessly scale with the number of devices.
For an example reference architecture, see Serverless Reference Architecture for creating an IoT Backend on GitHub.
Customer example – iRobot
iRobot, which makes robots such as the Roomba cleaning robot, uses AWS Lambda in conjunction with the AWS IoT service to create a serverless backend for its IoT platform. As a popular gift on any holiday, iRobot experiences increased traffic on these days.
While huge traffic spikes could also mean huge headaches for the company and its customers alike, iRobot’s engineering team doesn’t have to worry about managing infrastructure or manually writing code to handle availability and scaling by running on serverless. This enables them to innovate faster and stay focused on customers. Watch the AWS re:Invent 2020 video Building the next generation of residential robots for more information.
Data processing
The largest serverless applications process massive volumes of data, much of it in real-time. Typical serverless data processing architectures use a combination of Amazon Kinesis and AWS Lambda to process streaming data, or they combine Amazon S3 and AWS Lambda to trigger computation in response to object creation or update events.
When workloads require more complex orchestration than a simple trigger, developers can use AWS Step Functions to create stateful or long-running workflows that invoke one or more Lambda functions as they progress. To learn more about serverless data processing architectures, see the following on GitHub:
Serverless Reference Architecture for Real-time Stream Processing
Serverless Reference Architecture for Real-time File Processing
Image Recognition and Processing Backend reference architecture
Customer example – FINRA
The Financial Industry Regulatory Authority (FINRA) used AWS Lambda to build a serverless data processing solution that enables them to perform half a trillion data validations on 37 billion stock market events daily.
In his talk at AWS re:Invent 2016 entitled The State of Serverless Computing (SVR311) , Tim Griesbach, Senior Director at FINRA, said, “We found that Lambda was going to provide us with the best solution for this serverless cloud solution. With Lambda, the system was faster, cheaper, and more scalable. So at the end of the day, we’ve reduced our costs by over 50 percent, and we can track it daily, even hourly.”

Customer example – Toyota Connected
Toyota Connected is a subsidiary of Toyota and a technology company offering connected platforms, big data, mobility services and other automotive-related services.
Toyota Connected chose serverless computing architecture to build its Toyota Mobility Services Platform, leveraging AWS Lambda, Amazon Kinesis Data Streams (Amazon KDS), and Amazon S3 to offer personalized, localized, and predictive data to enhance the driving experience.
With its serverless architecture, Toyota Connected seamlessly scaled to 18 times its usual traffic volume, with 18 billion transactions per month running through the platform, reducing aggregation job times from 15+ hours to 1/40th of the time while reducing operational burden. Additionally, serverless enabled Toyota Connected to deploy the same pipeline in other geographies with smaller volumes and only pay for the resources consumed.
For more information, read our Big Data Blog on Toyota Connected or watch the re:Invent 2020 video Reimagining mobility with Toyota Connected (AUT303) .
AWS Lambda is a perfect match for many high-volume, parallel processing workloads. For an example of a reference architecture using MapReduce, see Reference Architecture for running serverless MapReduce jobs .
Customer example – Fannie Mae
Fannie Mae, a leading source of financing for mortgage lenders, uses AWS Lambda to run an “embarrassingly parallel” workload for its financial modeling. Fannie Mae uses Monte Carlo simulation processes to project future cash flows of mortgages that help manage mortgage risk.
The company found that its existing HPC grids were no longer meeting its growing business needs. So Fannie Mae built its new platform on Lambda, and the system successfully scaled up to 15,000 concurrent function executions during testing. The new system ran one simulation on 20 million mortgages completed in 2 hours, which is three times faster than the old system. Using a serverless architecture, Fannie Mae can run large-scale Monte Carlo simulations effectively because it doesn’t pay for idle compute resources. It can also speed up its computations by running multiple Lambda functions concurrently.
Fannie Mae also experienced shorter than typical time-to-market because they were able to dispense with server management and monitoring, along with the ability to eliminate much of the complex code previously required to manage application scaling and reliability. See the Fannie Mae AWS Summit 2017 presentation SMC303: Real-time Data Processing Using AWS Lambda for more information.
IT automation
Serverless approaches eliminate the overhead of managing servers, making most infrastructure tasks, including provisioning, configuration, management, alarms/monitors, and timed cron jobs, easier to create and manage.
Customer example – Autodesk
Autodesk, which makes 3D design and engineering software, uses AWS Lambda to automate its AWS account creation and management processes across its engineering organization.
Autodesk estimates that it realized cost savings of 98 percent (factoring in estimated savings in labor hours spent provisioning accounts). It can now provision accounts in just 10 minutes instead of the 10 hours it took to provision with the previous, infrastructure-based process.
The serverless solution enables Autodesk to automatically provision accounts, configure and enforce standards, and run audits with increased automation and fewer manual touchpoints. For more information, see the Autodesk AWS Summit 2017 presentation SMC301: The State of Serverless Computing . Visit GitHub to see the Autodesk Tailor service.
Machine learning
You can use serverless services to capture, store, and preprocess data before feeding it to your machine learning model. After training the model, you can also serve the model for prediction at scale for inference without providing or managing any infrastructure.
Customer example – Genworth
Genworth Mortgage Insurance Australia Limited is a leading provider of lenders’ mortgage insurance in Australia. Genworth has more than 50 years of experience and data in this industry and wanted to use this historical information to train predictive analytics for loss mitigation machine learning models.
To achieve this task, Genworth built a serverless machine learning pipeline at scale using services like AWS Glue, a serverless managed ETL processing service to ingest and transform data, and Amazon SageMaker to batch transform jobs and, perform ML inference, and process and publish the results of the analysis.
With the ML models, Genworth could analyze recent repayment patterns for each insurance policy to prioritize them in likelihood and impact for each claim. This process was automated end-to-end to help the business make data-driven decisions and simplify high-value manual work performed by the Loss Mitigation team. Read the Machine Learning blog How Genworth built a serverless ML pipeline on AWS using Amazon SageMaker and AWS Glue for more information.

To use the Amazon Web Services Documentation, Javascript must be enabled. Please refer to your browser's Help pages for instructions.
Thanks for letting us know we're doing a good job!
If you've got a moment, please tell us what we did right so we can do more of it.
Thanks for letting us know this page needs work. We're sorry we let you down.
If you've got a moment, please tell us how we can make the documentation better.
This website uses cookies to offer you the best experience online. By continuing to use our website, you agree to the use of cookies. If you would like to know more about cookies and how to manage them please view our Privacy Policy & Cookies page.

- Quality Transformation:

- Core testing:
- Specialized testing:

- APEXON & AWS PARTNERSHIP
AWS Success Stories
Working on AWS, we provide our customers – across banking, finance, healthcare, e-commerce and more – with the speed, agility and performance they need to out-execute their competition every day. See below how leading organizations are benefitting from our expertise on the AWS platform.


IMAGES
VIDEO
COMMENTS
Customer Success with AWS Partners. Explore how customers accelerate their cloud adoption and fuel innovation with the AWS Partner Network (APN). This is My Architecture. This is My Architecture showcases innovative architectural solutions on AWS by customers and partners. Episodes examine the most interesting and technically creative elements ...
Publication date: August 5, 2021 (Document Details (p. 77)) Abstract Amazon Web Services offers a broad set of global cloud-based products including compute, storage, databases, analytics, networking, mobile, developer tools, management tools, IoT, security, and enterprise applications: on-demand, available in seconds, with pay-as-you-go pricing.
• Skim through the AWS documentaon. • Sign up for AWS at hnp://aws.amazon.com • (Skip the IAM management for now) • Apply the service credit you received by email. • Create and download a Key-Pair, save it in your home directory. • Create a VM via the AWS Console • Connect to your newly-created VM like this:
Overview of Amazon Web Services AWS Whitepaper Introduction Overview of Amazon Web Services Publication date: September 28, 2023 (Document history (p. 94))
Developed a cloud-based application—built on an enterprise platform using AWS services— that followed patients through their course of care and monitored patients' status and progress against pre-determined clinical care pathways. The application integrated data across a healthcare
the Amazon Web Services (AWS) Cloud. Andrew Brookes, the company's chief technology officer, says, "We created a tool for enterprises, and they trusted AWS because it is the biggest and most successful cloud provider." Faculty is a provider of data science, machine learning, and artificial intelligence. The company's data science
AWS Case Studies are written stories by the partner about the delivery of AWS services or solutions to an AWS customer that highlights successful outcomes with external customers. AWS Case Studies for APN Partners, showcase the value of working with an APN Partner and how AWS played an integral role in solving a business need or IT challenge.
AWS Services Used •Amazon Aurora •Amazon S3 •Amazon EC2 •AWS Service Catalog •Amazon Cognito •Amazon SageMaker. Seeking to Ease Healthcare Collaboration . GE Healthcare is knownfor its medical imaging equipment and diagnostic imaging agents, but has—over the last several years—continued in its digital transformation. "Every day,
On-premises Big Data to AWS cloud migration to drive cost efficiency to drive Case Study Executive Summary Rakuten Rewards migrated their on-premises Hadoop clusters to Amazon Web Services (AWS) using a combination of services like Amazon S3, Amazon Elastic Map Reduce (EMR), and Snowflake to achieve cost reduction and operational efficiency.
AWS purchases of utilities, leases of real estate and networking infrastructure, and compensation paid to related AWS employees and contractors support the continuous operation of data centers From 2011 to 2022, AWS local spending on data center operations in the U.S. totaled $17.01 billion The economic impact of
Case studies. PDF RSS. Companies have applied serverless architectures to use cases from stock trade validation to e-commerce website construction to natural language processing. AWS serverless portfolio offers the flexibility to create a wide array of applications, including those requiring assurance programs such as PCI or HIPAA compliance.
using AWS. The company houses a portfolio of the largest online real-estate and home-related brands. Zillow Group runs the Zestimate, its machine learning-based home-valuation tool, on Amazon Kinesis and Apache Spark on Amazon EMR. Supporting a Fast-Growing Home-Valuation Tool The most popular online real-estate website and mobile app in the ...
Financial Services. Overview Segments Compliance, Security, and Governance AI and ML Case Studies Resources Partners.
PR Statements cannot be used as a public case study. This is primarily because PR statements are about the work that you will complete with a customer, but have not done the work yet. Case studies must be for projects that are in production, rather than in pilot or proof of concept stage. Public Case study Examples: Example 1
A: Case studies showcase the value that partners offer to customers. Case studies are key for partners to establish rapport and credibility with AWS and its customers. Additionally, APN partners may leverage their case studies to attract new customers. Case studies demonstrate how partners maintain a strong AWS-based practice as well as their ...
Keeping Up with Growth. As Amazon's business grew, the size of the IMS database also grew—by up to 50 percent annually. Such growth required the engineering team to spend up to 40 percent of its time each year scaling the database persistence layer. The Oracle database that IMS originally used had limited database connections and input ...
Amazon.com is the world's largest online retailer. In 2011, Amazon.com switched from tape backup to using cloud-based Amazon S3 for backing up the majority of its Oracle databases. By using AWS, Amazon.com was able to eliminate backup software and experienced a 12X performance improvement, reducing restore time from around 15 hours to 2.5 hours in select scenarios.
Square Enix case study. Square Enix uses AWS Lambda to run image processing for its Massively Multiplayer Online Role-Playing Game (MMORPG). With AWS Lambda, Square Enix was able to reliably handle spikes of up to 30 times normal traffic. Lambda also lowered the time required for image processing from several hours to just over 10 seconds, and ...
In this paper, we study Amazon Web Services (AWS) as a case Full-text available September 2021 Pooja Pandit A crucial step in the deployment of modern industry and educational data centres is...
Windows Case Studies. More and more businesses are using the flexible, scalable, and secure infrastructure of Amazon Web Services to run their Microsoft Windows workloads. These case studies exemplify how customers have achieved business agility, cost savings, innovation, and high availability with the AWS Cloud.
Read the full PDF case study « Go Back Monzo: Building a Mobile-First U.K. Digital Bank Using Cloud and Microservices Architectures This IDC Buyer Case Study focuses on how the U.K.-based start-up bank Monzo built a mobile-first digital bank by leveraging AWS infrastructure and microservices architectures.
Amazon Web Services is used as a case study for discussing common cloud terminology. Data security, as well as some cloud specific attacks is introduced. The current state and the future ...
AWS Case Studies and Success Stories. Apexon helping fastest-growing startups, largest enterprises, and leading government agencies with AWS Services. ... Working on AWS, we provide our customers - across banking, finance, healthcare, e-commerce and more - with the speed, agility and performance they need to out-execute their competition ...
Get started. Leading companies in travel & hospitality are already using AWS. Contact our experts and start your own AWS Cloud journey today. Read case studies featuring leading airlines, hotels, booking sites, restaurants and more to learn how AWS is transforming the travel and hospitality industry.