Grad Coach

Literature Syntheis 101

How To Synthesise The Existing Research (With Examples)

By: Derek Jansen (MBA) | Expert Reviewer: Eunice Rautenbach (DTech) | August 2023

One of the most common mistakes that students make when writing a literature review is that they err on the side of describing the existing literature rather than providing a critical synthesis of it. In this post, we’ll unpack what exactly synthesis means and show you how to craft a strong literature synthesis using practical examples.

This post is based on our popular online course, Literature Review Bootcamp . In the course, we walk you through the full process of developing a literature review, step by step. If it’s your first time writing a literature review, you definitely want to use this link to get 50% off the course (limited-time offer).

Overview: Literature Synthesis

  • What exactly does “synthesis” mean?
  • Aspect 1: Agreement
  • Aspect 2: Disagreement
  • Aspect 3: Key theories
  • Aspect 4: Contexts
  • Aspect 5: Methodologies
  • Bringing it all together

What does “synthesis” actually mean?

As a starting point, let’s quickly define what exactly we mean when we use the term “synthesis” within the context of a literature review.

Simply put, literature synthesis means going beyond just describing what everyone has said and found. Instead, synthesis is about bringing together all the information from various sources to present a cohesive assessment of the current state of knowledge in relation to your study’s research aims and questions .

Put another way, a good synthesis tells the reader exactly where the current research is “at” in terms of the topic you’re interested in – specifically, what’s known , what’s not , and where there’s a need for more research .

So, how do you go about doing this?

Well, there’s no “one right way” when it comes to literature synthesis, but we’ve found that it’s particularly useful to ask yourself five key questions when you’re working on your literature review. Having done so,  you can then address them more articulately within your actual write up. So, let’s take a look at each of these questions.

Free Webinar: Literature Review 101

1. Points Of Agreement

The first question that you need to ask yourself is: “Overall, what things seem to be agreed upon by the vast majority of the literature?”

For example, if your research aim is to identify which factors contribute toward job satisfaction, you’ll need to identify which factors are broadly agreed upon and “settled” within the literature. Naturally, there may at times be some lone contrarian that has a radical viewpoint , but, provided that the vast majority of researchers are in agreement, you can put these random outliers to the side. That is, of course, unless your research aims to explore a contrarian viewpoint and there’s a clear justification for doing so. 

Identifying what’s broadly agreed upon is an essential starting point for synthesising the literature, because you generally don’t want (or need) to reinvent the wheel or run down a road investigating something that is already well established . So, addressing this question first lays a foundation of “settled” knowledge.

Need a helping hand?

synthesis scientific literature

2. Points Of Disagreement

Related to the previous point, but on the other end of the spectrum, is the equally important question: “Where do the disagreements lie?” .

In other words, which things are not well agreed upon by current researchers? It’s important to clarify here that by disagreement, we don’t mean that researchers are (necessarily) fighting over it – just that there are relatively mixed findings within the empirical research , with no firm consensus amongst researchers.

This is a really important question to address as these “disagreements” will often set the stage for the research gap(s). In other words, they provide clues regarding potential opportunities for further research, which your study can then (hopefully) contribute toward filling. If you’re not familiar with the concept of a research gap, be sure to check out our explainer video covering exactly that .

synthesis scientific literature

3. Key Theories

The next question you need to ask yourself is: “Which key theories seem to be coming up repeatedly?” .

Within most research spaces, you’ll find that you keep running into a handful of key theories that are referred to over and over again. Apart from identifying these theories, you’ll also need to think about how they’re connected to each other. Specifically, you need to ask yourself:

  • Are they all covering the same ground or do they have different focal points  or underlying assumptions ?
  • Do some of them feed into each other and if so, is there an opportunity to integrate them into a more cohesive theory?
  • Do some of them pull in different directions ? If so, why might this be?
  • Do all of the theories define the key concepts and variables in the same way, or is there some disconnect? If so, what’s the impact of this ?

Simply put, you’ll need to pay careful attention to the key theories in your research area, as they will need to feature within your theoretical framework , which will form a critical component within your final literature review. This will set the foundation for your entire study, so it’s essential that you be critical in this area of your literature synthesis.

If this sounds a bit fluffy, don’t worry. We deep dive into the theoretical framework (as well as the conceptual framework) and look at practical examples in Literature Review Bootcamp . If you’d like to learn more, take advantage of our limited-time offer to get 60% off the standard price.

synthesis scientific literature

4. Contexts

The next question that you need to address in your literature synthesis is an important one, and that is: “Which contexts have (and have not) been covered by the existing research?” .

For example, sticking with our earlier hypothetical topic (factors that impact job satisfaction), you may find that most of the research has focused on white-collar , management-level staff within a primarily Western context, but little has been done on blue-collar workers in an Eastern context. Given the significant socio-cultural differences between these two groups, this is an important observation, as it could present a contextual research gap .

In practical terms, this means that you’ll need to carefully assess the context of each piece of literature that you’re engaging with, especially the empirical research (i.e., studies that have collected and analysed real-world data). Ideally, you should keep notes regarding the context of each study in some sort of catalogue or sheet, so that you can easily make sense of this before you start the writing phase. If you’d like, our free literature catalogue worksheet is a great tool for this task.

5. Methodological Approaches

Last but certainly not least, you need to ask yourself the question: “What types of research methodologies have (and haven’t) been used?”

For example, you might find that most studies have approached the topic using qualitative methods such as interviews and thematic analysis. Alternatively, you might find that most studies have used quantitative methods such as online surveys and statistical analysis.

But why does this matter?

Well, it can run in one of two potential directions . If you find that the vast majority of studies use a specific methodological approach, this could provide you with a firm foundation on which to base your own study’s methodology . In other words, you can use the methodologies of similar studies to inform (and justify) your own study’s research design .

On the other hand, you might argue that the lack of diverse methodological approaches presents a research gap , and therefore your study could contribute toward filling that gap by taking a different approach. For example, taking a qualitative approach to a research area that is typically approached quantitatively. Of course, if you’re going to go against the methodological grain, you’ll need to provide a strong justification for why your proposed approach makes sense. Nevertheless, it is something worth at least considering.

Regardless of which route you opt for, you need to pay careful attention to the methodologies used in the relevant studies and provide at least some discussion about this in your write-up. Again, it’s useful to keep track of this on some sort of spreadsheet or catalogue as you digest each article, so consider grabbing a copy of our free literature catalogue if you don’t have anything in place.

Looking at the methodologies of existing, similar studies will help you develop a strong research methodology for your own study.

Bringing It All Together

Alright, so we’ve looked at five important questions that you need to ask (and answer) to help you develop a strong synthesis within your literature review.  To recap, these are:

  • Which things are broadly agreed upon within the current research?
  • Which things are the subject of disagreement (or at least, present mixed findings)?
  • Which theories seem to be central to your research topic and how do they relate or compare to each other?
  • Which contexts have (and haven’t) been covered?
  • Which methodological approaches are most common?

Importantly, you’re not just asking yourself these questions for the sake of asking them – they’re not just a reflection exercise. You need to weave your answers to them into your actual literature review when you write it up. How exactly you do this will vary from project to project depending on the structure you opt for, but you’ll still need to address them within your literature review, whichever route you go.

The best approach is to spend some time actually writing out your answers to these questions, as opposed to just thinking about them in your head. Putting your thoughts onto paper really helps you flesh out your thinking . As you do this, don’t just write down the answers – instead, think about what they mean in terms of the research gap you’ll present , as well as the methodological approach you’ll take . Your literature synthesis needs to lay the groundwork for these two things, so it’s essential that you link all of it together in your mind, and of course, on paper.

Literature Review Course

Psst… there’s more!

This post is an extract from our bestselling short course, Literature Review Bootcamp . If you want to work smart, you don't want to miss this .

You Might Also Like:

Survey Design 101: The Basics

excellent , thank you

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

The Sheridan Libraries

  • Write a Literature Review
  • Sheridan Libraries
  • Find This link opens in a new window
  • Evaluate This link opens in a new window

Get Organized

  • Lit Review Prep Use this template to help you evaluate your sources, create article summaries for an annotated bibliography, and a synthesis matrix for your lit review outline.

Synthesize your Information

Synthesize: combine separate elements to form a whole.

Synthesis Matrix

A synthesis matrix helps you record the main points of each source and document how sources relate to each other.

After summarizing and evaluating your sources, arrange them in a matrix or use a citation manager to help you see how they relate to each other and apply to each of your themes or variables.  

By arranging your sources by theme or variable, you can see how your sources relate to each other, and can start thinking about how you weave them together to create a narrative.

  • Step-by-Step Approach
  • Example Matrix from NSCU
  • Matrix Template
  • << Previous: Summarize
  • Next: Integrate >>
  • Last Updated: Sep 26, 2023 10:25 AM
  • URL: https://guides.library.jhu.edu/lit-review

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 17 July 2020

Automated extraction of chemical synthesis actions from experimental procedures

  • Alain C. Vaucher   ORCID: orcid.org/0000-0001-7554-0288 1   na1 ,
  • Federico Zipoli 1   na1 ,
  • Joppe Geluykens   ORCID: orcid.org/0000-0002-3646-6019 1 ,
  • Vishnu H. Nair 1 ,
  • Philippe Schwaller   ORCID: orcid.org/0000-0003-3046-6576 1 &
  • Teodoro Laino 1  

Nature Communications volume  11 , Article number:  3601 ( 2020 ) Cite this article

21k Accesses

85 Citations

67 Altmetric

Metrics details

  • Cheminformatics
  • Computational chemistry
  • Organic chemistry

Experimental procedures for chemical synthesis are commonly reported in prose in patents or in the scientific literature. The extraction of the details necessary to reproduce and validate a synthesis in a chemical laboratory is often a tedious task requiring extensive human intervention. We present a method to convert unstructured experimental procedures written in English to structured synthetic steps (action sequences) reflecting all the operations needed to successfully conduct the corresponding chemical reactions. To achieve this, we design a set of synthesis actions with predefined properties and a deep-learning sequence to sequence model based on the transformer architecture to convert experimental procedures to action sequences. The model is pretrained on vast amounts of data generated automatically with a custom rule-based natural language processing approach and refined on manually annotated samples. Predictions on our test set result in a perfect (100%) match of the action sequence for 60.8% of sentences, a 90% match for 71.3% of sentences, and a 75% match for 82.4% of sentences.

Similar content being viewed by others

synthesis scientific literature

Inferring experimental procedures from text-based representations of chemical reactions

synthesis scientific literature

Discovery of novel chemical reactions by deep generative recurrent neural network

synthesis scientific literature

Interpreting neural networks for biological sequences by learning stochastic masks

Introduction.

In chemistry like in other scientific disciplines, we are witnessing the growth of an incredible amount of digital data, leading to a vast corpus of unstructured media content—including articles, books, images and videos—rarely with any descriptive metadata. While scientists have developed several technologies for analyzing and interacting with unstructured data, quite often these solutions rely on identifying and utilizing rules specific to each data item at the cost of a substantial human effort. Currently, the processing of unstructured data is pivotal to the work of many scientists: it transforms this data into a structured form that is easily searchable and that can be combined easily with automated workflows.

The availability of structured chemical data is especially important for automation due to the increasing interest in robots in the context of organic synthesis 1 , 2 , 3 , 4 . Structured data is also important to stimulate the design of predictive models for optimizing reaction procedures and conditions, similar to the success of the AI-guided reaction prediction schemes 5 , 6 , 7 , 8 for organic molecules.

In fact, although some simple organic reaction data are widely presented in well-structured and machine readable format, this is not the case for the corresponding chemical reaction procedures which are reported in prose in patents and in scientific literature. Therefore, it is not surprising if their conversion into a structured format is still a daunting task. As a consequence, the design of an automated conversion from unstructured chemical recipes for organic synthesis into structured ones is a desirable and needed technology.

Ultimately, with such an algorithm, a machine could ingest an experimental procedure and automatically start the synthesis in the lab, provided that all the necessary chemicals are available. Also, if applied to a large collection of experimental procedures, the conversion to structured synthesis actions could prove interesting for the analysis of reaction data, and could facilitate the discovery of patterns and the training of machine-learning models for new organic chemistry applications.

In this work, we focus on the conversion of experimental procedures into series of structured actions, with an emphasis on organic chemistry. To do so, we first identify general synthesis tasks covering most of the operations traditionally carried out by organic chemists. We implement and discuss several computational approaches for the extraction of such structured actions from experimental procedures. Rule-based models represent a good starting point for this endeavor, but they are quite sensitive to the formulation of the rules and to noise in the experimental procedures, such as typing errors or grammar mistakes 3 . We therefore introduce a deep-learning model based on the transformer architecture to translate experimental procedures into synthesis actions. We pretrain it on data generated with rule-based models and refine it with manually annotated data.

In doing so, our goal is for the sequence of actions to correspond to the original experimental procedure as closely as possible, with all the irrelevant information discarded. This means that an extracted action sequence contains, in principle, all the details required by a bench chemist or a robotic system to conduct a reaction successfully.

Retrieving information from the chemistry literature has received a lot of attention over the last decades 9 , 10 . One of the predominant goals is to mine information from patents, papers and theses, and save it as structured data in databases in order to make chemical knowledge searchable and enable queries about materials or properties. Due to the complex syntax of chemical language, a lot of effort has been put into the development of named entity recognition methods for chemistry. Named entity recognition entails the automatic detection of relevant words or word groups in a text and their assignment in categories. Typical approaches apply rules and dictionaries, machine-learning, or combinations thereof 9 . For instance, many named entity recognition methods have been applied to the detection of chemical entities (compound names and formulas) in text (see, for instance, refs. 11 , 12 , 13 , 14 , 15 , as well as ref. 9 for an extensive review).

Other approaches apply named entity recognition to also detect other chemistry-related information such as operations or reaction conditions. The ChemicalTagger tool, which focuses on the experimental sections of scientific text, parses different kinds of entities and determines the relationships between them 16 . Thereby, it also identifies so-called action phrases that associate text excerpts to actions. ChemDataExtractor aims to extract as much data as possible from the scientific literature to populate chemical databases 17 . It does not focus solely on experimental procedures and is also able to extract spectroscopic attributes or information present in tables, for instance. Weston et al. follow a similar strategy and apply their method on materials science abstracts with the goal to produce easily searchable knowledge databases 18 .

In the field of materials science, several text-mining tools have been applied to the study of synthesis procedures. Kim et al. designed a pipeline for the extraction of synthesis parameters which allows them to examine and compare synthesis conditions and materials properties across many publications 19 , 20 . In another work, they applied this pipeline to extract synthesis data for specific materials and train a variational autoencoder that generates potential synthesis parameter sets 21 . More recently, data extracted with the same tools allowed machine-learning models to learn to predict the precursors and sequence of actions to synthesize inorganic materials 22 . Mysore et al. applied text-mining tools to convert synthesis procedures to action graphs 23 . The nodes of the action graphs represent compounds, actions, or experimental conditions, and they are connected by edges that represent the associations between the nodes. Huo et al. applied latent Dirichlet allocation to cluster sentences of experimental procedures into topics in an unsupervised fashion, and then designed a machine-learning model to classify documents into three synthesis categories based on their topic distribution 24 . In an effort to facilitate the design and training of future machine-learning models, Mysore et al. provided a dataset of 230 annotated materials synthesis procedures 25 . A similar effort had been presented earlier for web lab protocols in biology 26 .

The extraction of synthesis information for organic chemistry has received less attention. Recently, Cronin and co-workers developed a robotic system able to perform organic synthesis autonomously 3 , requiring a synthetic scheme described in the so-called chemical descriptive language (XDL). They implement a rudimentary tool for translating a given procedure into XDL that follows the identification of key entities in the text and assembling the corresponding list of operations, using existing natural language-processing tools. This approach is exposed to linguistic challenges and its success depends to a large extent on how the experimental procedure is formulated. As a consequence, creating the XDL schemes remains largely manual. The Reaxys 27 and SciFinder 28 databases are also worth mentioning in the context of extracted organic synthesis information. These commercial databases contain reaction data (such as reagents, solvents, catalysts, temperatures, and reaction duration) for a large number of chemical reactions. These data are usually extracted from the scientific literature and curated by expert scientists.

To contrast the present work from previous approaches, our model converts experimental procedures as a whole into a structured, automation-friendly format, instead of scanning texts in search of relevant pieces of information. We aim for this conversion to be as reliable as possible, with the goal to make human verification unnecessary. Also, in contrast to other approaches, our deep-learning model does not rely on the identification of individual entities in sentences. In particular, it does not require specifying which words or word groups the synthesis actions correspond to, which makes the model more flexible and purely data-driven.

The trained deep-learning model for the extraction of action sequences is available free of charge on the cloud-based IBM RXN for Chemistry platform 29 .

Synthesis actions

The experimental procedures we consider in this work come from patents and represent single reaction steps. To conduct the full synthesis of a molecule, several such reaction steps are combined. The following is an example of a typical experimental procedure that is to be converted to automation-friendly instructions (which will be given further below in Table  2 ):

To a suspension of methyl 3-7-amino-2-[(2,4-dichlorophenyl)(hydroxy)methyl]-1H-benzimidazol-1-ylpropanoate (6.00 g, 14.7 mmol) and acetic acid (7.4 mL) in methanol (147 mL) was added acetaldehyde (4.95 mL, 88.2 mmol) at 0  ∘ C. After 30 min, sodium acetoxyborohydride (18.7 g, 88.2 mmol) was added. After 2 h, the reaction mixture was quenched with water, concentrated in vacuo, diluted with ethyl acetate, washed with aqueous sodium hydroxide (1 M) and brine, dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel eluting with a 10–30% ethyl acetate/n-hexane gradient mixture to give the title compound as a colorless amorphous (6.30 g, 13.6 mmol, 92%).

From such an experimental procedure, our goal is to extract all relevant information to reproduce the chemical reaction, including details about work-up. The structured format into which we convert this information consists of a sequence of synthesis actions. It is to be noted that restricting syntheses to the sequential execution of actions prevents us from supporting non-linear workflows. However, such branched synthesis procedures are rare when considering single reaction steps (see “Discussion” section). Furthermore, they can partly be remedied by the choice of actions, as will be explained below.

The predefined set of synthesis actions must be flexible enough to capture all the information necessary to conduct the chemical reactions described in experimental procedures. We tailored our set of actions to best reflect the content of experimental procedures as commonly described in patents. Accordingly, our actions cover operations of conventional batch chemistry for organic synthesis. We note that synthesis actions have been defined as well in other work. For instance, Hawizy et al. define a set of 21 types of so-called action phrases for experimental procedures from patents 16 . In the context of materials science, Huo et al. interpret topics extracted by a latent Dirichlet allocation as categories of experimental steps 24 , and Kim et al. cluster actions into a set of 50 categories in an automated procedure 22 .

The actions we selected are listed in Table  1 . Each action type has a set of allowed properties. For instance, the Stir action can be further specified by a duration, a temperature, and/or an atmosphere (and nothing else). The properties allowed for each action type are listed and explained in the Supplementary Note  1 and Supplementary Table  1 .

Most action types listed in Table  1 correspond to actual synthesis operations with direct equivalents in the wet laboratory. We note that drying and washing, in organic synthesis, correspond to different operations depending on their context. In particular, the additional properties attached to the two types of drying are different and we therefore define two action types for drying, DrySolid and DrySolution . MakeSolution describes the preparation of a separate solution. This enables us to support experimental procedures that require solutions or mixtures to be prepared separately for use in another action. Accordingly, MakeSolution is important in ensuring the compatibility with a linear sequence of actions, by avoiding the necessity to consider multiple reactors in an action sequence. We ignore information about glassware and apparatus on purpose, as this is largely imposed by the availability of equipment or the scale of the reaction, and the reaction success should not depend on it.

A few action types do not actually correspond to laboratory operations, but are convenient when retrieving information from experimental procedures. The FollowOtherProcedure action type is selected when the text refers to procedures described elsewhere, in which case no actual actions can be extracted. NoAction is assigned to text that does not relate to a synthesis operation, such as nuclear magnetic resonance data or sentences describing the physical properties of the reaction mixture. The OtherLanguage action covers experimental procedures that are not written in English. InvalidAction indicates that a text fragment is relevant but cannot be converted to one of the actions defined above. This action type is for instance selected for synthesis operations that are not covered by the actions of Table  1 , or for branched synthesis procedures.

When determining the actions corresponding to an experimental procedure, it is important to consider that some actions are implicit. For instance, in the sentence “The organic layer was dried over sodium sulfate”, the phase separation and collection of the organic layer is implicit (no verb) and will result in a CollectLayer action preceding DrySolution . Similarly, “23 g of aluminum chloride in 30 mL of dichloroethane was heated to 50 °C.” corresponds to three actions ( MakeSolution , Add , SetTemperature ) although the sentence contains only one verb ("heat”).

A single action type may cover a wide range of formulations present in experimental procedures. For instance, an Add action can be expressed using the English verbs “add”, “combine”, “suspend”, “charge”, “dilute”, “dissolve”, “mix”, “place”, “pour”, and “treat”, among others. As an additional example, a Concentrate action can be described in terms of concentrating a solution, evaporating a solvent, as well as removing a solvent or distilling it off.

Furthermore, an English verb may correspond to different actions depending on its context. For instance, “heat” may, on the one hand, indicate a punctual change in temperature for subsequent actions, or, on the other hand, inform that the reaction mixture should be heated for a specified duration. In the former case, we convert it to a SetTemperature action, and in the latter case to a Stir action. Another example is the verb “remove”, which may relate to Concentrate when associated with a solvent or to Filter in the context of a filtration.

It is important to consider that there can be multiple ways to assign actions to some synthesis operations. For example, the Quench and PH actions can, in principle, both be formulated as Add actions. Also, a Partition action can be expressed as two Add actions followed by a PhaseSeparation action. In such cases, we want to preserve the intent of the original experimental procedure and keep the variant closest to the text. We also note that the action scheme not only supports experimental procedures written in terms of specific reagents, but also the ones referring to general reagents (for instance, “the aldehyde” instead of “4-hydroxy-3-methoxybenzaldehyde”).

Computationally, actions can be stored as items associating the action type with a set of properties (complying with the available properties for each action type). For practical purposes, we define a bijective conversion to and from a textual representation of the actions. This textual representation is concise and easily understandable. It contains, for each action, all the non-empty properties of that action. With that format, the textual representation of the actions corresponding to the experimental procedure quoted above is shown in Table  2 .

Models for action sequence extraction

We studied several models for the automated extraction of action sequences from experimental procedures available in the Pistachio dataset 30 .

A first possibility is to parse the text for information about operations, compounds, quantities, and other conditions. This can be achieved by inspecting the structure of the sentences in the experimental procedures to detect the relevant pieces of information with the help of rules. In this work, we look into two such rule-based methods (see “Methods” section for details). These models require meticulous work when formulating extraction rules. Still, they do not always lead to an ideal conversion of experimental procedures into action sequences: it is virtually impossible to define rules covering every possible way to describe a synthesis, while at the same time being robust to noise in the experimental procedures.

To improve the quality of the extracted actions, we also look into machine learning for this task. As machine-learning models learn from data instead of rules, they are more flexible than rule-based models, which usually results in a greater robustness to noise. In our case, the training data can even be provided by the rule-based models in an initial phase. Concretely, we combine the action sequences generated by rule-based approaches into a pretraining dataset used for the initial training of the machine-learning model. We then refine the pretrained model with manually annotated samples of higher quality. To achieve this, we design a deep-learning model relying on a transformer-based encoder–decoder architecture that defines the extraction task as a translation of experimental procedure text into the textual representation of the associated actions.

In order to improve the performance of the refined machine-learning model, we perform additional refinement experiments involving data augmentation of the annotated samples. We also evaluate ensembles of trained models and, for comparison purposes, we train another model on the annotation dataset only (i.e. without pretraining).

The source of the experimental procedure data and all the above-mentioned approaches for action sequence extraction are detailed in the “Methods” section.

Model evaluation

We evaluate all the approaches on the test set of the annotation dataset. This set is made up of sentences that are more complex than the average, since the sentences selected for annotation represent cases that the rule-based models struggled with (see the “Methods” section).

In Table  3 , we show six metrics to compare different models for action sequence extraction. For clarity and conciseness, this table lists a selection of models only. Details related to this selection, as well as a comparison of all the refinement experiments, can be found in the Supplementary Note  2 . The validity is a measure of syntactical correctness of the textual representation of actions. It is given as the fraction of predictions that can be converted back to actions (as defined in Table  1 ) without error. The BLEU score 31 is a metric commonly used to evaluate models for machine translation. We adapted its calculation in order not to penalize predictions containing less than four words (see the Supplementary Note  3 for details). The Levenshtein similarity is calculated by deducting the normalized Levenshtein distance 32 from one, as implemented in the textdistance library 33 . The 100%, 90%, and 75% accuracies are the fractions of sentences that have a normalized Levenshtein similarity of 100%, 90%, 75% or greater, respectively. Accordingly, the 100% accuracy corresponds to the fraction of sentences for which the full action sequence is predicted correctly, including the associated properties.

As expected, the combined rule-based model and the deep-learning model pretrained on the rule-based data have a similar performance. Upon inspection, it appears that the better metrics of the deep-learning variant can be explained by sentences that the rule-based model classified as InvalidAction and that the pretrained model was partially able to predict correctly. Training a model on the annotated data only (no pretraining) leads to a model with a better accuracy than the one relying on pretraining only. Refining the pretrained translation model results in a considerable improvement compared to the other models. It more than doubles the fraction of sentences that are converted correctly compared to the pretrained model. Refining the model, however, slightly decreases the action string validity. The corresponding invalid predictions are converted to InvalidAction . Also, Table  3 illustrates that omitting the pretraining step leads to a considerably lower model accuracy. In the following, we only consider the refined translation model for analysis and discussion.

Inspection of the actions extracted by this model provides interesting insight into its strengths and weaknesses. For the incorrectly predicted action sequences, the differences are often limited to a single action. In some cases, it is even ambiguous which of the prediction or the ground truth (hand annotation) is better. In other cases, however, the predictions are clearly incorrect. Table  4 shows the ground truth and the predicted action sequences for a selection of sentences. In the Supplementary Data  1 , the interested reader may find, as additional examples, all the experimental procedure sentences from the annotation test set with the corresponding actions extracted by the different models.

In Table  5 , we show the accuracy of the predictions on the annotation test set by action type. It illustrates that for most actions, not only the type but also the associated properties are predicted correctly. Interestingly, no InvalidAction of the ground truth is present in the predictions, and multiple InvalidAction actions are predicted when the original sentence is not invalid. This problem is difficult to alleviate, since InvalidAction s in the annotations often correspond to unusual and infrequent operations or formulations.

Figure  1 illustrates, for the actions present in the ground truth, the corresponding action types predicted by the transformer model. Most of the incorrectly predicted actions relate to NoAction , InvalidAction , or actions with no counterpart. Other than that, very few actions are predicted incorrectly. Interesting errors are mixing up MakeSolution and Add (three times), predicting DrySolution instead of DrySolid (two times) and Wait instead of Stir (two times), or a PH action that is considered to be an Add action. More insight into the incorrect predictions can be gained by looking into the Supplementary Data  1 mentioned earlier.

figure 1

The action types predicted by the transformer model (labels on the x- axis) are compared to the actual action types of the ground truth (labels on the y -axis). This figure is generated by first counting all the correctly predicted action types (values on the diagonal); these values correspond to the column "Type match'' of Table  5 . Then, the off-diagonal elements are determined from the remaining (incorrectly predicted) actions. Thereby, the last row and column gather actions that are present only in the predicted set or ground truth, respectively. For clarity, the color scale stops at 10, although many elements (especially on the diagonal) exceed this value.

To better understand the errors of the model, we also take advantage of the ability of the model to make multiple suggestions for translation with a beam search. This is especially interesting for the sentences that the model is least confident about. The five best action sequences suggested by the refined model for all the sentences in the annotation test set can be found in the Supplementary Data  2 .

Data insights

Visualization of the extracted actions gives us interesting insight into the chemistry described in patents, and into the models presented in this work.

First, Fig.  2 a, b displays the distribution of the number of characters and the number of actions for sentences from Pistachio (used for pretraining) and from the annotation dataset. The left figure shows that both sentence length distributions are similar, and are characterized by an average sentence length of around 100 characters. The annotation dataset contains fewer very short and fewer very long sentences. The right figure shows that most sentences (roughly one-third) describes one single action, with a decreasing probability to find sentences with increasingly many actions. The differences between both distributions can be explained by differences in the underlying sentences (Pistachio vs. annotation dataset) and by the different extraction approach (rule-based model vs. hand annotations).

figure 2

a Distribution of the number of characters for sentences from Pistachio and from the annotation dataset. b Distribution of the number of actions per sentence. For the Pistachio dataset, this number is computed from the actions extracted by the rule-based model. For sentences from the annotation dataset, this number is determined from the ground truth (hand annotations). c Distribution of action types extracted by the rule-based model on the Pistachio dataset and on the annotated dataset. The action types are ordered by decreasing frequency for the Pistachio dataset. d Distribution of action types determined from hand annotations for the full annotation dataset and its test split. The action types are ordered by decreasing frequency for the full annotation dataset.

Figure  2 c shows the distribution of actions extracted by the rule-based model on the Pistachio dataset and on the annotation dataset. As a whole, both distributions are similar, and they give an idea of the frequency of chemical operations in patents. One can for instance observe that addition, stirring and concentration belong to the most common operations, while only few experimental procedures involve recrystallization, microwaving or sonication. The differences between both distributions reflect the criteria for the selection of the sentences to annotate. For instance, the rule-based model tags too many sentences as InvalidAction , and therefore it is sensible to annotate as many such sentences as possible. Further below, Fig.  3 will show that the rule-based model overestimates the frequency of InvalidAction s. One can also see that PH actions are overrepresented in the annotations, because of the necessity to parse the pH value and the current inability of the rule-based model to do so.

figure 3

The action types are ordered by decreasing frequency for the hand annotations.

In Fig.  2 d, one can see the distribution of hand-annotated actions on the full annotation set of 1764 samples and on its subset from the test split containing 352 samples. This figure shows that the distribution of actions in the test split is close to the one of the full annotation set, and hints that it catches sufficient diversity for evaluating the models studied in this work.

Figure  3 illustrates the actions predicted by the rule-based and machine-learning models on the annotation test set, compared with the hand-annotated actions. One can see that the distribution of actions predicted by the machine-learning model follows very closely the ground truth distribution. In particular, the frequency of NoAction and InvalidAction is much closer to the ground truth than the rule-based model, although the frequency of InvalidAction is underestimated.

The present work demonstrates the ability of a transformer-based sequence-to-sequence model to extract actions from experimental procedures written in prose. Training such a model on automatically generated data is already sufficient to achieve a similar accuracy as the rule-based approaches that produced that data. Enhancing the training data with manually annotated samples rapidly shows the advantage of a data-driven approach, since a relatively small set of annotations already leads to a dramatic improvement in accuracy. The ability of the model to learn a complex syntax with a different set of properties for each action type avoids the necessity to design a complex deep-learning model taking into account multiple output types and demonstrates the power of the transformer architecture.

This work represents an important first step towards the automatic execution of arbitrary reactions with robotic systems. Before this is possible, however, it will be necessary to develop methods to infer information missing from experimental procedures. For instance, experimental procedures sometimes do not specify the solvents used for some operations, their quantities, or operation durations.

While the actions defined in this work are able to cover a large majority of experimental procedures, we are aware of some shortcomings of our approach. The choice to only support linear sequences of actions prevents us from addressing cross-references over long distances in the text. The MakeSolution and CollectLayer partly alleviate this disadvantage by encapsulating the preparation of a solution taking place in a separate flask, and by allowing for combining multiple solvent fractions generated during work-up, respectively. Then, in our annotation dataset of 1764 sentences, only four sentences correspond to an unsupported nonlinear sequence of actions. They are given as an illustration in the Supplementary Note  4 . Other than that, the current format does not allow operations that depend on the state of the system. In particular, formulations indicating until when an operation must be performed ("until the color disappears”, “until half the solvent has evaporated”, and so on) are usually not specific enough to be supported by our action definitions.

Another limitation originates in our specific choice of action types (Table  1 ) and corresponding properties, which does not yet allow for a 100% coverage of the operations in organic chemistry. This limitation can be alleviated by extending the action definitions, which is a process guided mainly by time and experience. In the Supplementary Note  5 , we give a few examples of such limitations, as well as suggestions for addressing them.

The rule-based model implemented in this work is able to extract actions adequately for many well-constructed sentences from experimental procedures. Although we compare it with the machine-learning model, it is not to be understood as a baseline to outperform, but rather as a stepping stone that helps us train the machine-learning model more rapidly and with less data.

The evaluation of the machine-learning model on the annotation test set results in a perfect match of the action sequence for 60.8% of the sentences. A detailed inspection of the incorrect predictions reveals that the errors are often minor (pertaining to only one action property out of the whole action sequence) and that in many cases the predicted action sequence would be an acceptable alternative to the ground truth.

Improving the automated extraction of action sequences is an ongoing effort, involving refinement of the rules to generate data for pretraining the deep-learning model and annotation of more samples for refining it. A future strategy for the selection of the sentences to annotate will be to choose the ones that the deep-learning model is least confident about.

Although we focused on experimental procedures for organic chemistry extracted from patents, the approach presented in this work is more general. It can be adapted to any extraction of operations from text, possibly requiring new training data or the definition of new action types to cover other domains adequately. Provided adequate changes to the training data and action definitions, the approach can for instance be extended to other sources, such as experimental sections from scientific publications, as well as other fields, such as solid-state synthesis.

Experimental procedure data

As a source of experimental procedures, we selected the Pistachio dataset, version 3.0 30 . This dataset contains information related to more than 8.3 M chemical reactions, 6.2 M of which are associated with an experimental procedure.

For each reaction, the Pistachio dataset also contains other information such as patent details and reaction classes, as well as information extracted from the experimental procedures.

Rule-based model derived from Pistachio

For each experimental procedure, the Pistachio dataset contains a list of actions and associated information, extracted from the text with a combination of LeadMine 13 and ChemicalTagger 16 . Accordingly, the action types used in Pistachio are similar to the ones in Table  1 . The information associated with the Pistachio actions is not operation-specific; the set of properties is common to all action types. It consists, most importantly, of a list of compounds and associated quantities, as well as fields for the temperature, duration, or atmosphere. To convert these actions to our format, we map, where possible, the action types, and post-process the data attached to these actions. For instance, each compound attached to a Heat action in Pistachio is converted to an Add action that is prepended to the Stir or SetTemperature action.

This approach to the generation of actions from experimental procedures is a good starting point, but limits us to the information detected by Pistachio and reported in the dataset. In particular, some actions relevant to us are not detected, such as all pH-related operations. Also, the Pistachio dataset contains no information about the relationships between compounds in a sentence.

Custom rule-based NLP model

We developed a custom rule-based natural language processing (NLP) algorithm for the extraction of operations with associated chemical compounds, quantities, and reaction conditions from experimental procedures.

In a first step, the algorithm processes a text independently of the actions defined in Table  1 . It detects operations by searching for verbs corresponding to synthesis operations, defined in a custom list. By analyzing the context of these verbs, the algorithm determines the associated compounds and quantities, as well as additional operation conditions. It also identifies the role of the compounds in the sentence (subject, direct object, etc.), and the relationships between compounds.

In a second step, the operations and associated information are post-processed to map them to the action types of Table  1 . This post-processing is similar to the one of the Pistachio-derived actions detailed above. For this task, information about the relationships between components and their role in the sentence are very useful. For instance, they indicate in what order compounds must be added, independently of what comes first in the sentence (for instance, “To X is added Y” or “ Y is added to X ” are equivalent). Also, it allows us to group compounds and convert them to MakeSolution actions when they belong together in the text (as in " A solution of X in Z is added to a solution of Y in Z.” ).

This approach to the extraction of actions from text is more flexible for our purposes than deriving the actions from Pistachio, since it can easily be modified or extended. In addition, it allows us to ingest experimental procedures from other sources than the Pistachio dataset.

Combined actions from rule-based models

Starting from a single experimental procedure, both rule-based approaches described above will generate two sequences of actions that may be different. An analysis of the generated actions rapidly uncovers their respective strengths and shortcomings. On the one hand, in our experience, the Pistachio-generated actions are better at extracting Yield actions, or at detecting under what atmosphere reactions are conducted. Our custom NLP approach, on the other hand, can cover a broader vocabulary of operations, and supports MakeSolution actions.

Combining both sources has the potential to generate actions that are better than each of the approaches taken separately. Formulating an algorithm to accomplish this in a clever way, however, is not straightforward. In this work, the combined dataset appends Yield actions from the Pistachio-based extraction to the actions generated by our custom NLP algorithm.

Annotations

To improve on the quality of training data based on the rule-based models, we generated higher-quality action sequences by manually annotating sentences from experimental procedures.

We developed an annotation framework based on the doccano annotation tool 34 . Annotators can open the framework in a web browser and navigate through sentences from experimental procedures. The page shows the sentence to annotate and a readable representation of the actions associated with it. An annotator can add new actions, reorder them, or edit them by opening a separate view. Figure  4 illustrates what a user of the annotation framework sees.

figure 4

The sentence to annotate is displayed on the left-hand side, with the corresponding pre-annotations on the right-hand side. A Wash action is missing and can be added by clicking on the corresponding button at the top. Also, when clicking on the appropriate button, a new page open to edit the selected action.

The annotation framework is pre-loaded with samples that are pre-annotated by combining action sequences from both rule-based models. The samples to annotate are sentences (from randomly picked experimental procedures) for which the rule-based extraction of actions encounters difficulties, such as sentences containing highly context-dependent verbs, sentences containing “followed by”, which the rule-based models usually struggle with, or sentences that result in multiple actions referring to the same compound.

To ensure consistency among the annotators, a detailed annotation guideline was provided. It can be found in the Supplementary Data  3 . Furthermore, a single annotator reviewed all the annotations.

Data augmentation

Data augmentation on the set of annotated samples increases the number of data points available for refinement in order to minimize overfitting. We augment the data by substituting compound names and quantities, as well as durations and temperatures, with a probability of 50%. The substitutes are selected at random from lists that we compiled from a subset of the Pistachio dataset. An example of data augmentation is shown in Table  6 .

Machine-learning model

We formulate the extraction of action sequences from experimental procedures as a sequence-to-sequence translation, in which experimental procedures are translated to the textual representation of the actions defined in Table  1 .

Restricting the output to a textual form is no limitation, since the textual representation of actions can easily be converted back to the action type and associated properties without loss. Furthermore, doing so allows for an easier and more flexible setup than designing a custom architecture for sequential prediction of actions and corresponding properties; this also means that established model architectures for sequence-to-sequence translation can be applied with few modifications.

Experimental procedures usually contain very few cross-sentence dependencies. We therefore translate experimental procedures sentence by sentence. This simplifies the learning task and limits the requirements on the model architecture. In the few cases where knowledge of the neighboring sentences would be relevant, the missing information can normally be determined from the context as a post-processing step when combining the sentences. As an example, from the sentence " The solution mixture is filtered and concentrated. ” , it is clear that the filtrate is kept rather than the precipitate. For “The solution mixture is filtered. It is then concentrated.”, this fact can be inferred by noticing that the Filter action is followed by a Concentrate action, which indicates that the phase to keep after filtration must be the filtrate.

The deep learning model for the conversion of experimental procedures to action sequences relies on the transformer architecture 35 , which is considered to be state-of-the-art in neural machine translation. To be more specific, our model uses a transformer encoder–decoder architecture with eight attention heads. The model is trained by minimizing the categorical cross-entropy loss for the output (sub)words. The model is implemented with the OpenNMT-py library 36 , 37 . The library indicates that the transformer model is very sensitive to hyperparameters and suggests a set of default parameters, which we adopted with a few changes. First, we reduced the model size by decreasing the number of layers from 6 to 4, the size of the hidden states from 512 to 256, and the size of the word vectors from 512 to 256. Second, we changed the values of the parameters max_generator_batches to 32, accum_count to 4 and label_smoothing to 0. Third, we chose the source and target vocabularies to be identical, and accordingly our model shares their embeddings. These changes were motivated by experiments on the pretraining task. In particular, the reduction in model capacity led to a model that is easier and faster to train without considerable impact on the model performance observed with the validation set. The OpenNMT-py configuration file for pretraining, containing all the hyperparameters, is available as the Supplementary Data  4 .

The translation model is pretrained on the action sequences generated by combining the NLP and Pistachio approaches. We apply the algorithm to a random subset of 1.0M experimental procedures, which produces 4.66M pairs of sentences and action sequences. To avoid biases due to incorrectly assigned InvalidAction and NoAction , all the InvalidAction s are removed, as well as the NoAction s that are longer than 30 characters and do not contain any keyword related to compound analysis. This provides more than 4.05M pairs of sentences and corresponding action sequences. After removal of duplicate sentences, 2.76M samples are remaining, which are split into training, validation, and test sets of size 2.16M, 0.27M, and 0.27M, respectively.

A vocabulary of size 16,000 is created from the training set with the SentencePiece library 38 , 39 . The source and target strings are then tokenized using the corresponding SentencePiece tokenizer. The model is then pretrained for 500,000 steps.

A total of 1764 annotated samples are split into training, validation and test sets of size 1060, 352, and 352, respectively. Based on this data, training is continued for the final model of the pretraining step. Three experiments are run. In the first experiment, the training set containing 984 samples is used as such ("no augmentation”). In the second experiment, the dataset is augmented as described above to produce 20,000 samples ("augmented”). In the third experiment, the duplicates contained in the augmented dataset are removed, which results in 14,168 samples ("augmented unique”). The validation and test sets are not augmented.

Each of the three refinement experiment is repeated three times with different random number generator seeds. All the models are refined for 30,000 steps, with checkpoints saved every 1000 steps. For analysis, we then select the model checkpoint leading to the highest accuracy. Some of the models selected in this fashion are combined into ensemble models. Additionally, three models are trained on the annotated dataset only (no pretraining).

While the different splits (training, validation, test) of the pretraining and annotation datasets contain strictly different sentences, we note that the language of experimental procedures is limited and many sentences will therefore not differ very much. This overlap, however, is difficult to measure and to avoid.

Data availability

The data on which the models for the extraction of action sequences were trained are available from NextMove Software in the Pistachio dataset 30 . The rule-based and hand-annotated action sequences are available from the authors upon request.

Code availability

A Python library with the action definition and handling as well as associated scripts for training the transformer model can be found on GitHub at https://github.com/rxn4chemistry/paragraph2actions . The trained models can be freely used online at https://rxn.res.ibm.com or with the Python wrapper at https://github.com/rxn4chemistry/rxn4chemistry to extract action sequences from experimental procedures.

Peplow, M. Organic synthesis: the robo-chemist. Nature 512 , 20–22 (2014).

Article   ADS   CAS   Google Scholar  

Trobe, M. & Burke, M. D. The molecular industrial revolution: automated synthesis of small molecules. Angew. Chem. Int. Ed. 57 , 4192–4214 (2018).

Article   CAS   Google Scholar  

Steiner, S. et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 363 , eaav2211 (2019).

Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365 , eaax1566 (2019).

Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555 , 604–610 (2018).

Coley, C. W. et al. A graph-convolutional neural network model for the prediction of chemical reactivity. Chem. Sci. 10 , 370–377 (2019).

Schwaller, P. et al. Molecular transformer: a model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 5 , 1572–1583 (2019).

Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11 , 3316–3325 (2020).

Krallinger, M., Rabal, O., Lourenço, A., Oyarzabal, J. & Valencia, A. Information retrieval and text mining technologies for chemistry. Chem. Rev. 117 , 7673–7761 (2017).

Lowe, D. M. Extraction of Chemical Structures and Reactions from the Literature. PhD thesis, University of Cambridge (2012).

Jessop, D. M., Adams, S. E., Willighagen, E. L., Hawizy, L. & Murray-Rust, P. OSCAR4: a flexible architecture for chemical text-mining. J. Cheminf. 3 , 41 (2011).

Rocktäschel, T., Weidlich, M. & Leser, U. ChemSpot: a hybrid system for chemical named entity recognition. Bioinformatics 28 , 1633–1640 (2012).

Article   Google Scholar  

Lowe, D. M. & Sayle, R. A. LeadMine: a grammar and dictionary driven approach to entity recognition. J. Cheminf. 7 , S5 (2015).

Leaman, R., Wei, C.-H. & Lu, Z. tmChem: a high performance approach for chemical named entity recognition and normalization. J. Cheminf. 7 , S3 (2015).

Korvigo, I., Holmatov, M., Zaikovskii, A. & Skoblov, M. Putting hands to rest: efficient deep CNN-RNN architecture for chemical named entity recognition with no hand-crafted rules. J. Cheminf. 10 , 28 (2018).

Hawizy, L., Jessop, D. M., Adams, N. & Murray-Rust, P. ChemicalTagger: a tool for semantic text-mining in chemistry. J. Cheminf. 3 , 17 (2011).

Swain, M. C. & Cole, J. M. ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. J. Chem. Inf. Model. 56 , 1894–1904 (2016).

Weston, L. et al. Named entity recognition and normalization applied to large-scale information extraction from the materials science literature. J. Chem. Inf. Model. 59 , 3692–3702 (2019).

Kim, E. et al. Machine-learned and codified synthesis parameters of oxide materials. Sci. Data 4 , 170127 (2017).

Kim, E. et al. Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater. 29 , 9436–9444 (2017).

Kim, E., Huang, K., Jegelka, S. & Olivetti, E. Virtual screening of inorganic materials synthesis parameters with deep learning. npj Comput. Mater. 3 , 53 (2017).

Article   ADS   Google Scholar  

Kim, E. et al. Inorganic materials synthesis planning with literature-trained neural networks. J. Chem. Inf. Model. 60 , 1194–1201 (2020).

Mysore, S. et al. Automatically extracting action graphs from materials science synthesis procedures. Preprint at https://arxiv.org/abs/1711.06872 (2017).

Huo, H. et al. Semi-supervised machine-learning classification of materials synthesis procedures. npj Comput. Mater. 5 , 62 (2019).

Mysore, S. et al. The materials science procedural text corpus: annotating materials synthesis procedures with shallow semantic structures. In Proc. 13th Linguistic Annotation Workshop , (eds Annemarie, F., Deniz, Z. & Jet, H.) 56–64 (2019).

Kulkarni, C., Xu, W., Ritter, A. & Machiraju, R. An annotated corpus for machine reading of instructions in wet lab protocols. In Proc. 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , Vol. 2 (Short Papers), (eds Marilyn, W., Heng, J. & Amanda, S.) 97–106 (Association for Computational Linguistics, New Orleans, LA, 2018).

Reaxys. https://www.reaxys.com . Accessed 13 Dec 2019.

SciFinder. https://scifinder.cas.org . Accessed 26 Mar 2020.

IBM RXN for Chemistry. https://rxn.res.ibm.com Accessed 20 Dec 2019.

Nextmove Software, Pistachio. http://www.nextmovesoftware.com/pistachio.html . Accessed 19 Nov 2019.

Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. Bleu: a method for automatic evaluation of machine translation. In Proc. 40th Annual Meeting of the Association for Computational Linguistics , (eds Pierre, I., Eugene, C. & Dekang, L.) 311–318 (Association for Computational Linguistics, Philadelphia, PA, USA, 2002).

Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 10 , 707–710 (1966).

ADS   MathSciNet   Google Scholar  

TextDistance library, version 4.1.5. https://github.com/life4/textdistance . Accessed 19 Nov 2019.

Doccano annotation tool. https://doccano.herokuapp.com . Accessed 19 Nov 2019.

Vaswani, A. et al. Attention is all you need. In Proc. 31st International Conference on Neural Information Processing Systems , NIPS’17 , (eds Isabelle, G., Ulrike, V. L., Samy, B., Hanna, W., Rob, F., Vishwanathan, S. V. N. & Roman, G.) 6000–6010 (Curran Associates Inc., Red Hook, NY, USA, 2017).

Klein, G., Kim, Y., Deng, Y., Senellart, J. & Rush, A. OpenNMT: open-source toolkit for neural machine translation. In Proc. ACL 2017, System Demonstrations , (eds Bansal, M. & Heng, J.) 67–72 (Association for Computational Linguistics, Vancouver, Canada, 2017).

OpenNMT-py library, version 0.9.2. https://github.com/OpenNMT/OpenNMT-py . Accessed 19 Nov 2019.

Kudo, T. & Richardson, J. SentencePiece: a simple and language independent subword tokenizer and detokenizer for Neural Text Processing. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations , (eds Eduardo, B. & Wei, L.) 66–71 (Association for Computational Linguistics, Brussels, Belgium, 2018).

SentencePiece library, version 0.1.83. https://github.com/google/sentencepiece . Accessed 19 Nov 2019.

Download references

Acknowledgements

We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions.

Author information

These authors contributed equally. Alain C. Vaucher, Federico Zipoli.

Authors and Affiliations

IBM Research Europe, Säumerstrasse 4, Rüschlikon, 8803, Switzerland

Alain C. Vaucher, Federico Zipoli, Joppe Geluykens, Vishnu H. Nair, Philippe Schwaller & Teodoro Laino

You can also search for this author in PubMed   Google Scholar

Contributions

The project was conceived and planned by T.L. and A.C.V. and supervised by T.L. F.Z. designed the custom rule-based NLP model. A.C.V. implemented and trained the other models. J.G. set up the annotation framework. All the authors were involved in discussions about the project and annotated the dataset. A.C.V. reviewed all the annotations and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Alain C. Vaucher .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Peer review information Nature Communications thanks Emma Strubell and the other, anonymous, reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, description of additional supplementary files, supplementary data 1, supplementary data 2, supplementary data 3, supplementary data 4, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Vaucher, A.C., Zipoli, F., Geluykens, J. et al. Automated extraction of chemical synthesis actions from experimental procedures. Nat Commun 11 , 3601 (2020). https://doi.org/10.1038/s41467-020-17266-6

Download citation

Received : 27 December 2019

Accepted : 15 June 2020

Published : 17 July 2020

DOI : https://doi.org/10.1038/s41467-020-17266-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Large language model enhanced corpus of co2 reduction electrocatalysts and synthesis procedures.

  • Xueqing Chen

Scientific Data (2024)

A deep learning framework for accurate reaction prediction and its application on high-throughput experimentation data

  • Hongming Chen

Journal of Cheminformatics (2023)

A robotic platform for the synthesis of colloidal nanocrystals

  • Haitao Zhao
  • Xue-Feng Yu

Nature Synthesis (2023)

Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis

  • Manu Suvarna
  • Alain Claude Vaucher
  • Javier Pérez-Ramírez

Nature Communications (2023)

Artificial intelligence driven design of catalysts and materials for ring opening polymerization using a domain-specific language

  • Nathaniel H. Park
  • Matteo Manica
  • Pedro L. Arrechea

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

synthesis scientific literature

A Guide to Evidence Synthesis: What is Evidence Synthesis?

  • Meet Our Team
  • Our Published Reviews and Protocols
  • What is Evidence Synthesis?
  • Types of Evidence Synthesis
  • Evidence Synthesis Across Disciplines
  • Finding and Appraising Existing Systematic Reviews
  • 0. Develop a Protocol
  • 1. Draft your Research Question
  • 2. Select Databases
  • 3. Select Grey Literature Sources
  • 4. Write a Search Strategy
  • 5. Register a Protocol
  • 6. Translate Search Strategies
  • 7. Citation Management
  • 8. Article Screening
  • 9. Risk of Bias Assessment
  • 10. Data Extraction
  • 11. Synthesize, Map, or Describe the Results
  • Evidence Synthesis Institute for Librarians
  • Open Access Evidence Synthesis Resources

What are Evidence Syntheses?

What are evidence syntheses.

According to the Royal Society, 'evidence synthesis' refers to the process of bringing together information from a range of sources and disciplines to inform debates and decisions on specific issues. They generally include a methodical and comprehensive literature synthesis focused on a well-formulated research question.  Their aim is to identify and synthesize all  of the scholarly research on a particular topic, including both published and unpublished studies. Evidence syntheses are conducted in an unbiased, reproducible way to provide evidence for practice and policy-making, as well as to identify gaps in the research. Evidence syntheses may also include a meta-analysis, a more quantitative process of synthesizing and visualizing data retrieved from various studies. 

Evidence syntheses are much more time-intensive than traditional literature reviews and require a multi-person research team. See this PredicTER tool to get a sense of a systematic review timeline (one type of evidence synthesis). Before embarking on an evidence synthesis, it's important to clearly identify your reasons for conducting one. For a list of types of evidence synthesis projects, see the next tab.

How Does a Traditional Literature Review Differ From an Evidence Synthesis?

How does a systematic review differ from a traditional literature review.

One commonly used form of evidence synthesis is a systematic review.  This table compares a traditional literature review with a systematic review.

Video: Reproducibility and transparent methods (Video 3:25)

Reporting Standards

There are some reporting standards for evidence syntheses. These can serve as guidelines for protocol and manuscript preparation and journals may require that these standards are followed for the review type that is being employed (e.g. systematic review, scoping review, etc). ​

  • PRISMA checklist Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) is an evidence-based minimum set of items for reporting in systematic reviews and meta-analyses.
  • PRISMA-P Standards An updated version of the original PRISMA standards for protocol development.
  • PRISMA - ScR Reporting guidelines for scoping reviews and evidence maps
  • PRISMA-IPD Standards Extension of the original PRISMA standards for systematic reviews and meta-analyses of individual participant data.
  • EQUATOR Network The EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network is an international initiative that seeks to improve the reliability and value of published health research literature by promoting transparent and accurate reporting and wider use of robust reporting guidelines. They provide a list of various standards for reporting in systematic reviews.

Video: Guidelines and reporting standards

PRISMA Flow Diagram

The  PRISMA  flow diagram depicts the flow of information through the different phases of an evidence synthesis. It maps the search (number of records identified), screening (number of records included and excluded), and selection (reasons for exclusion).  Many evidence syntheses include a PRISMA flow diagram in the published manuscript.

See below for resources to help you generate your own PRISMA flow diagram.

  • PRISMA Flow Diagram Tool
  • PRISMA Flow Diagram Word Template
  • << Previous: Our Published Reviews and Protocols
  • Next: Types of Evidence Synthesis >>
  • Last Updated: May 6, 2024 12:12 PM
  • URL: https://guides.library.cornell.edu/evidence-synthesis

How to Synthesize Written Information from Multiple Sources

Shona McCombes

Content Manager

B.A., English Literature, University of Glasgow

Shona McCombes is the content manager at Scribbr, Netherlands.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

When you write a literature review or essay, you have to go beyond just summarizing the articles you’ve read – you need to synthesize the literature to show how it all fits together (and how your own research fits in).

Synthesizing simply means combining. Instead of summarizing the main points of each source in turn, you put together the ideas and findings of multiple sources in order to make an overall point.

At the most basic level, this involves looking for similarities and differences between your sources. Your synthesis should show the reader where the sources overlap and where they diverge.

Unsynthesized Example

Franz (2008) studied undergraduate online students. He looked at 17 females and 18 males and found that none of them liked APA. According to Franz, the evidence suggested that all students are reluctant to learn citations style. Perez (2010) also studies undergraduate students. She looked at 42 females and 50 males and found that males were significantly more inclined to use citation software ( p < .05). Findings suggest that females might graduate sooner. Goldstein (2012) looked at British undergraduates. Among a sample of 50, all females, all confident in their abilities to cite and were eager to write their dissertations.

Synthesized Example

Studies of undergraduate students reveal conflicting conclusions regarding relationships between advanced scholarly study and citation efficacy. Although Franz (2008) found that no participants enjoyed learning citation style, Goldstein (2012) determined in a larger study that all participants watched felt comfortable citing sources, suggesting that variables among participant and control group populations must be examined more closely. Although Perez (2010) expanded on Franz’s original study with a larger, more diverse sample…

Step 1: Organize your sources

After collecting the relevant literature, you’ve got a lot of information to work through, and no clear idea of how it all fits together.

Before you can start writing, you need to organize your notes in a way that allows you to see the relationships between sources.

One way to begin synthesizing the literature is to put your notes into a table. Depending on your topic and the type of literature you’re dealing with, there are a couple of different ways you can organize this.

Summary table

A summary table collates the key points of each source under consistent headings. This is a good approach if your sources tend to have a similar structure – for instance, if they’re all empirical papers.

Each row in the table lists one source, and each column identifies a specific part of the source. You can decide which headings to include based on what’s most relevant to the literature you’re dealing with.

For example, you might include columns for things like aims, methods, variables, population, sample size, and conclusion.

For each study, you briefly summarize each of these aspects. You can also include columns for your own evaluation and analysis.

summary table for synthesizing the literature

The summary table gives you a quick overview of the key points of each source. This allows you to group sources by relevant similarities, as well as noticing important differences or contradictions in their findings.

Synthesis matrix

A synthesis matrix is useful when your sources are more varied in their purpose and structure – for example, when you’re dealing with books and essays making various different arguments about a topic.

Each column in the table lists one source. Each row is labeled with a specific concept, topic or theme that recurs across all or most of the sources.

Then, for each source, you summarize the main points or arguments related to the theme.

synthesis matrix

The purposes of the table is to identify the common points that connect the sources, as well as identifying points where they diverge or disagree.

Step 2: Outline your structure

Now you should have a clear overview of the main connections and differences between the sources you’ve read. Next, you need to decide how you’ll group them together and the order in which you’ll discuss them.

For shorter papers, your outline can just identify the focus of each paragraph; for longer papers, you might want to divide it into sections with headings.

There are a few different approaches you can take to help you structure your synthesis.

If your sources cover a broad time period, and you found patterns in how researchers approached the topic over time, you can organize your discussion chronologically .

That doesn’t mean you just summarize each paper in chronological order; instead, you should group articles into time periods and identify what they have in common, as well as signalling important turning points or developments in the literature.

If the literature covers various different topics, you can organize it thematically .

That means that each paragraph or section focuses on a specific theme and explains how that theme is approached in the literature.

synthesizing the literature using themes

Source Used with Permission: The Chicago School

If you’re drawing on literature from various different fields or they use a wide variety of research methods, you can organize your sources methodologically .

That means grouping together studies based on the type of research they did and discussing the findings that emerged from each method.

If your topic involves a debate between different schools of thought, you can organize it theoretically .

That means comparing the different theories that have been developed and grouping together papers based on the position or perspective they take on the topic, as well as evaluating which arguments are most convincing.

Step 3: Write paragraphs with topic sentences

What sets a synthesis apart from a summary is that it combines various sources. The easiest way to think about this is that each paragraph should discuss a few different sources, and you should be able to condense the overall point of the paragraph into one sentence.

This is called a topic sentence , and it usually appears at the start of the paragraph. The topic sentence signals what the whole paragraph is about; every sentence in the paragraph should be clearly related to it.

A topic sentence can be a simple summary of the paragraph’s content:

“Early research on [x] focused heavily on [y].”

For an effective synthesis, you can use topic sentences to link back to the previous paragraph, highlighting a point of debate or critique:

“Several scholars have pointed out the flaws in this approach.” “While recent research has attempted to address the problem, many of these studies have methodological flaws that limit their validity.”

By using topic sentences, you can ensure that your paragraphs are coherent and clearly show the connections between the articles you are discussing.

As you write your paragraphs, avoid quoting directly from sources: use your own words to explain the commonalities and differences that you found in the literature.

Don’t try to cover every single point from every single source – the key to synthesizing is to extract the most important and relevant information and combine it to give your reader an overall picture of the state of knowledge on your topic.

Step 4: Revise, edit and proofread

Like any other piece of academic writing, synthesizing literature doesn’t happen all in one go – it involves redrafting, revising, editing and proofreading your work.

Checklist for Synthesis

  •   Do I introduce the paragraph with a clear, focused topic sentence?
  •   Do I discuss more than one source in the paragraph?
  •   Do I mention only the most relevant findings, rather than describing every part of the studies?
  •   Do I discuss the similarities or differences between the sources, rather than summarizing each source in turn?
  •   Do I put the findings or arguments of the sources in my own words?
  •   Is the paragraph organized around a single idea?
  •   Is the paragraph directly relevant to my research question or topic?
  •   Is there a logical transition from this paragraph to the next one?

Further Information

How to Synthesise: a Step-by-Step Approach

Help…I”ve Been Asked to Synthesize!

Learn how to Synthesise (combine information from sources)

How to write a Psychology Essay

Print Friendly, PDF & Email

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Synthesizing Sources

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

When you look for areas where your sources agree or disagree and try to draw broader conclusions about your topic based on what your sources say, you are engaging in synthesis. Writing a research paper usually requires synthesizing the available sources in order to provide new insight or a different perspective into your particular topic (as opposed to simply restating what each individual source says about your research topic).

Note that synthesizing is not the same as summarizing.  

  • A summary restates the information in one or more sources without providing new insight or reaching new conclusions.
  • A synthesis draws on multiple sources to reach a broader conclusion.

There are two types of syntheses: explanatory syntheses and argumentative syntheses . Explanatory syntheses seek to bring sources together to explain a perspective and the reasoning behind it. Argumentative syntheses seek to bring sources together to make an argument. Both types of synthesis involve looking for relationships between sources and drawing conclusions.

In order to successfully synthesize your sources, you might begin by grouping your sources by topic and looking for connections. For example, if you were researching the pros and cons of encouraging healthy eating in children, you would want to separate your sources to find which ones agree with each other and which ones disagree.

After you have a good idea of what your sources are saying, you want to construct your body paragraphs in a way that acknowledges different sources and highlights where you can draw new conclusions.

As you continue synthesizing, here are a few points to remember:

  • Don’t force a relationship between sources if there isn’t one. Not all of your sources have to complement one another.
  • Do your best to highlight the relationships between sources in very clear ways.
  • Don’t ignore any outliers in your research. It’s important to take note of every perspective (even those that disagree with your broader conclusions).

State-of-the-art literature review methodology: A six-step approach for knowledge synthesis

  • Original Article
  • Open access
  • Published: 05 September 2022
  • Volume 11 , pages 281–288, ( 2022 )

Cite this article

You have full access to this open access article

synthesis scientific literature

  • Erin S. Barry   ORCID: orcid.org/0000-0003-0788-7153 1 , 2 ,
  • Jerusalem Merkebu   ORCID: orcid.org/0000-0003-3707-8920 3 &
  • Lara Varpio   ORCID: orcid.org/0000-0002-1412-4341 3  

27k Accesses

8 Citations

18 Altmetric

Explore all metrics

Introduction

Researchers and practitioners rely on literature reviews to synthesize large bodies of knowledge. Many types of literature reviews have been developed, each targeting a specific purpose. However, these syntheses are hampered if the review type’s paradigmatic roots, methods, and markers of rigor are only vaguely understood. One literature review type whose methodology has yet to be elucidated is the state-of-the-art (SotA) review. If medical educators are to harness SotA reviews to generate knowledge syntheses, we must understand and articulate the paradigmatic roots of, and methods for, conducting SotA reviews.

We reviewed 940 articles published between 2014–2021 labeled as SotA reviews. We (a) identified all SotA methods-related resources, (b) examined the foundational principles and techniques underpinning the reviews, and (c) combined our findings to inductively analyze and articulate the philosophical foundations, process steps, and markers of rigor.

In the 940 articles reviewed, nearly all manuscripts (98%) lacked citations for how to conduct a SotA review. The term “state of the art” was used in 4 different ways. Analysis revealed that SotA articles are grounded in relativism and subjectivism.

This article provides a 6-step approach for conducting SotA reviews. SotA reviews offer an interpretive synthesis that describes: This is where we are now. This is how we got here. This is where we could be going. This chronologically rooted narrative synthesis provides a methodology for reviewing large bodies of literature to explore why and how our current knowledge has developed and to offer new research directions.

Similar content being viewed by others

synthesis scientific literature

A worked example of Braun and Clarke’s approach to reflexive thematic analysis

synthesis scientific literature

Qualitative Research: Ethical Considerations

synthesis scientific literature

Criteria for Good Qualitative Research: A Comprehensive Review

Avoid common mistakes on your manuscript.

Literature reviews play a foundational role in scientific research; they support knowledge advancement by collecting, describing, analyzing, and integrating large bodies of information and data [ 1 , 2 ]. Indeed, as Snyder [ 3 ] argues, all scientific disciplines require literature reviews grounded in a methodology that is accurate and clearly reported. Many types of literature reviews have been developed, each with a unique purpose, distinct methods, and distinguishing characteristics of quality and rigor [ 4 , 5 ].

Each review type offers valuable insights if rigorously conducted [ 3 , 6 ]. Problematically, this is not consistently the case, and the consequences can be dire. Medical education’s policy makers and institutional leaders rely on knowledge syntheses to inform decision making [ 7 ]. Medical education curricula are shaped by these syntheses. Our accreditation standards are informed by these integrations. Our patient care is guided by these knowledge consolidations [ 8 ]. Clearly, it is important for knowledge syntheses to be held to the highest standards of rigor. And yet, that standard is not always maintained. Sometimes scholars fail to meet the review’s specified standards of rigor; other times the markers of rigor have never been explicitly articulated. While we can do little about the former, we can address the latter. One popular literature review type whose methodology has yet to be fully described, vetted, and justified is the state-of-the-art (SotA) review.

While many types of literature reviews amalgamate bodies of literature, SotA reviews offer something unique. By looking across the historical development of a body of knowledge, SotA reviews delves into questions like: Why did our knowledge evolve in this way? What other directions might our investigations have taken? What turning points in our thinking should we revisit to gain new insights? A SotA review—a form of narrative knowledge synthesis [ 5 , 9 ]—acknowledges that history reflects a series of decisions and then asks what different decisions might have been made.

SotA reviews are frequently used in many fields including the biomedical sciences [ 10 , 11 ], medicine [ 12 , 13 , 14 ], and engineering [ 15 , 16 ]. However, SotA reviews are rarely seen in medical education; indeed, a bibliometrics analysis of literature reviews published in 14 core medical education journals between 1999 and 2019 reported only 5 SotA reviews out of the 963 knowledge syntheses identified [ 17 ]. This is not to say that SotA reviews are absent; we suggest that they are often unlabeled. For instance, Schuwirth and van der Vleuten’s article “A history of assessment in medical education” [ 14 ] offers a temporally organized overview of the field’s evolving thinking about assessment. Similarly, McGaghie et al. published a chronologically structured review of simulation-based medical education research that “reviews and critically evaluates historical and contemporary research on simulation-based medical education” [ 18 , p. 50]. SotA reviews certainly have a place in medical education, even if that place is not explicitly signaled.

This lack of labeling is problematic since it conceals the purpose of, and work involved in, the SotA review synthesis. In a SotA review, the author(s) collects and analyzes the historical development of a field’s knowledge about a phenomenon, deconstructs how that understanding evolved, questions why it unfolded in specific ways, and posits new directions for research. Senior medical education scholars use SotA reviews to share their insights based on decades of work on a topic [ 14 , 18 ]; their junior counterparts use them to critique that history and propose new directions [ 19 ]. And yet, SotA reviews are generally not explicitly signaled in medical education. We suggest that at least two factors contribute to this problem. First, it may be that medical education scholars have yet to fully grasp the unique contributions SotA reviews provide. Second, the methodology and methods of SotA reviews are poorly reported making this form of knowledge synthesis appear to lack rigor. Both factors are rooted in the same foundational problem: insufficient clarity about SotA reviews. In this study, we describe SotA review methodology so that medical educators can explicitly use this form of knowledge synthesis to further advance the field.

We developed a four-step research design to meet this goal, illustrated in Fig.  1 .

figure 1

Four-step research design process used for developing a State-of-the-Art literature review methodology

Step 1: Collect SotA articles

To build our initial corpus of articles reporting SotA reviews, we searched PubMed using the strategy (″state of the art review″[ti] OR ″state of the art review*″) and limiting our search to English articles published between 2014 and 2021. We strategically focused on PubMed, which includes MEDLINE, and is considered the National Library of Medicine’s premier database of biomedical literature and indexes health professions education and practice literature [ 20 ]. We limited our search to 2014–2021 to capture modern use of SotA reviews. Of the 960 articles identified, nine were excluded because they were duplicates, erratum, or corrigendum records; full text copies were unavailable for 11 records. All articles identified ( n  = 940) constituted the corpus for analysis.

Step 2: Compile all methods-related resources

EB, JM, or LV independently reviewed the 940 full-text articles to identify all references to resources that explained, informed, described, or otherwise supported the methods used for conducting the SotA review. Articles that met our criteria were obtained for analysis.

To ensure comprehensive retrieval, we also searched Scopus and Web of Science. Additionally, to find resources not indexed by these academic databases, we searched Google (see Electronic Supplementary Material [ESM] for the search strategies used for each database). EB also reviewed the first 50 items retrieved from each search looking for additional relevant resources. None were identified. Via these strategies, nine articles were identified and added to the collection of methods-related resources for analysis.

Step 3: Extract data for analysis

In Step 3, we extracted three kinds of information from the 940 articles papers identified in Step 1. First, descriptive data on each article were compiled (i.e., year of publication and the academic domain targeted by the journal). Second, each article was examined and excerpts collected about how the term state-of-the-art review was used (i.e., as a label for a methodology in-and-of itself; as an adjective qualifying another type of literature review; as a term included in the paper’s title only; or in some other way). Finally, we extracted excerpts describing: the purposes and/or aims of the SotA review; the methodology informing and methods processes used to carry out the SotA review; outcomes of analyses; and markers of rigor for the SotA review.

Two researchers (EB and JM) coded 69 articles and an interrater reliability of 94.2% was achieved. Any discrepancies were discussed. Given the high interrater reliability, the two authors split the remaining articles and coded independently.

Step 4: Construct the SotA review methodology

The methods-related resources identified in Step 2 and the data extractions from Step 3 were inductively analyzed by LV and EB to identify statements and research processes that revealed the ontology (i.e., the nature of reality that was reflected) and the epistemology (i.e., the nature of knowledge) underpinning the descriptions of the reviews. These authors studied these data to determine if the synthesis adhered to an objectivist or a subjectivist orientation, and to synthesize the purposes realized in these papers.

To confirm these interpretations, LV and EB compared their ontology, epistemology, and purpose determinations against two expectations commonly required of objectivist synthesis methods (e.g., systematic reviews): an exhaustive search strategy and an appraisal of the quality of the research data. These expectations were considered indicators of a realist ontology and objectivist epistemology [ 21 ] (i.e., that a single correct understanding of the topic can be sought through objective data collection {e.g., systematic reviews [ 22 ]}). Conversely, the inverse of these expectations were considered indicators of a relativist ontology and subjectivist epistemology [ 21 ] (i.e., that no single correct understanding of the topic is available; there are multiple valid understandings that can be generated and so a subjective interpretation of the literature is sought {e.g., narrative reviews [ 9 ]}).

Once these interpretations were confirmed, LV and EB reviewed and consolidated the methods steps described in these data. Markers of rigor were then developed that aligned with the ontology, epistemology, and methods of SotA reviews.

Of the 940 articles identified in Step 1, 98% ( n  = 923) lacked citations or other references to resources that explained, informed, or otherwise supported the SotA review process. Of the 17 articles that included supporting information, 16 cited Grant and Booth’s description [ 4 ] consisting of five sentences describing the overall purpose of SotA reviews, three sentences noting perceived strengths, and four sentences articulating perceived weaknesses. This resource provides no guidance on how to conduct a SotA review methodology nor markers of rigor. The one article not referencing Grant and Booth used “an adapted comparative effectiveness research search strategy that was adapted by a health sciences librarian” [ 23 , p. 381]. One website citation was listed in support of this strategy; however, the page was no longer available in summer 2021. We determined that the corpus was uninformed by a cardinal resource or a publicly available methodology description.

In Step 2 we identified nine resources [ 4 , 5 , 24 , 25 , 26 , 27 , 28 ]; none described the methodology and/or processes of carrying out SotA reviews. Nor did they offer explicit descriptions of the ontology or epistemology underpinning SotA reviews. Instead, these resources provided short overview statements (none longer than one paragraph) about the review type [ 4 , 5 , 24 , 25 , 26 , 27 , 28 ]. Thus, we determined that, to date, there are no available methodology papers describing how to conduct a SotA review.

Step 3 revealed that “state of the art” was used in 4 different ways across the 940 articles (see Fig.  2 for the frequency with which each was used). In 71% ( n  = 665 articles), the phrase was used only in the title, abstract, and/or purpose statement of the article; the phrase did not appear elsewhere in the paper and no SotA methodology was discussed. Nine percent ( n  = 84) used the phrase as an adjective to qualify another literature review type and so relied entirely on the methodology of a different knowledge synthesis approach (e.g., “a state of the art systematic review [ 29 ]”). In 5% ( n  = 52) of the articles, the phrase was not used anywhere within the article; instead, “state of the art” was the type of article within a journal. In the remaining 15% ( n  = 139), the phrase denoted a specific methodology (see ESM for all methodology articles). Via Step 4’s inductive analysis, the following foundational principles of SotA reviews were developed: (1) the ontology, (2) epistemology, and (3) purpose of SotA reviews.

figure 2

Four ways the term “state of the art” is used in the corpus and how frequently each is used

Ontology of SotA reviews: Relativism

SotA reviews rest on four propositions:

The literature addressing a phenomenon offers multiple perspectives on that topic (i.e., different groups of researchers may hold differing opinions and/or interpretations of data about a phenomenon).

The reality of the phenomenon itself cannot be completely perceived or understood (i.e., due to limitations [e.g., the capabilities of current technologies, a research team’s disciplinary orientation] we can only perceive a limited part of the phenomenon).

The reality of the phenomenon is a subjective and inter-subjective construction (i.e., what we understand about a phenomenon is built by individuals and so their individual subjectivities shape that understanding).

The context in which the review was conducted informs the review (e.g., a SotA review of literature about gender identity and sexual function will be synthesized differently by researchers in the domain of gender studies than by scholars working in sex reassignment surgery).

As these propositions suggest, SotA scholars bring their experiences, expectations, research purposes, and social (including academic) orientations to bear on the synthesis work. In other words, a SotA review synthesizes the literature based on a specific orientation to the topic being addressed. For instance, a SotA review written by senior scholars who are experts in the field of medical education may reflect on the turning points that have shaped the way our field has evolved the modern practices of learner assessment, noting how the nature of the problem of assessment has moved: it was first a measurement problem, then a problem that embraced human judgment but needed assessment expertise, and now a whole system problem that is to be addressed from an integrated—not a reductionist—perspective [ 12 ]. However, if other scholars were to examine this same history from a technological orientation, learner assessment could be framed as historically constricted by the media available through which to conduct assessment, pointing to how artificial intelligence is laying the foundation for the next wave of assessment in medical education [ 30 ].

Given these foundational propositions, SotA reviews are steeped in a relativist ontology—i.e., reality is socially and experientially informed and constructed, and so no single objective truth exists. Researchers’ interpretations reflect their conceptualization of the literature—a conceptualization that could change over time and that could conflict with the understandings of others.

Epistemology of SotA reviews: Subjectivism

SotA reviews embrace subjectivism. The knowledge generated through the review is value-dependent, growing out of the subjective interpretations of the researcher(s) who conducted the synthesis. The SotA review generates an interpretation of the data that is informed by the expertise, experiences, and social contexts of the researcher(s). Furthermore, the knowledge developed through SotA reviews is shaped by the historical point in time when the review was conducted. SotA reviews are thus steeped in the perspective that knowledge is shaped by individuals and their community, and is a synthesis that will change over time.

Purpose of SotA reviews

SotA reviews create a subjectively informed summary of modern thinking about a topic. As a chronologically ordered synthesis, SotA reviews describe the history of turning points in researchers’ understanding of a phenomenon to contextualize a description of modern scientific thinking on the topic. The review presents an argument about how the literature could be interpreted; it is not a definitive statement about how the literature should or must be interpreted. A SotA review explores: the pivotal points shaping the historical development of a topic, the factors that informed those changes in understanding, and the ways of thinking about and studying the topic that could inform the generation of further insights. In other words, the purpose of SotA reviews is to create a three-part argument: This is where we are now in our understanding of this topic. This is how we got here. This is where we could go next.

The SotA methodology

Based on study findings and analyses, we constructed a six-stage SotA review methodology. This six-stage approach is summarized and guiding questions are offered in Tab.  1 .

Stage 1: Determine initial research question and field of inquiry

In Stage 1, the researcher(s) creates an initial description of the topic to be summarized and so must determine what field of knowledge (and/or practice) the search will address. Knowledge developed through the SotA review process is shaped by the context informing it; thus, knowing the domain in which the review will be conducted is part of the review’s foundational work.

Stage 2: Determine timeframe

This stage involves determining the period of time that will be defined as SotA for the topic being summarized. The researcher(s) should engage in a broad-scope overview of the literature, reading across the range of literature available to develop insights into the historical development of knowledge on the topic, including the turning points that shape the current ways of thinking about a topic. Understanding the full body of literature is required to decide the dates or events that demarcate the timeframe of now in the first of the SotA’s three-part argument: where we are now . Stage 2 is complete when the researcher(s) can explicitly justify why a specific year or event is the right moment to mark the beginning of state-of-the-art thinking about the topic being summarized.

Stage 3: Finalize research question(s) to reflect timeframe

Based on the insights developed in Stage 2, the researcher(s) will likely need to revise their initial description of the topic to be summarized. The formal research question(s) framing the SotA review are finalized in Stage 3. The revised description of the topic, the research question(s), and the justification for the timeline start year must be reported in the review article. These are markers of rigor and prerequisites for moving to Stage 4.

Stage 4: Develop search strategy to find relevant articles

In Stage 4, the researcher(s) develops a search strategy to identify the literature that will be included in the SotA review. The researcher(s) needs to determine which literature databases contain articles from the domain of interest. Because the review describes how we got here , the review must include literature that predates the state-of-the-art timeframe, determined in Stage 2, to offer this historical perspective.

Developing the search strategy will be an iterative process of testing and revising the search strategy to enable the researcher(s) to capture the breadth of literature required to meet the SotA review purposes. A librarian should be consulted since their expertise can expedite the search processes and ensure that relevant resources are identified. The search strategy must be reported (e.g., in the manuscript itself or in a supplemental file) so that others may replicate the process if they so choose (e.g., to construct a different SotA review [and possible different interpretations] of the same literature). This too is a marker of rigor for SotA reviews: the search strategies informing the identification of literature must be reported.

Stage 5: Analyses

The literature analysis undertaken will reflect the subjective insights of the researcher(s); however, the foundational premises of inductive research should inform the analysis process. Therefore, the researcher(s) should begin by reading the articles in the corpus to become familiar with the literature. This familiarization work includes: noting similarities across articles, observing ways-of-thinking that have shaped current understandings of the topic, remarking on assumptions underpinning changes in understandings, identifying important decision points in the evolution of understanding, and taking notice of gaps and assumptions in current knowledge.

The researcher(s) can then generate premises for the state-of-the-art understanding of the history that gave rise to modern thinking, of the current body of knowledge, and of potential future directions for research. In this stage of the analysis, the researcher(s) should document the articles that support or contradict their premises, noting any collections of authors or schools of thinking that have dominated the literature, searching for marginalized points of view, and studying the factors that contributed to the dominance of particular ways of thinking. The researcher(s) should also observe historical decision points that could be revisited. Theory can be incorporated at this stage to help shape insights and understandings. It should be highlighted that not all corpus articles will be used in the SotA review; instead, the researcher(s) will sample across the corpus to construct a timeline that represents the seminal moments of the historical development of knowledge.

Next, the researcher(s) should verify the thoroughness and strength of their interpretations. To do this, the researcher(s) can select different articles included in the corpus and examine if those articles reflect the premises the researcher(s) set out. The researcher(s) may also seek out contradictory interpretations in the literature to be sure their summary refutes these positions. The goal of this verification work is not to engage in a triangulation process to ensure objectivity; instead, this process helps the researcher(s) ensure the interpretations made in the SotA review represent the articles being synthesized and respond to the interpretations offered by others. This is another marker of rigor for SotA reviews: the authors should engage in and report how they considered and accounted for differing interpretations of the literature, and how they verified the thoroughness of their interpretations.

Stage 6: Reflexivity

Given the relativist subjectivism of a SotA review, it is important that the manuscript offer insights into the subjectivity of the researcher(s). This reflexivity description should articulate how the subjectivity of the researcher(s) informed interpretations of the data. These reflections will also influence the suggested directions offered in the last part of the SotA three-part argument: where we could go next. This is the last marker of rigor for SotA reviews: researcher reflexivity must be considered and reported.

SotA reviews have much to offer our field since they provide information on the historical progression of medical education’s understanding of a topic, the turning points that guided that understanding, and the potential next directions for future research. Those future directions may question the soundness of turning points and prior decisions, and thereby offer new paths of investigation. Since we were unable to find a description of the SotA review methodology, we inductively developed a description of the methodology—including its paradigmatic roots, the processes to be followed, and the markers of rigor—so that scholars can harness the unique affordances of this type of knowledge synthesis.

Given their chronology- and turning point-based orientation, SotA reviews are inherently different from other types of knowledge synthesis. For example, systematic reviews focus on specific research questions that are narrow in scope [ 32 , 33 ]; in contrast, SotA reviews present a broader historical overview of knowledge development and the decisions that gave rise to our modern understandings. Scoping reviews focus on mapping the present state of knowledge about a phenomenon including, for example, the data that are currently available, the nature of that data, and the gaps in knowledge [ 34 , 35 ]; conversely, SotA reviews offer interpretations of the historical progression of knowledge relating to a phenomenon centered on significant shifts that occurred during that history. SotA reviews focus on the turning points in the history of knowledge development to suggest how different decisions could give rise to new insights. Critical reviews draw on literature outside of the domain of focus to see if external literature can offer new ways of thinking about the phenomenon of interest (e.g., drawing on insights from insects’ swarm intelligence to better understand healthcare team adaptation [ 36 ]). SotA reviews focus on one domain’s body of literature to construct a timeline of knowledge development, demarcating where we are now, demonstrating how this understanding came to be via different turning points, and offering new research directions. Certainly, SotA reviews offer a unique kind of knowledge synthesis.

Our six-stage process for conducting these reviews reflects the subjectivist relativism that underpins the methodology. It aligns with the requirements proposed by others [ 24 , 25 , 26 , 27 ], what has been written about SotA reviews [ 4 , 5 ], and the current body of published SotA reviews. In contrast to existing guidance [ 4 , 5 , 20 , 21 , 22 , 23 ], our description offers a detailed reporting of the ontology, epistemology, and methodology processes for conducting the SotA review.

This explicit methodology description is essential since many academic journals list SotA reviews as an accepted type of literature review. For instance, Educational Research Review [ 24 ], the American Academy of Pediatrics [ 25 ], and Thorax all lists SotA reviews as one of the types of knowledge syntheses they accept [ 27 ]. However, while SotA reviews are valued by academia, guidelines or specific methodology descriptions for researchers to follow when conducting this type of knowledge synthesis are conspicuously absent. If academics in general, and medical education more specifically, are to take advantage of the insights that SotA reviews can offer, we need to rigorously engage in this synthesis work; to do that, we need clear descriptions of the methodology underpinning this review. This article offers such a description. We hope that more medical educators will conduct SotA reviews to generate insights that will contribute to further advancing our field’s research and scholarship.

Cooper HM. Organizing knowledge syntheses: a taxonomy of literature reviews. Knowl Soc. 1988;1:104.

Google Scholar  

Badger D, Nursten J, Williams P, Woodward M. Should all literature reviews be systematic? Eval Res Educ. 2000;14:220–30.

Article   Google Scholar  

Snyder H. Literature review as a research methodology: an overview and guidelines. J Bus Res. 2019;104:333–9.

Grant MJ, Booth A. A typology of reviews: an analysis of 14 review types and associated methodologies. Health Info Libr J. 2009;26:91–108.

Sutton A, Clowes M, Preston L, Booth A. Meeting the review family: exploring review types and associated information retrieval requirements. Health Info Libr J. 2019;36:202–22.

Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

Tricco AC, Langlois E, Straus SE, World Health Organization, Alliance for Health Policy and Systems Research. Rapid reviews to strengthen health policy and systems: a practical guide. Geneva: World Health Organization; 2017.

Jackson R, Feder G. Guidelines for clinical guidelines: a simple, pragmatic strategy for guideline development. Br Med J. 1998;317:427–8.

Greenhalgh T, Thorne S, Malterud K. Time to challenge the spurious hierarchy of systematic over narrative reviews? Eur J Clin Invest. 2018;48:e12931.

Bach QV, Chen WH. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol. 2017;246:88–100.

Garofalo C, Milanović V, Cardinali F, Aquilanti L, Clementi F, Osimani A. Current knowledge on the microbiota of edible insects intended for human consumption: a state-of-the-art review. Food Res Int. 2019;125:108527.

Carbone S, Dixon DL, Buckley LF, Abbate A. Glucose-lowering therapies for cardiovascular risk reduction in type 2 diabetes mellitus: state-of-the-art review. Mayo Clin Proc. 2018;93:1629–47.

Hofkens PJ, Verrijcken A, Merveille K, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47:89–116.

Schuwirth LW, van der Vleuten CP. A history of assessment in medical education. Adv Health Sci Educ Theory Pract. 2020;25:1045–56.

Arena A, Prete F, Rambaldi E, et al. Nanostructured zirconia-based ceramics and composites in dentistry: a state-of-the-art review. Nanomaterials. 2019;9:1393.

Bahraminasab M, Farahmand F. State of the art review on design and manufacture of hybrid biomedical materials: hip and knee prostheses. Proc Inst Mech Eng H. 2017;231:785–813.

Maggio LA, Costello JA, Norton C, Driessen EW, Artino AR Jr. Knowledge syntheses in medical education: a bibliometric analysis. Perspect Med Educ. 2021;10:79–87.

McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44:50–63.

Krishnan DG, Keloth AV, Ubedulla S. Pros and cons of simulation in medical education: a review. Education. 2017;3:84–7.

National Library of Medicine. MEDLINE: overview. 2021. https://www.nlm.nih.gov/medline/medline_overview.html . Accessed 17 Dec 2021.

Bergman E, de Feijter J, Frambach J, et al. AM last page: a guide to research paradigms relevant to medical education. Acad Med. 2012;87:545.

Maggio LA, Samuel A, Stellrecht E. Systematic reviews in medical education. J Grad Med Educ. 2022;14:171–5.

Bandari J, Wessel CB, Jacobs BL. Comparative effectiveness in urology: a state of the art review utilizing a systematic approach. Curr Opin Urol. 2017;27:380–94.

Elsevier. A guide for writing scholarly articles or reviews for the educational research review. 2010. https://www.elsevier.com/__data/promis_misc/edurevReviewPaperWriting.pdf . Accessed 3 Mar 2020.

American Academy of Pediatrics. Pediatrics author guidelines. 2020. https://pediatrics.aappublications.org/page/author-guidelines . Accessed 3 Mar 2020.

Journal of the American College of Cardiology. JACC instructions for authors. 2020. https://www.jacc.org/pb-assets/documents/author-instructions-jacc-1598995793940.pdf . Accessed 3 Mar 2020.

Thorax. Authors. 2020. https://thorax.bmj.com/pages/authors/ . Accessed 3 Mar 2020.

Berven S, Carl A. State of the art review. Spine Deform. 2019;7:381.

Ilardi CR, Chieffi S, Iachini T, Iavarone A. Neuropsychology of posteromedial parietal cortex and conversion factors from mild cognitive impairment to Alzheimer’s disease: systematic search and state-of-the-art review. Aging Clin Exp Res. 2022;34:289–307.

Chan KS, Zary N. Applications and challenges of implementing artificial intelligence in medical education: integrative review. JMIR Med Educ. 2019;5:e13930.

World Health Organization. Framework for action on interprofessional education and collaborative practice. 2010. https://www.who.int/publications/i/item/framework-for-action-on-interprofessional-education-collaborative-practice . Accessed July 1 2021.

Hammersley M. On ‘systematic’ reviews of research literatures: a ‘narrative’ response to Evans & Benefield. Br Educ Res J. 2001;27:543–54.

Chen F, Lui AM, Martinelli SM. A systematic review of the effectiveness of flipped classrooms in medical education. Med Educ. 2017;51:585–97.

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19–32.

Matsas B, Goralnick E, Bass M, Barnett E, Nagle B, Sullivan E. Leadership development in US undergraduate medical education: a scoping review of curricular content and competency frameworks. Acad Med. 2022;97:899–908.

Cristancho SM. On collective self-healing and traces: How can swarm intelligence help us think differently about team adaptation? Med Educ. 2021;55:441–7.

Download references

Acknowledgements

We thank Rhonda Allard for her help with the literature review and compiling all available articles. We also want to thank the PME editors who offered excellent development and refinement suggestions that greatly improved this manuscript.

Author information

Authors and affiliations.

Department of Anesthesiology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA

Erin S. Barry

School of Health Professions Education (SHE), Maastricht University, Maastricht, The Netherlands

Department of Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA

Jerusalem Merkebu & Lara Varpio

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Erin S. Barry .

Ethics declarations

Conflict of interest.

E.S. Barry, J. Merkebu and L. Varpio declare that they have no competing interests.

Additional information

The opinions and assertions contained in this article are solely those of the authors and are not to be construed as reflecting the views of the Uniformed Services University of the Health Sciences, the Department of Defense, or the Henry M. Jackson Foundation for the Advancement of Military Medicine.

Supplementary Information

40037_2022_725_moesm1_esm.docx.

For information regarding the search strategy to develop the corpus and search strategy for confirming capture of any available State of the Art review methodology descriptions. Additionally, a list of the methodology articles found through the search strategy/corpus is included

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Barry, E.S., Merkebu, J. & Varpio, L. State-of-the-art literature review methodology: A six-step approach for knowledge synthesis. Perspect Med Educ 11 , 281–288 (2022). https://doi.org/10.1007/s40037-022-00725-9

Download citation

Received : 03 December 2021

Revised : 25 July 2022

Accepted : 27 July 2022

Published : 05 September 2022

Issue Date : October 2022

DOI : https://doi.org/10.1007/s40037-022-00725-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • State-of-the-art literature review
  • Literature review
  • Literature review methodology
  • Find a journal
  • Publish with us
  • Track your research

Annotating and Extracting Synthesis Process of All-Solid-State Batteries from Scientific Literature

Fusataka Kuniyoshi , Kohei Makino , Jun Ozawa , Makoto Miwa

Export citation

  • Preformatted

Markdown (Informal)

[Annotating and Extracting Synthesis Process of All-Solid-State Batteries from Scientific Literature](https://aclanthology.org/2020.lrec-1.239) (Kuniyoshi et al., LREC 2020)

  • Annotating and Extracting Synthesis Process of All-Solid-State Batteries from Scientific Literature (Kuniyoshi et al., LREC 2020)
  • Fusataka Kuniyoshi, Kohei Makino, Jun Ozawa, and Makoto Miwa. 2020. Annotating and Extracting Synthesis Process of All-Solid-State Batteries from Scientific Literature . In Proceedings of the Twelfth Language Resources and Evaluation Conference , pages 1941–1950, Marseille, France. European Language Resources Association.

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.

Cover of Handbook of eHealth Evaluation: An Evidence-based Approach

Handbook of eHealth Evaluation: An Evidence-based Approach [Internet].

Chapter 9 methods for literature reviews.

Guy Paré and Spyros Kitsiou .

9.1. Introduction

Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour ( vom Brocke et al., 2009 ). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and synthesizing the contents of many empirical and conceptual papers. Among other methods, literature reviews are essential for: (a) identifying what has been written on a subject or topic; (b) determining the extent to which a specific research area reveals any interpretable trends or patterns; (c) aggregating empirical findings related to a narrow research question to support evidence-based practice; (d) generating new frameworks and theories; and (e) identifying topics or questions requiring more investigation ( Paré, Trudel, Jaana, & Kitsiou, 2015 ).

Literature reviews can take two major forms. The most prevalent one is the “literature review” or “background” section within a journal paper or a chapter in a graduate thesis. This section synthesizes the extant literature and usually identifies the gaps in knowledge that the empirical study addresses ( Sylvester, Tate, & Johnstone, 2013 ). It may also provide a theoretical foundation for the proposed study, substantiate the presence of the research problem, justify the research as one that contributes something new to the cumulated knowledge, or validate the methods and approaches for the proposed study ( Hart, 1998 ; Levy & Ellis, 2006 ).

The second form of literature review, which is the focus of this chapter, constitutes an original and valuable work of research in and of itself ( Paré et al., 2015 ). Rather than providing a base for a researcher’s own work, it creates a solid starting point for all members of the community interested in a particular area or topic ( Mulrow, 1987 ). The so-called “review article” is a journal-length paper which has an overarching purpose to synthesize the literature in a field, without collecting or analyzing any primary data ( Green, Johnson, & Adams, 2006 ).

When appropriately conducted, review articles represent powerful information sources for practitioners looking for state-of-the art evidence to guide their decision-making and work practices ( Paré et al., 2015 ). Further, high-quality reviews become frequently cited pieces of work which researchers seek out as a first clear outline of the literature when undertaking empirical studies ( Cooper, 1988 ; Rowe, 2014 ). Scholars who track and gauge the impact of articles have found that review papers are cited and downloaded more often than any other type of published article ( Cronin, Ryan, & Coughlan, 2008 ; Montori, Wilczynski, Morgan, Haynes, & Hedges, 2003 ; Patsopoulos, Analatos, & Ioannidis, 2005 ). The reason for their popularity may be the fact that reading the review enables one to have an overview, if not a detailed knowledge of the area in question, as well as references to the most useful primary sources ( Cronin et al., 2008 ). Although they are not easy to conduct, the commitment to complete a review article provides a tremendous service to one’s academic community ( Paré et al., 2015 ; Petticrew & Roberts, 2006 ). Most, if not all, peer-reviewed journals in the fields of medical informatics publish review articles of some type.

The main objectives of this chapter are fourfold: (a) to provide an overview of the major steps and activities involved in conducting a stand-alone literature review; (b) to describe and contrast the different types of review articles that can contribute to the eHealth knowledge base; (c) to illustrate each review type with one or two examples from the eHealth literature; and (d) to provide a series of recommendations for prospective authors of review articles in this domain.

9.2. Overview of the Literature Review Process and Steps

As explained in Templier and Paré (2015) , there are six generic steps involved in conducting a review article:

  • formulating the research question(s) and objective(s),
  • searching the extant literature,
  • screening for inclusion,
  • assessing the quality of primary studies,
  • extracting data, and
  • analyzing data.

Although these steps are presented here in sequential order, one must keep in mind that the review process can be iterative and that many activities can be initiated during the planning stage and later refined during subsequent phases ( Finfgeld-Connett & Johnson, 2013 ; Kitchenham & Charters, 2007 ).

Formulating the research question(s) and objective(s): As a first step, members of the review team must appropriately justify the need for the review itself ( Petticrew & Roberts, 2006 ), identify the review’s main objective(s) ( Okoli & Schabram, 2010 ), and define the concepts or variables at the heart of their synthesis ( Cooper & Hedges, 2009 ; Webster & Watson, 2002 ). Importantly, they also need to articulate the research question(s) they propose to investigate ( Kitchenham & Charters, 2007 ). In this regard, we concur with Jesson, Matheson, and Lacey (2011) that clearly articulated research questions are key ingredients that guide the entire review methodology; they underscore the type of information that is needed, inform the search for and selection of relevant literature, and guide or orient the subsequent analysis. Searching the extant literature: The next step consists of searching the literature and making decisions about the suitability of material to be considered in the review ( Cooper, 1988 ). There exist three main coverage strategies. First, exhaustive coverage means an effort is made to be as comprehensive as possible in order to ensure that all relevant studies, published and unpublished, are included in the review and, thus, conclusions are based on this all-inclusive knowledge base. The second type of coverage consists of presenting materials that are representative of most other works in a given field or area. Often authors who adopt this strategy will search for relevant articles in a small number of top-tier journals in a field ( Paré et al., 2015 ). In the third strategy, the review team concentrates on prior works that have been central or pivotal to a particular topic. This may include empirical studies or conceptual papers that initiated a line of investigation, changed how problems or questions were framed, introduced new methods or concepts, or engendered important debate ( Cooper, 1988 ). Screening for inclusion: The following step consists of evaluating the applicability of the material identified in the preceding step ( Levy & Ellis, 2006 ; vom Brocke et al., 2009 ). Once a group of potential studies has been identified, members of the review team must screen them to determine their relevance ( Petticrew & Roberts, 2006 ). A set of predetermined rules provides a basis for including or excluding certain studies. This exercise requires a significant investment on the part of researchers, who must ensure enhanced objectivity and avoid biases or mistakes. As discussed later in this chapter, for certain types of reviews there must be at least two independent reviewers involved in the screening process and a procedure to resolve disagreements must also be in place ( Liberati et al., 2009 ; Shea et al., 2009 ). Assessing the quality of primary studies: In addition to screening material for inclusion, members of the review team may need to assess the scientific quality of the selected studies, that is, appraise the rigour of the research design and methods. Such formal assessment, which is usually conducted independently by at least two coders, helps members of the review team refine which studies to include in the final sample, determine whether or not the differences in quality may affect their conclusions, or guide how they analyze the data and interpret the findings ( Petticrew & Roberts, 2006 ). Ascribing quality scores to each primary study or considering through domain-based evaluations which study components have or have not been designed and executed appropriately makes it possible to reflect on the extent to which the selected study addresses possible biases and maximizes validity ( Shea et al., 2009 ). Extracting data: The following step involves gathering or extracting applicable information from each primary study included in the sample and deciding what is relevant to the problem of interest ( Cooper & Hedges, 2009 ). Indeed, the type of data that should be recorded mainly depends on the initial research questions ( Okoli & Schabram, 2010 ). However, important information may also be gathered about how, when, where and by whom the primary study was conducted, the research design and methods, or qualitative/quantitative results ( Cooper & Hedges, 2009 ). Analyzing and synthesizing data : As a final step, members of the review team must collate, summarize, aggregate, organize, and compare the evidence extracted from the included studies. The extracted data must be presented in a meaningful way that suggests a new contribution to the extant literature ( Jesson et al., 2011 ). Webster and Watson (2002) warn researchers that literature reviews should be much more than lists of papers and should provide a coherent lens to make sense of extant knowledge on a given topic. There exist several methods and techniques for synthesizing quantitative (e.g., frequency analysis, meta-analysis) and qualitative (e.g., grounded theory, narrative analysis, meta-ethnography) evidence ( Dixon-Woods, Agarwal, Jones, Young, & Sutton, 2005 ; Thomas & Harden, 2008 ).

9.3. Types of Review Articles and Brief Illustrations

EHealth researchers have at their disposal a number of approaches and methods for making sense out of existing literature, all with the purpose of casting current research findings into historical contexts or explaining contradictions that might exist among a set of primary research studies conducted on a particular topic. Our classification scheme is largely inspired from Paré and colleagues’ (2015) typology. Below we present and illustrate those review types that we feel are central to the growth and development of the eHealth domain.

9.3.1. Narrative Reviews

The narrative review is the “traditional” way of reviewing the extant literature and is skewed towards a qualitative interpretation of prior knowledge ( Sylvester et al., 2013 ). Put simply, a narrative review attempts to summarize or synthesize what has been written on a particular topic but does not seek generalization or cumulative knowledge from what is reviewed ( Davies, 2000 ; Green et al., 2006 ). Instead, the review team often undertakes the task of accumulating and synthesizing the literature to demonstrate the value of a particular point of view ( Baumeister & Leary, 1997 ). As such, reviewers may selectively ignore or limit the attention paid to certain studies in order to make a point. In this rather unsystematic approach, the selection of information from primary articles is subjective, lacks explicit criteria for inclusion and can lead to biased interpretations or inferences ( Green et al., 2006 ). There are several narrative reviews in the particular eHealth domain, as in all fields, which follow such an unstructured approach ( Silva et al., 2015 ; Paul et al., 2015 ).

Despite these criticisms, this type of review can be very useful in gathering together a volume of literature in a specific subject area and synthesizing it. As mentioned above, its primary purpose is to provide the reader with a comprehensive background for understanding current knowledge and highlighting the significance of new research ( Cronin et al., 2008 ). Faculty like to use narrative reviews in the classroom because they are often more up to date than textbooks, provide a single source for students to reference, and expose students to peer-reviewed literature ( Green et al., 2006 ). For researchers, narrative reviews can inspire research ideas by identifying gaps or inconsistencies in a body of knowledge, thus helping researchers to determine research questions or formulate hypotheses. Importantly, narrative reviews can also be used as educational articles to bring practitioners up to date with certain topics of issues ( Green et al., 2006 ).

Recently, there have been several efforts to introduce more rigour in narrative reviews that will elucidate common pitfalls and bring changes into their publication standards. Information systems researchers, among others, have contributed to advancing knowledge on how to structure a “traditional” review. For instance, Levy and Ellis (2006) proposed a generic framework for conducting such reviews. Their model follows the systematic data processing approach comprised of three steps, namely: (a) literature search and screening; (b) data extraction and analysis; and (c) writing the literature review. They provide detailed and very helpful instructions on how to conduct each step of the review process. As another methodological contribution, vom Brocke et al. (2009) offered a series of guidelines for conducting literature reviews, with a particular focus on how to search and extract the relevant body of knowledge. Last, Bandara, Miskon, and Fielt (2011) proposed a structured, predefined and tool-supported method to identify primary studies within a feasible scope, extract relevant content from identified articles, synthesize and analyze the findings, and effectively write and present the results of the literature review. We highly recommend that prospective authors of narrative reviews consult these useful sources before embarking on their work.

Darlow and Wen (2015) provide a good example of a highly structured narrative review in the eHealth field. These authors synthesized published articles that describe the development process of mobile health ( m-health ) interventions for patients’ cancer care self-management. As in most narrative reviews, the scope of the research questions being investigated is broad: (a) how development of these systems are carried out; (b) which methods are used to investigate these systems; and (c) what conclusions can be drawn as a result of the development of these systems. To provide clear answers to these questions, a literature search was conducted on six electronic databases and Google Scholar . The search was performed using several terms and free text words, combining them in an appropriate manner. Four inclusion and three exclusion criteria were utilized during the screening process. Both authors independently reviewed each of the identified articles to determine eligibility and extract study information. A flow diagram shows the number of studies identified, screened, and included or excluded at each stage of study selection. In terms of contributions, this review provides a series of practical recommendations for m-health intervention development.

9.3.2. Descriptive or Mapping Reviews

The primary goal of a descriptive review is to determine the extent to which a body of knowledge in a particular research topic reveals any interpretable pattern or trend with respect to pre-existing propositions, theories, methodologies or findings ( King & He, 2005 ; Paré et al., 2015 ). In contrast with narrative reviews, descriptive reviews follow a systematic and transparent procedure, including searching, screening and classifying studies ( Petersen, Vakkalanka, & Kuzniarz, 2015 ). Indeed, structured search methods are used to form a representative sample of a larger group of published works ( Paré et al., 2015 ). Further, authors of descriptive reviews extract from each study certain characteristics of interest, such as publication year, research methods, data collection techniques, and direction or strength of research outcomes (e.g., positive, negative, or non-significant) in the form of frequency analysis to produce quantitative results ( Sylvester et al., 2013 ). In essence, each study included in a descriptive review is treated as the unit of analysis and the published literature as a whole provides a database from which the authors attempt to identify any interpretable trends or draw overall conclusions about the merits of existing conceptualizations, propositions, methods or findings ( Paré et al., 2015 ). In doing so, a descriptive review may claim that its findings represent the state of the art in a particular domain ( King & He, 2005 ).

In the fields of health sciences and medical informatics, reviews that focus on examining the range, nature and evolution of a topic area are described by Anderson, Allen, Peckham, and Goodwin (2008) as mapping reviews . Like descriptive reviews, the research questions are generic and usually relate to publication patterns and trends. There is no preconceived plan to systematically review all of the literature although this can be done. Instead, researchers often present studies that are representative of most works published in a particular area and they consider a specific time frame to be mapped.

An example of this approach in the eHealth domain is offered by DeShazo, Lavallie, and Wolf (2009). The purpose of this descriptive or mapping review was to characterize publication trends in the medical informatics literature over a 20-year period (1987 to 2006). To achieve this ambitious objective, the authors performed a bibliometric analysis of medical informatics citations indexed in medline using publication trends, journal frequencies, impact factors, Medical Subject Headings (MeSH) term frequencies, and characteristics of citations. Findings revealed that there were over 77,000 medical informatics articles published during the covered period in numerous journals and that the average annual growth rate was 12%. The MeSH term analysis also suggested a strong interdisciplinary trend. Finally, average impact scores increased over time with two notable growth periods. Overall, patterns in research outputs that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline (DeShazo et al., 2009).

9.3.3. Scoping Reviews

Scoping reviews attempt to provide an initial indication of the potential size and nature of the extant literature on an emergent topic (Arksey & O’Malley, 2005; Daudt, van Mossel, & Scott, 2013 ; Levac, Colquhoun, & O’Brien, 2010). A scoping review may be conducted to examine the extent, range and nature of research activities in a particular area, determine the value of undertaking a full systematic review (discussed next), or identify research gaps in the extant literature ( Paré et al., 2015 ). In line with their main objective, scoping reviews usually conclude with the presentation of a detailed research agenda for future works along with potential implications for both practice and research.

Unlike narrative and descriptive reviews, the whole point of scoping the field is to be as comprehensive as possible, including grey literature (Arksey & O’Malley, 2005). Inclusion and exclusion criteria must be established to help researchers eliminate studies that are not aligned with the research questions. It is also recommended that at least two independent coders review abstracts yielded from the search strategy and then the full articles for study selection ( Daudt et al., 2013 ). The synthesized evidence from content or thematic analysis is relatively easy to present in tabular form (Arksey & O’Malley, 2005; Thomas & Harden, 2008 ).

One of the most highly cited scoping reviews in the eHealth domain was published by Archer, Fevrier-Thomas, Lokker, McKibbon, and Straus (2011) . These authors reviewed the existing literature on personal health record ( phr ) systems including design, functionality, implementation, applications, outcomes, and benefits. Seven databases were searched from 1985 to March 2010. Several search terms relating to phr s were used during this process. Two authors independently screened titles and abstracts to determine inclusion status. A second screen of full-text articles, again by two independent members of the research team, ensured that the studies described phr s. All in all, 130 articles met the criteria and their data were extracted manually into a database. The authors concluded that although there is a large amount of survey, observational, cohort/panel, and anecdotal evidence of phr benefits and satisfaction for patients, more research is needed to evaluate the results of phr implementations. Their in-depth analysis of the literature signalled that there is little solid evidence from randomized controlled trials or other studies through the use of phr s. Hence, they suggested that more research is needed that addresses the current lack of understanding of optimal functionality and usability of these systems, and how they can play a beneficial role in supporting patient self-management ( Archer et al., 2011 ).

9.3.4. Forms of Aggregative Reviews

Healthcare providers, practitioners, and policy-makers are nowadays overwhelmed with large volumes of information, including research-based evidence from numerous clinical trials and evaluation studies, assessing the effectiveness of health information technologies and interventions ( Ammenwerth & de Keizer, 2004 ; Deshazo et al., 2009 ). It is unrealistic to expect that all these disparate actors will have the time, skills, and necessary resources to identify the available evidence in the area of their expertise and consider it when making decisions. Systematic reviews that involve the rigorous application of scientific strategies aimed at limiting subjectivity and bias (i.e., systematic and random errors) can respond to this challenge.

Systematic reviews attempt to aggregate, appraise, and synthesize in a single source all empirical evidence that meet a set of previously specified eligibility criteria in order to answer a clearly formulated and often narrow research question on a particular topic of interest to support evidence-based practice ( Liberati et al., 2009 ). They adhere closely to explicit scientific principles ( Liberati et al., 2009 ) and rigorous methodological guidelines (Higgins & Green, 2008) aimed at reducing random and systematic errors that can lead to deviations from the truth in results or inferences. The use of explicit methods allows systematic reviews to aggregate a large body of research evidence, assess whether effects or relationships are in the same direction and of the same general magnitude, explain possible inconsistencies between study results, and determine the strength of the overall evidence for every outcome of interest based on the quality of included studies and the general consistency among them ( Cook, Mulrow, & Haynes, 1997 ). The main procedures of a systematic review involve:

  • Formulating a review question and developing a search strategy based on explicit inclusion criteria for the identification of eligible studies (usually described in the context of a detailed review protocol).
  • Searching for eligible studies using multiple databases and information sources, including grey literature sources, without any language restrictions.
  • Selecting studies, extracting data, and assessing risk of bias in a duplicate manner using two independent reviewers to avoid random or systematic errors in the process.
  • Analyzing data using quantitative or qualitative methods.
  • Presenting results in summary of findings tables.
  • Interpreting results and drawing conclusions.

Many systematic reviews, but not all, use statistical methods to combine the results of independent studies into a single quantitative estimate or summary effect size. Known as meta-analyses , these reviews use specific data extraction and statistical techniques (e.g., network, frequentist, or Bayesian meta-analyses) to calculate from each study by outcome of interest an effect size along with a confidence interval that reflects the degree of uncertainty behind the point estimate of effect ( Borenstein, Hedges, Higgins, & Rothstein, 2009 ; Deeks, Higgins, & Altman, 2008 ). Subsequently, they use fixed or random-effects analysis models to combine the results of the included studies, assess statistical heterogeneity, and calculate a weighted average of the effect estimates from the different studies, taking into account their sample sizes. The summary effect size is a value that reflects the average magnitude of the intervention effect for a particular outcome of interest or, more generally, the strength of a relationship between two variables across all studies included in the systematic review. By statistically combining data from multiple studies, meta-analyses can create more precise and reliable estimates of intervention effects than those derived from individual studies alone, when these are examined independently as discrete sources of information.

The review by Gurol-Urganci, de Jongh, Vodopivec-Jamsek, Atun, and Car (2013) on the effects of mobile phone messaging reminders for attendance at healthcare appointments is an illustrative example of a high-quality systematic review with meta-analysis. Missed appointments are a major cause of inefficiency in healthcare delivery with substantial monetary costs to health systems. These authors sought to assess whether mobile phone-based appointment reminders delivered through Short Message Service ( sms ) or Multimedia Messaging Service ( mms ) are effective in improving rates of patient attendance and reducing overall costs. To this end, they conducted a comprehensive search on multiple databases using highly sensitive search strategies without language or publication-type restrictions to identify all rct s that are eligible for inclusion. In order to minimize the risk of omitting eligible studies not captured by the original search, they supplemented all electronic searches with manual screening of trial registers and references contained in the included studies. Study selection, data extraction, and risk of bias assessments were performed inde­­pen­dently by two coders using standardized methods to ensure consistency and to eliminate potential errors. Findings from eight rct s involving 6,615 participants were pooled into meta-analyses to calculate the magnitude of effects that mobile text message reminders have on the rate of attendance at healthcare appointments compared to no reminders and phone call reminders.

Meta-analyses are regarded as powerful tools for deriving meaningful conclusions. However, there are situations in which it is neither reasonable nor appropriate to pool studies together using meta-analytic methods simply because there is extensive clinical heterogeneity between the included studies or variation in measurement tools, comparisons, or outcomes of interest. In these cases, systematic reviews can use qualitative synthesis methods such as vote counting, content analysis, classification schemes and tabulations, as an alternative approach to narratively synthesize the results of the independent studies included in the review. This form of review is known as qualitative systematic review.

A rigorous example of one such review in the eHealth domain is presented by Mickan, Atherton, Roberts, Heneghan, and Tilson (2014) on the use of handheld computers by healthcare professionals and their impact on access to information and clinical decision-making. In line with the methodological guide­lines for systematic reviews, these authors: (a) developed and registered with prospero ( www.crd.york.ac.uk/ prospero / ) an a priori review protocol; (b) conducted comprehensive searches for eligible studies using multiple databases and other supplementary strategies (e.g., forward searches); and (c) subsequently carried out study selection, data extraction, and risk of bias assessments in a duplicate manner to eliminate potential errors in the review process. Heterogeneity between the included studies in terms of reported outcomes and measures precluded the use of meta-analytic methods. To this end, the authors resorted to using narrative analysis and synthesis to describe the effectiveness of handheld computers on accessing information for clinical knowledge, adherence to safety and clinical quality guidelines, and diagnostic decision-making.

In recent years, the number of systematic reviews in the field of health informatics has increased considerably. Systematic reviews with discordant findings can cause great confusion and make it difficult for decision-makers to interpret the review-level evidence ( Moher, 2013 ). Therefore, there is a growing need for appraisal and synthesis of prior systematic reviews to ensure that decision-making is constantly informed by the best available accumulated evidence. Umbrella reviews , also known as overviews of systematic reviews, are tertiary types of evidence synthesis that aim to accomplish this; that is, they aim to compare and contrast findings from multiple systematic reviews and meta-analyses ( Becker & Oxman, 2008 ). Umbrella reviews generally adhere to the same principles and rigorous methodological guidelines used in systematic reviews. However, the unit of analysis in umbrella reviews is the systematic review rather than the primary study ( Becker & Oxman, 2008 ). Unlike systematic reviews that have a narrow focus of inquiry, umbrella reviews focus on broader research topics for which there are several potential interventions ( Smith, Devane, Begley, & Clarke, 2011 ). A recent umbrella review on the effects of home telemonitoring interventions for patients with heart failure critically appraised, compared, and synthesized evidence from 15 systematic reviews to investigate which types of home telemonitoring technologies and forms of interventions are more effective in reducing mortality and hospital admissions ( Kitsiou, Paré, & Jaana, 2015 ).

9.3.5. Realist Reviews

Realist reviews are theory-driven interpretative reviews developed to inform, enhance, or supplement conventional systematic reviews by making sense of heterogeneous evidence about complex interventions applied in diverse contexts in a way that informs policy decision-making ( Greenhalgh, Wong, Westhorp, & Pawson, 2011 ). They originated from criticisms of positivist systematic reviews which centre on their “simplistic” underlying assumptions ( Oates, 2011 ). As explained above, systematic reviews seek to identify causation. Such logic is appropriate for fields like medicine and education where findings of randomized controlled trials can be aggregated to see whether a new treatment or intervention does improve outcomes. However, many argue that it is not possible to establish such direct causal links between interventions and outcomes in fields such as social policy, management, and information systems where for any intervention there is unlikely to be a regular or consistent outcome ( Oates, 2011 ; Pawson, 2006 ; Rousseau, Manning, & Denyer, 2008 ).

To circumvent these limitations, Pawson, Greenhalgh, Harvey, and Walshe (2005) have proposed a new approach for synthesizing knowledge that seeks to unpack the mechanism of how “complex interventions” work in particular contexts. The basic research question — what works? — which is usually associated with systematic reviews changes to: what is it about this intervention that works, for whom, in what circumstances, in what respects and why? Realist reviews have no particular preference for either quantitative or qualitative evidence. As a theory-building approach, a realist review usually starts by articulating likely underlying mechanisms and then scrutinizes available evidence to find out whether and where these mechanisms are applicable ( Shepperd et al., 2009 ). Primary studies found in the extant literature are viewed as case studies which can test and modify the initial theories ( Rousseau et al., 2008 ).

The main objective pursued in the realist review conducted by Otte-Trojel, de Bont, Rundall, and van de Klundert (2014) was to examine how patient portals contribute to health service delivery and patient outcomes. The specific goals were to investigate how outcomes are produced and, most importantly, how variations in outcomes can be explained. The research team started with an exploratory review of background documents and research studies to identify ways in which patient portals may contribute to health service delivery and patient outcomes. The authors identified six main ways which represent “educated guesses” to be tested against the data in the evaluation studies. These studies were identified through a formal and systematic search in four databases between 2003 and 2013. Two members of the research team selected the articles using a pre-established list of inclusion and exclusion criteria and following a two-step procedure. The authors then extracted data from the selected articles and created several tables, one for each outcome category. They organized information to bring forward those mechanisms where patient portals contribute to outcomes and the variation in outcomes across different contexts.

9.3.6. Critical Reviews

Lastly, critical reviews aim to provide a critical evaluation and interpretive analysis of existing literature on a particular topic of interest to reveal strengths, weaknesses, contradictions, controversies, inconsistencies, and/or other important issues with respect to theories, hypotheses, research methods or results ( Baumeister & Leary, 1997 ; Kirkevold, 1997 ). Unlike other review types, critical reviews attempt to take a reflective account of the research that has been done in a particular area of interest, and assess its credibility by using appraisal instruments or critical interpretive methods. In this way, critical reviews attempt to constructively inform other scholars about the weaknesses of prior research and strengthen knowledge development by giving focus and direction to studies for further improvement ( Kirkevold, 1997 ).

Kitsiou, Paré, and Jaana (2013) provide an example of a critical review that assessed the methodological quality of prior systematic reviews of home telemonitoring studies for chronic patients. The authors conducted a comprehensive search on multiple databases to identify eligible reviews and subsequently used a validated instrument to conduct an in-depth quality appraisal. Results indicate that the majority of systematic reviews in this particular area suffer from important methodological flaws and biases that impair their internal validity and limit their usefulness for clinical and decision-making purposes. To this end, they provide a number of recommendations to strengthen knowledge development towards improving the design and execution of future reviews on home telemonitoring.

9.4. Summary

Table 9.1 outlines the main types of literature reviews that were described in the previous sub-sections and summarizes the main characteristics that distinguish one review type from another. It also includes key references to methodological guidelines and useful sources that can be used by eHealth scholars and researchers for planning and developing reviews.

Table 9.1. Typology of Literature Reviews (adapted from Paré et al., 2015).

Typology of Literature Reviews (adapted from Paré et al., 2015).

As shown in Table 9.1 , each review type addresses different kinds of research questions or objectives, which subsequently define and dictate the methods and approaches that need to be used to achieve the overarching goal(s) of the review. For example, in the case of narrative reviews, there is greater flexibility in searching and synthesizing articles ( Green et al., 2006 ). Researchers are often relatively free to use a diversity of approaches to search, identify, and select relevant scientific articles, describe their operational characteristics, present how the individual studies fit together, and formulate conclusions. On the other hand, systematic reviews are characterized by their high level of systematicity, rigour, and use of explicit methods, based on an “a priori” review plan that aims to minimize bias in the analysis and synthesis process (Higgins & Green, 2008). Some reviews are exploratory in nature (e.g., scoping/mapping reviews), whereas others may be conducted to discover patterns (e.g., descriptive reviews) or involve a synthesis approach that may include the critical analysis of prior research ( Paré et al., 2015 ). Hence, in order to select the most appropriate type of review, it is critical to know before embarking on a review project, why the research synthesis is conducted and what type of methods are best aligned with the pursued goals.

9.5. Concluding Remarks

In light of the increased use of evidence-based practice and research generating stronger evidence ( Grady et al., 2011 ; Lyden et al., 2013 ), review articles have become essential tools for summarizing, synthesizing, integrating or critically appraising prior knowledge in the eHealth field. As mentioned earlier, when rigorously conducted review articles represent powerful information sources for eHealth scholars and practitioners looking for state-of-the-art evidence. The typology of literature reviews we used herein will allow eHealth researchers, graduate students and practitioners to gain a better understanding of the similarities and differences between review types.

We must stress that this classification scheme does not privilege any specific type of review as being of higher quality than another ( Paré et al., 2015 ). As explained above, each type of review has its own strengths and limitations. Having said that, we realize that the methodological rigour of any review — be it qualitative, quantitative or mixed — is a critical aspect that should be considered seriously by prospective authors. In the present context, the notion of rigour refers to the reliability and validity of the review process described in section 9.2. For one thing, reliability is related to the reproducibility of the review process and steps, which is facilitated by a comprehensive documentation of the literature search process, extraction, coding and analysis performed in the review. Whether the search is comprehensive or not, whether it involves a methodical approach for data extraction and synthesis or not, it is important that the review documents in an explicit and transparent manner the steps and approach that were used in the process of its development. Next, validity characterizes the degree to which the review process was conducted appropriately. It goes beyond documentation and reflects decisions related to the selection of the sources, the search terms used, the period of time covered, the articles selected in the search, and the application of backward and forward searches ( vom Brocke et al., 2009 ). In short, the rigour of any review article is reflected by the explicitness of its methods (i.e., transparency) and the soundness of the approach used. We refer those interested in the concepts of rigour and quality to the work of Templier and Paré (2015) which offers a detailed set of methodological guidelines for conducting and evaluating various types of review articles.

To conclude, our main objective in this chapter was to demystify the various types of literature reviews that are central to the continuous development of the eHealth field. It is our hope that our descriptive account will serve as a valuable source for those conducting, evaluating or using reviews in this important and growing domain.

  • Ammenwerth E., de Keizer N. An inventory of evaluation studies of information technology in health care. Trends in evaluation research, 1982-2002. International Journal of Medical Informatics. 2004; 44 (1):44–56. [ PubMed : 15778794 ]
  • Anderson S., Allen P., Peckham S., Goodwin N. Asking the right questions: scoping studies in the commissioning of research on the organisation and delivery of health services. Health Research Policy and Systems. 2008; 6 (7):1–12. [ PMC free article : PMC2500008 ] [ PubMed : 18613961 ] [ CrossRef ]
  • Archer N., Fevrier-Thomas U., Lokker C., McKibbon K. A., Straus S.E. Personal health records: a scoping review. Journal of American Medical Informatics Association. 2011; 18 (4):515–522. [ PMC free article : PMC3128401 ] [ PubMed : 21672914 ]
  • Arksey H., O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8 (1):19–32.
  • A systematic, tool-supported method for conducting literature reviews in information systems. Paper presented at the Proceedings of the 19th European Conference on Information Systems ( ecis 2011); June 9 to 11; Helsinki, Finland. 2011.
  • Baumeister R. F., Leary M.R. Writing narrative literature reviews. Review of General Psychology. 1997; 1 (3):311–320.
  • Becker L. A., Oxman A.D. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Overviews of reviews; pp. 607–631.
  • Borenstein M., Hedges L., Higgins J., Rothstein H. Introduction to meta-analysis. Hoboken, nj : John Wiley & Sons Inc; 2009.
  • Cook D. J., Mulrow C. D., Haynes B. Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine. 1997; 126 (5):376–380. [ PubMed : 9054282 ]
  • Cooper H., Hedges L.V. In: The handbook of research synthesis and meta-analysis. 2nd ed. Cooper H., Hedges L. V., Valentine J. C., editors. New York: Russell Sage Foundation; 2009. Research synthesis as a scientific process; pp. 3–17.
  • Cooper H. M. Organizing knowledge syntheses: A taxonomy of literature reviews. Knowledge in Society. 1988; 1 (1):104–126.
  • Cronin P., Ryan F., Coughlan M. Undertaking a literature review: a step-by-step approach. British Journal of Nursing. 2008; 17 (1):38–43. [ PubMed : 18399395 ]
  • Darlow S., Wen K.Y. Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal. 2015 (online before print). [ PubMed : 25916831 ] [ CrossRef ]
  • Daudt H. M., van Mossel C., Scott S.J. Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. bmc Medical Research Methodology. 2013; 13 :48. [ PMC free article : PMC3614526 ] [ PubMed : 23522333 ] [ CrossRef ]
  • Davies P. The relevance of systematic reviews to educational policy and practice. Oxford Review of Education. 2000; 26 (3-4):365–378.
  • Deeks J. J., Higgins J. P. T., Altman D.G. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Analysing data and undertaking meta-analyses; pp. 243–296.
  • Deshazo J. P., Lavallie D. L., Wolf F.M. Publication trends in the medical informatics literature: 20 years of “Medical Informatics” in mesh . bmc Medical Informatics and Decision Making. 2009; 9 :7. [ PMC free article : PMC2652453 ] [ PubMed : 19159472 ] [ CrossRef ]
  • Dixon-Woods M., Agarwal S., Jones D., Young B., Sutton A. Synthesising qualitative and quantitative evidence: a review of possible methods. Journal of Health Services Research and Policy. 2005; 10 (1):45–53. [ PubMed : 15667704 ]
  • Finfgeld-Connett D., Johnson E.D. Literature search strategies for conducting knowledge-building and theory-generating qualitative systematic reviews. Journal of Advanced Nursing. 2013; 69 (1):194–204. [ PMC free article : PMC3424349 ] [ PubMed : 22591030 ]
  • Grady B., Myers K. M., Nelson E. L., Belz N., Bennett L., Carnahan L. … Guidelines Working Group. Evidence-based practice for telemental health. Telemedicine Journal and E Health. 2011; 17 (2):131–148. [ PubMed : 21385026 ]
  • Green B. N., Johnson C. D., Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine. 2006; 5 (3):101–117. [ PMC free article : PMC2647067 ] [ PubMed : 19674681 ]
  • Greenhalgh T., Wong G., Westhorp G., Pawson R. Protocol–realist and meta-narrative evidence synthesis: evolving standards ( rameses ). bmc Medical Research Methodology. 2011; 11 :115. [ PMC free article : PMC3173389 ] [ PubMed : 21843376 ]
  • Gurol-Urganci I., de Jongh T., Vodopivec-Jamsek V., Atun R., Car J. Mobile phone messaging reminders for attendance at healthcare appointments. Cochrane Database System Review. 2013; 12 cd 007458. [ PMC free article : PMC6485985 ] [ PubMed : 24310741 ] [ CrossRef ]
  • Hart C. Doing a literature review: Releasing the social science research imagination. London: SAGE Publications; 1998.
  • Higgins J. P. T., Green S., editors. Cochrane handbook for systematic reviews of interventions: Cochrane book series. Hoboken, nj : Wiley-Blackwell; 2008.
  • Jesson J., Matheson L., Lacey F.M. Doing your literature review: traditional and systematic techniques. Los Angeles & London: SAGE Publications; 2011.
  • King W. R., He J. Understanding the role and methods of meta-analysis in IS research. Communications of the Association for Information Systems. 2005; 16 :1.
  • Kirkevold M. Integrative nursing research — an important strategy to further the development of nursing science and nursing practice. Journal of Advanced Nursing. 1997; 25 (5):977–984. [ PubMed : 9147203 ]
  • Kitchenham B., Charters S. ebse Technical Report Version 2.3. Keele & Durham. uk : Keele University & University of Durham; 2007. Guidelines for performing systematic literature reviews in software engineering.
  • Kitsiou S., Paré G., Jaana M. Systematic reviews and meta-analyses of home telemonitoring interventions for patients with chronic diseases: a critical assessment of their methodological quality. Journal of Medical Internet Research. 2013; 15 (7):e150. [ PMC free article : PMC3785977 ] [ PubMed : 23880072 ]
  • Kitsiou S., Paré G., Jaana M. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. Journal of Medical Internet Research. 2015; 17 (3):e63. [ PMC free article : PMC4376138 ] [ PubMed : 25768664 ]
  • Levac D., Colquhoun H., O’Brien K. K. Scoping studies: advancing the methodology. Implementation Science. 2010; 5 (1):69. [ PMC free article : PMC2954944 ] [ PubMed : 20854677 ]
  • Levy Y., Ellis T.J. A systems approach to conduct an effective literature review in support of information systems research. Informing Science. 2006; 9 :181–211.
  • Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P. A. et al. Moher D. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine. 2009; 151 (4):W-65. [ PubMed : 19622512 ]
  • Lyden J. R., Zickmund S. L., Bhargava T. D., Bryce C. L., Conroy M. B., Fischer G. S. et al. McTigue K. M. Implementing health information technology in a patient-centered manner: Patient experiences with an online evidence-based lifestyle intervention. Journal for Healthcare Quality. 2013; 35 (5):47–57. [ PubMed : 24004039 ]
  • Mickan S., Atherton H., Roberts N. W., Heneghan C., Tilson J.K. Use of handheld computers in clinical practice: a systematic review. bmc Medical Informatics and Decision Making. 2014; 14 :56. [ PMC free article : PMC4099138 ] [ PubMed : 24998515 ]
  • Moher D. The problem of duplicate systematic reviews. British Medical Journal. 2013; 347 (5040) [ PubMed : 23945367 ] [ CrossRef ]
  • Montori V. M., Wilczynski N. L., Morgan D., Haynes R. B., Hedges T. Systematic reviews: a cross-sectional study of location and citation counts. bmc Medicine. 2003; 1 :2. [ PMC free article : PMC281591 ] [ PubMed : 14633274 ]
  • Mulrow C. D. The medical review article: state of the science. Annals of Internal Medicine. 1987; 106 (3):485–488. [ PubMed : 3813259 ] [ CrossRef ]
  • Evidence-based information systems: A decade later. Proceedings of the European Conference on Information Systems ; 2011. Retrieved from http://aisel ​.aisnet.org/cgi/viewcontent ​.cgi?article ​=1221&context ​=ecis2011 .
  • Okoli C., Schabram K. A guide to conducting a systematic literature review of information systems research. ssrn Electronic Journal. 2010
  • Otte-Trojel T., de Bont A., Rundall T. G., van de Klundert J. How outcomes are achieved through patient portals: a realist review. Journal of American Medical Informatics Association. 2014; 21 (4):751–757. [ PMC free article : PMC4078283 ] [ PubMed : 24503882 ]
  • Paré G., Trudel M.-C., Jaana M., Kitsiou S. Synthesizing information systems knowledge: A typology of literature reviews. Information & Management. 2015; 52 (2):183–199.
  • Patsopoulos N. A., Analatos A. A., Ioannidis J.P. A. Relative citation impact of various study designs in the health sciences. Journal of the American Medical Association. 2005; 293 (19):2362–2366. [ PubMed : 15900006 ]
  • Paul M. M., Greene C. M., Newton-Dame R., Thorpe L. E., Perlman S. E., McVeigh K. H., Gourevitch M.N. The state of population health surveillance using electronic health records: A narrative review. Population Health Management. 2015; 18 (3):209–216. [ PubMed : 25608033 ]
  • Pawson R. Evidence-based policy: a realist perspective. London: SAGE Publications; 2006.
  • Pawson R., Greenhalgh T., Harvey G., Walshe K. Realist review—a new method of systematic review designed for complex policy interventions. Journal of Health Services Research & Policy. 2005; 10 (Suppl 1):21–34. [ PubMed : 16053581 ]
  • Petersen K., Vakkalanka S., Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology. 2015; 64 :1–18.
  • Petticrew M., Roberts H. Systematic reviews in the social sciences: A practical guide. Malden, ma : Blackwell Publishing Co; 2006.
  • Rousseau D. M., Manning J., Denyer D. Evidence in management and organizational science: Assembling the field’s full weight of scientific knowledge through syntheses. The Academy of Management Annals. 2008; 2 (1):475–515.
  • Rowe F. What literature review is not: diversity, boundaries and recommendations. European Journal of Information Systems. 2014; 23 (3):241–255.
  • Shea B. J., Hamel C., Wells G. A., Bouter L. M., Kristjansson E., Grimshaw J. et al. Boers M. amstar is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of Clinical Epidemiology. 2009; 62 (10):1013–1020. [ PubMed : 19230606 ]
  • Shepperd S., Lewin S., Straus S., Clarke M., Eccles M. P., Fitzpatrick R. et al. Sheikh A. Can we systematically review studies that evaluate complex interventions? PLoS Medicine. 2009; 6 (8):e1000086. [ PMC free article : PMC2717209 ] [ PubMed : 19668360 ]
  • Silva B. M., Rodrigues J. J., de la Torre Díez I., López-Coronado M., Saleem K. Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics. 2015; 56 :265–272. [ PubMed : 26071682 ]
  • Smith V., Devane D., Begley C., Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. bmc Medical Research Methodology. 2011; 11 (1):15. [ PMC free article : PMC3039637 ] [ PubMed : 21291558 ]
  • Sylvester A., Tate M., Johnstone D. Beyond synthesis: re-presenting heterogeneous research literature. Behaviour & Information Technology. 2013; 32 (12):1199–1215.
  • Templier M., Paré G. A framework for guiding and evaluating literature reviews. Communications of the Association for Information Systems. 2015; 37 (6):112–137.
  • Thomas J., Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. bmc Medical Research Methodology. 2008; 8 (1):45. [ PMC free article : PMC2478656 ] [ PubMed : 18616818 ]
  • Reconstructing the giant: on the importance of rigour in documenting the literature search process. Paper presented at the Proceedings of the 17th European Conference on Information Systems ( ecis 2009); Verona, Italy. 2009.
  • Webster J., Watson R.T. Analyzing the past to prepare for the future: Writing a literature review. Management Information Systems Quarterly. 2002; 26 (2):11.
  • Whitlock E. P., Lin J. S., Chou R., Shekelle P., Robinson K.A. Using existing systematic reviews in complex systematic reviews. Annals of Internal Medicine. 2008; 148 (10):776–782. [ PubMed : 18490690 ]

This publication is licensed under a Creative Commons License, Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0): see https://creativecommons.org/licenses/by-nc/4.0/

  • Cite this Page Paré G, Kitsiou S. Chapter 9 Methods for Literature Reviews. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.
  • PDF version of this title (4.5M)
  • Disable Glossary Links

In this Page

  • Introduction
  • Overview of the Literature Review Process and Steps
  • Types of Review Articles and Brief Illustrations
  • Concluding Remarks

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Ev... Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Evidence-based Approach

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

SYSTEMATIC REVIEW article

The view of synthetic biology in the field of ethics: a thematic systematic review provisionally accepted.

  • 1 Ankara University, Türkiye
  • 2 Department of Medical History and Ethics, School of Medicine, Ankara University, Ankara, Türkiye, Türkiye

The final, formatted version of the article will be published soon.

Synthetic biology is designing and creating biological tools and systems for useful purposes. It uses knowledge from biology, such as biotechnology, molecular biology, biophysics, biochemistry, bioinformatics, and other disciplines, such as engineering, mathematics, computer science, and electrical engineering. It is recognized as both a branch of science and technology. The scope of synthetic biology ranges from modifying existing organisms to gain new properties to creating a living organism from non-living components. Synthetic biology has many applications in important fields such as energy, chemistry, medicine, environment, agriculture, national security, and nanotechnology. The development of synthetic biology also raises ethical and social debates. This article aims to identify the place of ethics in synthetic biology. In this context, the theoretical ethical debates on synthetic biology from the 2000s to 2020, when the development of synthetic biology was relatively faster, were analyzed using the systematic review method. Based on the results of the analysis, the main ethical problems related to the field, problems that are likely to arise, and suggestions for solutions to these problems are included. The data collection phase of the study included a literature review conducted according to protocols, including planning, screening, selection and evaluation. The analysis and synthesis process was carried out in the next stage, and the main themes related to synthetic biology and ethics were identified. Searches were conducted in Web of Science, Scopus, PhilPapers and MEDLINE databases. Theoretical research articles and reviews published in peer-reviewed journals until the end of 2020 were included in the study. The language of publications was English. According to preliminary data, 1453 publications were retrieved from the four databases. Considering the inclusion and exclusion criteria, 58 publications were analyzed in the study. Ethical debates on synthetic biology have been conducted on various issues. In this context, the ethical debates in this article were examined under five themes: the moral status of synthetic biology products, synthetic biology and the meaning of life, synthetic biology and metaphors, synthetic biology and knowledge, and expectations, concerns, and problem solving: risk versus caution.

Keywords: Synthetic Biology, Ethics, Bioethics, Systematic review, Technology ethics, Responsible research and innovation

Received: 08 Mar 2024; Accepted: 10 May 2024.

Copyright: © 2024 Kurtoglu, Yıldız and Arda. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: PhD. Ayse Kurtoglu, Ankara University, Ankara, Türkiye

People also looked at

IMAGES

  1. Synthesis of literature

    synthesis scientific literature

  2. Synthesis of the literature review process and main conclusion

    synthesis scientific literature

  3. The synthesis of the literature review process.

    synthesis scientific literature

  4. Synthesis of literature

    synthesis scientific literature

  5. literature synthesis approach

    synthesis scientific literature

  6. (PDF) Implementation Research: A Synthesis of the Literature

    synthesis scientific literature

VIDEO

  1. Review of Related Literature

  2. Lecture Designing Organic Syntheses 4 Prof G Dyker 151014

  3. Lecture Designing Organic Syntheses 7 Prof G Dyker 291014

  4. Lecture Designing Organic Syntheses 22 Prof G Dyker 130115

  5. Synthetic Biology: Rewriting Life. Andrew Hessel at NextMed Health

  6. Coding Studies for Systematic Reviews (and Meta-Analysis)

COMMENTS

  1. Synthesizing Sources

    Synthesizing Sources | Examples & Synthesis Matrix. Published on July 4, 2022 by Eoghan Ryan. Revised on May 31, 2023. Synthesizing sources involves ... This is a tool that you can use when researching and writing your paper, not a part of the final text. In a synthesis matrix, each column represents one source, and each row represents a common ...

  2. What Synthesis Methodology Should I Use? A Review and Analysis of

    In fact, the lack of systematization in conventional literature synthesis was the reason for the development of more systematic quantitative , and qualitative -, ... This is an important area for development in advancing the science of research synthesis. 4.8.3. Strengths and Limitations of the Four Synthesis Types

  3. Literature Synthesis 101: How To Guide + Examples

    In this post, we'll unpack what exactly synthesis means and show you how to craft a strong literature synthesis using practical examples. This post is based on our popular online course, Literature Review Bootcamp. In the course, we walk you through the full process of developing a literature review, step by step.

  4. Materials Synthesis Insights from Scientific Literature via Text

    Unleashing the Power of Knowledge Extraction from Scientific Literature in Catalysis. Journal of Chemical Information and Modeling 2022, 62 (14) , ... Inorganic Materials Synthesis Planning with Literature-Trained Neural Networks. Journal of Chemical Information and Modeling 2020, 60 (3) , ...

  5. Dataset of solution-based inorganic materials synthesis ...

    Materials synthesis insights from scientific literature via text extraction and machine learning. Chem. Mater 29, 9436-9444 (2017). Article CAS Google Scholar ...

  6. Meta-analysis and the science of research synthesis

    Meta-analysis is the quantitative, scientific synthesis of research results. Since the term and modern approaches to research synthesis were first introduced in the 1970s, meta-analysis has had a ...

  7. Synthesize

    A synthesis matrix helps you record the main points of each source and document how sources relate to each other. After summarizing and evaluating your sources, arrange them in a matrix or use a citation manager to help you see how they relate to each other and apply to each of your themes or variables. By arranging your sources by theme or ...

  8. Precursor recommendation for inorganic synthesis by machine ...

    To evaluate our recommendation pipeline, we conduct a validation using the 33,343 synthesis recipes text-mined from the scientific literature. Using the knowledge base of 24,034 materials reported by the year 2014, we predict precursors for 2654 test target materials newly reported from 2017 to 2020 (more details in the "Data preparation ...

  9. Automated extraction of chemical synthesis actions from ...

    Experimental procedures for chemical synthesis are commonly reported in prose in patents or in the scientific literature. The extraction of the details necessary to reproduce and validate a ...

  10. PDF Materials Synthesis Insights from Scientific Literature via Text

    Materials Synthesis Insights from Scientific Literature via Text Extraction and Machine Learning Edward Kim,† Kevin Huang,† Adam Saunders,‡ Andrew McCallum,‡ Gerbrand Ceder,§ and Elsa Olivetti*,† †Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States ‡Computer Science Department, University of ...

  11. A Guide to Evidence Synthesis: What is Evidence Synthesis?

    They generally include a methodical and comprehensive literature synthesis focused on a well-formulated research question. Their aim is to identify and synthesize all of the scholarly research on a particular topic, including both published and unpublished studies. Evidence syntheses are conducted in an unbiased, reproducible way to provide ...

  12. Mining Insights on Metal-Organic Framework Synthesis from Scientific

    Identifying optimal synthesis conditions for metal-organic frameworks (MOFs) is a major challenge that can serve as a bottleneck for new materials discovery and development. ... Mining Insights on Metal-Organic Framework Synthesis from Scientific Literature Texts. Hyunsoo Park. Hyunsoo Park. Department of Chemical and Biomolecular ...

  13. Understanding the Impacts of Research Synthesis

    1. Introduction. Research or scientific synthesis is the integration and assessment of knowledge and research findings pertinent to a particular issue with the aim of increasing the generality and applicability of, and access to, those findings (Hampton & Parker 2011, Magliocca et al., 2014, Baron et al. 2017).Synthesis of existing research and case studies can also generate new knowledge.

  14. How To Write Synthesis In Research: Example Steps

    Step 1 Organize your sources. Step 2 Outline your structure. Step 3 Write paragraphs with topic sentences. Step 4 Revise, edit and proofread. When you write a literature review or essay, you have to go beyond just summarizing the articles you've read - you need to synthesize the literature to show how it all fits together (and how your own ...

  15. Synthesizing Sources

    Argumentative syntheses seek to bring sources together to make an argument. Both types of synthesis involve looking for relationships between sources and drawing conclusions. In order to successfully synthesize your sources, you might begin by grouping your sources by topic and looking for connections. For example, if you were researching the ...

  16. The Handbook of Research Synthesis

    The Handbook of Research Synthesis. Harris Cooper, Larry V. Hedges. Russell Sage Foundation, Nov 23, 1993 - Social Science - 592 pages. " The Handbook is a comprehensive treatment of literature synthesis and provides practical advice for anyone deep in the throes of, just teetering on the brink of, or attempting to decipher a meta-analysis.

  17. Literature Synthesis

    As posed by Pawson et al. ( 2005 ), it consists of a technique composed of five steps: (1) explain the scope; (2) search for evidence; (3) evaluate primary studies and extract data; (4) synthesize evidence and conclude; and (5) disseminate, implement and evaluate. In the first step, the review question is defined.

  18. State-of-the-art literature review methodology: A six-step ...

    Introduction Researchers and practitioners rely on literature reviews to synthesize large bodies of knowledge. Many types of literature reviews have been developed, each targeting a specific purpose. However, these syntheses are hampered if the review type's paradigmatic roots, methods, and markers of rigor are only vaguely understood. One literature review type whose methodology has yet to ...

  19. Annotating and Extracting Synthesis Process of All-Solid-State

    Abstract The synthesis process is essential for achieving computational experiment design in the field of inorganic materials chemistry. In this work, we present a novel corpus of the synthesis process for all-solid-state batteries and an automated machine reading system for extracting the synthesis processes buried in the scientific literature.

  20. Quantitative Synthesis—An Update

    Quantitative synthesis, or meta-analysis, is often essential for Comparative Effective Reviews (CERs) to provide scientifically rigorous summary information. ... However, the conclusions and synthesis of the scientific literature presented in this report does not necessarily represent the views of individual investigators.

  21. Chapter 9 Methods for Literature Reviews

    Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour (vom Brocke et al., 2009). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and ...

  22. Applications and goals of bioeconomy: a synthesis of the scientific

    The conclusion shows that the bioeconomy is a system that converts natural resources into products by the principles of sustainability, which can be seen in all applications in the literature ...

  23. Ecosystem Services of Mangroves: A Systematic Review and Synthesis of

    The paper narrates a systematic literature review on ''mangrove ecosystem services'' to identify their typology, distribution, and utilization within the contemporary scientific literature. We performed a systematic review of 76 research articles derived from the Scopus database, and the dataset was scrutinized and classified against the four major categories of ecosystem services ...

  24. Green, Safe, and Reliable Synthesis of Bimetallic MOF‐808 Nanozymes

    Specifically, a green and safe synthesis of Zr/Ce-MOF-808 is reported in water/acetic acid mixture which affords remarkably water-stable materials with reliable nanozymatic reactivity, including MOFs with a high Ce content previously reported to be unstable in water. ... Citing Literature. Volume 20, Issue 13. March 28, 2024. 2307236 ...

  25. Frontiers

    The data collection phase of the study included a literature review conducted according to protocols, including planning, screening, selection and evaluation. The analysis and synthesis process was carried out in the next stage, and the main themes related to synthetic biology and ethics were identified.

  26. Automated Writing Evaluation Use in Second Language Classrooms: A

    Qualitative analyses explore emergent themes involving the intersection of source of feedback and technology type and describe, contextualize, and critique in rich detail how the use of artful combinations of technologies and sources are currently shaping theUse of technology-mediated feedback in L2 writing instruction and research.