News alert: UC Berkeley has announced its next university librarian

Secondary menu

  • Log in to your Library account
  • Hours and Maps
  • Connect from Off Campus
  • UC Berkeley Home

Search form

Conducting a literature review: why do a literature review, why do a literature review.

  • How To Find "The Literature"
  • Found it -- Now What?

Besides the obvious reason for students -- because it is assigned! -- a literature review helps you explore the research that has come before you, to see how your research question has (or has not) already been addressed.

You identify:

  • core research in the field
  • experts in the subject area
  • methodology you may want to use (or avoid)
  • gaps in knowledge -- or where your research would fit in

It Also Helps You:

  • Publish and share your findings
  • Justify requests for grants and other funding
  • Identify best practices to inform practice
  • Set wider context for a program evaluation
  • Compile information to support community organizing

Great brief overview, from NCSU

Want To Know More?

Cover Art

  • Next: How To Find "The Literature" >>
  • Last Updated: Apr 25, 2024 1:10 PM
  • URL: https://guides.lib.berkeley.edu/litreview

University of Texas

  • University of Texas Libraries

Literature Reviews

  • What is a literature review?
  • Steps in the Literature Review Process
  • Define your research question
  • Determine inclusion and exclusion criteria
  • Choose databases and search
  • Review Results
  • Synthesize Results
  • Analyze Results
  • Librarian Support

What is a Literature Review?

A literature or narrative review is a comprehensive review and analysis of the published literature on a specific topic or research question. The literature that is reviewed contains: books, articles, academic articles, conference proceedings, association papers, and dissertations. It contains the most pertinent studies and points to important past and current research and practices. It provides background and context, and shows how your research will contribute to the field. 

A literature review should: 

  • Provide a comprehensive and updated review of the literature;
  • Explain why this review has taken place;
  • Articulate a position or hypothesis;
  • Acknowledge and account for conflicting and corroborating points of view

From  S age Research Methods

Purpose of a Literature Review

A literature review can be written as an introduction to a study to:

  • Demonstrate how a study fills a gap in research
  • Compare a study with other research that's been done

Or it can be a separate work (a research article on its own) which:

  • Organizes or describes a topic
  • Describes variables within a particular issue/problem

Limitations of a Literature Review

Some of the limitations of a literature review are:

  • It's a snapshot in time. Unlike other reviews, this one has beginning, a middle and an end. There may be future developments that could make your work less relevant.
  • It may be too focused. Some niche studies may miss the bigger picture.
  • It can be difficult to be comprehensive. There is no way to make sure all the literature on a topic was considered.
  • It is easy to be biased if you stick to top tier journals. There may be other places where people are publishing exemplary research. Look to open access publications and conferences to reflect a more inclusive collection. Also, make sure to include opposing views (and not just supporting evidence).

Source: Grant, Maria J., and Andrew Booth. “A Typology of Reviews: An Analysis of 14 Review Types and Associated Methodologies.” Health Information & Libraries Journal, vol. 26, no. 2, June 2009, pp. 91–108. Wiley Online Library, doi:10.1111/j.1471-1842.2009.00848.x.

Meryl Brodsky : Communication and Information Studies

Hannah Chapman Tripp : Biology, Neuroscience

Carolyn Cunningham : Human Development & Family Sciences, Psychology, Sociology

Larayne Dallas : Engineering

Janelle Hedstrom : Special Education, Curriculum & Instruction, Ed Leadership & Policy ​

Susan Macicak : Linguistics

Imelda Vetter : Dell Medical School

For help in other subject areas, please see the guide to library specialists by subject .

Periodically, UT Libraries runs a workshop covering the basics and library support for literature reviews. While we try to offer these once per academic year, we find providing the recording to be helpful to community members who have missed the session. Following is the most recent recording of the workshop, Conducting a Literature Review. To view the recording, a UT login is required.

  • October 26, 2022 recording
  • Last Updated: Oct 26, 2022 2:49 PM
  • URL: https://guides.lib.utexas.edu/literaturereviews

Creative Commons License

  • UConn Library
  • Literature Review: The What, Why and How-to Guide
  • Introduction

Literature Review: The What, Why and How-to Guide — Introduction

  • Getting Started
  • How to Pick a Topic
  • Strategies to Find Sources
  • Evaluating Sources & Lit. Reviews
  • Tips for Writing Literature Reviews
  • Writing Literature Review: Useful Sites
  • Citation Resources
  • Other Academic Writings

What are Literature Reviews?

So, what is a literature review? "A literature review is an account of what has been published on a topic by accredited scholars and researchers. In writing the literature review, your purpose is to convey to your reader what knowledge and ideas have been established on a topic, and what their strengths and weaknesses are. As a piece of writing, the literature review must be defined by a guiding concept (e.g., your research objective, the problem or issue you are discussing, or your argumentative thesis). It is not just a descriptive list of the material available, or a set of summaries." Taylor, D.  The literature review: A few tips on conducting it . University of Toronto Health Sciences Writing Centre.

Goals of Literature Reviews

What are the goals of creating a Literature Review?  A literature could be written to accomplish different aims:

  • To develop a theory or evaluate an existing theory
  • To summarize the historical or existing state of a research topic
  • Identify a problem in a field of research 

Baumeister, R. F., & Leary, M. R. (1997). Writing narrative literature reviews .  Review of General Psychology , 1 (3), 311-320.

What kinds of sources require a Literature Review?

  • A research paper assigned in a course
  • A thesis or dissertation
  • A grant proposal
  • An article intended for publication in a journal

All these instances require you to collect what has been written about your research topic so that you can demonstrate how your own research sheds new light on the topic.

Types of Literature Reviews

What kinds of literature reviews are written?

Narrative review: The purpose of this type of review is to describe the current state of the research on a specific topic/research and to offer a critical analysis of the literature reviewed. Studies are grouped by research/theoretical categories, and themes and trends, strengths and weakness, and gaps are identified. The review ends with a conclusion section which summarizes the findings regarding the state of the research of the specific study, the gaps identify and if applicable, explains how the author's research will address gaps identify in the review and expand the knowledge on the topic reviewed.

  • Example : Predictors and Outcomes of U.S. Quality Maternity Leave: A Review and Conceptual Framework:  10.1177/08948453211037398  

Systematic review : "The authors of a systematic review use a specific procedure to search the research literature, select the studies to include in their review, and critically evaluate the studies they find." (p. 139). Nelson, L. K. (2013). Research in Communication Sciences and Disorders . Plural Publishing.

  • Example : The effect of leave policies on increasing fertility: a systematic review:  10.1057/s41599-022-01270-w

Meta-analysis : "Meta-analysis is a method of reviewing research findings in a quantitative fashion by transforming the data from individual studies into what is called an effect size and then pooling and analyzing this information. The basic goal in meta-analysis is to explain why different outcomes have occurred in different studies." (p. 197). Roberts, M. C., & Ilardi, S. S. (2003). Handbook of Research Methods in Clinical Psychology . Blackwell Publishing.

  • Example : Employment Instability and Fertility in Europe: A Meta-Analysis:  10.1215/00703370-9164737

Meta-synthesis : "Qualitative meta-synthesis is a type of qualitative study that uses as data the findings from other qualitative studies linked by the same or related topic." (p.312). Zimmer, L. (2006). Qualitative meta-synthesis: A question of dialoguing with texts .  Journal of Advanced Nursing , 53 (3), 311-318.

  • Example : Women’s perspectives on career successes and barriers: A qualitative meta-synthesis:  10.1177/05390184221113735

Literature Reviews in the Health Sciences

  • UConn Health subject guide on systematic reviews Explanation of the different review types used in health sciences literature as well as tools to help you find the right review type
  • << Previous: Getting Started
  • Next: How to Pick a Topic >>
  • Last Updated: Sep 21, 2022 2:16 PM
  • URL: https://guides.lib.uconn.edu/literaturereview

Creative Commons

A Guide to Literature Reviews

Importance of a good literature review.

  • Conducting the Literature Review
  • Structure and Writing Style
  • Types of Literature Reviews
  • Citation Management Software This link opens in a new window
  • Acknowledgements

A literature review is not only a summary of key sources, but  has an organizational pattern which combines both summary and synthesis, often within specific conceptual categories . A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem. The analytical features of a literature review might:

  • Give a new interpretation of old material or combine new with old interpretations,
  • Trace the intellectual progression of the field, including major debates,
  • Depending on the situation, evaluate the sources and advise the reader on the most pertinent or relevant research, or
  • Usually in the conclusion of a literature review, identify where gaps exist in how a problem has been researched to date.

The purpose of a literature review is to:

  • Place each work in the context of its contribution to understanding the research problem being studied.
  • Describe the relationship of each work to the others under consideration.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.
  • Resolve conflicts amongst seemingly contradictory previous studies.
  • Identify areas of prior scholarship to prevent duplication of effort.
  • Point the way in fulfilling a need for additional research.
  • Locate your own research within the context of existing literature [very important].
  • << Previous: Definition
  • Next: Conducting the Literature Review >>
  • Last Updated: May 10, 2024 11:34 AM
  • URL: https://libguides.mcmaster.ca/litreview
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 5. The Literature Review
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A literature review surveys prior research published in books, scholarly articles, and any other sources relevant to a particular issue, area of research, or theory, and by so doing, provides a description, summary, and critical evaluation of these works in relation to the research problem being investigated. Literature reviews are designed to provide an overview of sources you have used in researching a particular topic and to demonstrate to your readers how your research fits within existing scholarship about the topic.

Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . Fourth edition. Thousand Oaks, CA: SAGE, 2014.

Importance of a Good Literature Review

A literature review may consist of simply a summary of key sources, but in the social sciences, a literature review usually has an organizational pattern and combines both summary and synthesis, often within specific conceptual categories . A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem. The analytical features of a literature review might:

  • Give a new interpretation of old material or combine new with old interpretations,
  • Trace the intellectual progression of the field, including major debates,
  • Depending on the situation, evaluate the sources and advise the reader on the most pertinent or relevant research, or
  • Usually in the conclusion of a literature review, identify where gaps exist in how a problem has been researched to date.

Given this, the purpose of a literature review is to:

  • Place each work in the context of its contribution to understanding the research problem being studied.
  • Describe the relationship of each work to the others under consideration.
  • Identify new ways to interpret prior research.
  • Reveal any gaps that exist in the literature.
  • Resolve conflicts amongst seemingly contradictory previous studies.
  • Identify areas of prior scholarship to prevent duplication of effort.
  • Point the way in fulfilling a need for additional research.
  • Locate your own research within the context of existing literature [very important].

Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper. 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Jesson, Jill. Doing Your Literature Review: Traditional and Systematic Techniques . Los Angeles, CA: SAGE, 2011; Knopf, Jeffrey W. "Doing a Literature Review." PS: Political Science and Politics 39 (January 2006): 127-132; Ridley, Diana. The Literature Review: A Step-by-Step Guide for Students . 2nd ed. Los Angeles, CA: SAGE, 2012.

Types of Literature Reviews

It is important to think of knowledge in a given field as consisting of three layers. First, there are the primary studies that researchers conduct and publish. Second are the reviews of those studies that summarize and offer new interpretations built from and often extending beyond the primary studies. Third, there are the perceptions, conclusions, opinion, and interpretations that are shared informally among scholars that become part of the body of epistemological traditions within the field.

In composing a literature review, it is important to note that it is often this third layer of knowledge that is cited as "true" even though it often has only a loose relationship to the primary studies and secondary literature reviews. Given this, while literature reviews are designed to provide an overview and synthesis of pertinent sources you have explored, there are a number of approaches you could adopt depending upon the type of analysis underpinning your study.

Argumentative Review This form examines literature selectively in order to support or refute an argument, deeply embedded assumption, or philosophical problem already established in the literature. The purpose is to develop a body of literature that establishes a contrarian viewpoint. Given the value-laden nature of some social science research [e.g., educational reform; immigration control], argumentative approaches to analyzing the literature can be a legitimate and important form of discourse. However, note that they can also introduce problems of bias when they are used to make summary claims of the sort found in systematic reviews [see below].

Integrative Review Considered a form of research that reviews, critiques, and synthesizes representative literature on a topic in an integrated way such that new frameworks and perspectives on the topic are generated. The body of literature includes all studies that address related or identical hypotheses or research problems. A well-done integrative review meets the same standards as primary research in regard to clarity, rigor, and replication. This is the most common form of review in the social sciences.

Historical Review Few things rest in isolation from historical precedent. Historical literature reviews focus on examining research throughout a period of time, often starting with the first time an issue, concept, theory, phenomena emerged in the literature, then tracing its evolution within the scholarship of a discipline. The purpose is to place research in a historical context to show familiarity with state-of-the-art developments and to identify the likely directions for future research.

Methodological Review A review does not always focus on what someone said [findings], but how they came about saying what they say [method of analysis]. Reviewing methods of analysis provides a framework of understanding at different levels [i.e. those of theory, substantive fields, research approaches, and data collection and analysis techniques], how researchers draw upon a wide variety of knowledge ranging from the conceptual level to practical documents for use in fieldwork in the areas of ontological and epistemological consideration, quantitative and qualitative integration, sampling, interviewing, data collection, and data analysis. This approach helps highlight ethical issues which you should be aware of and consider as you go through your own study.

Systematic Review This form consists of an overview of existing evidence pertinent to a clearly formulated research question, which uses pre-specified and standardized methods to identify and critically appraise relevant research, and to collect, report, and analyze data from the studies that are included in the review. The goal is to deliberately document, critically evaluate, and summarize scientifically all of the research about a clearly defined research problem . Typically it focuses on a very specific empirical question, often posed in a cause-and-effect form, such as "To what extent does A contribute to B?" This type of literature review is primarily applied to examining prior research studies in clinical medicine and allied health fields, but it is increasingly being used in the social sciences.

Theoretical Review The purpose of this form is to examine the corpus of theory that has accumulated in regard to an issue, concept, theory, phenomena. The theoretical literature review helps to establish what theories already exist, the relationships between them, to what degree the existing theories have been investigated, and to develop new hypotheses to be tested. Often this form is used to help establish a lack of appropriate theories or reveal that current theories are inadequate for explaining new or emerging research problems. The unit of analysis can focus on a theoretical concept or a whole theory or framework.

NOTE : Most often the literature review will incorporate some combination of types. For example, a review that examines literature supporting or refuting an argument, assumption, or philosophical problem related to the research problem will also need to include writing supported by sources that establish the history of these arguments in the literature.

Baumeister, Roy F. and Mark R. Leary. "Writing Narrative Literature Reviews."  Review of General Psychology 1 (September 1997): 311-320; Mark R. Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Kennedy, Mary M. "Defining a Literature." Educational Researcher 36 (April 2007): 139-147; Petticrew, Mark and Helen Roberts. Systematic Reviews in the Social Sciences: A Practical Guide . Malden, MA: Blackwell Publishers, 2006; Torracro, Richard. "Writing Integrative Literature Reviews: Guidelines and Examples." Human Resource Development Review 4 (September 2005): 356-367; Rocco, Tonette S. and Maria S. Plakhotnik. "Literature Reviews, Conceptual Frameworks, and Theoretical Frameworks: Terms, Functions, and Distinctions." Human Ressource Development Review 8 (March 2008): 120-130; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016.

Structure and Writing Style

I.  Thinking About Your Literature Review

The structure of a literature review should include the following in support of understanding the research problem :

  • An overview of the subject, issue, or theory under consideration, along with the objectives of the literature review,
  • Division of works under review into themes or categories [e.g. works that support a particular position, those against, and those offering alternative approaches entirely],
  • An explanation of how each work is similar to and how it varies from the others,
  • Conclusions as to which pieces are best considered in their argument, are most convincing of their opinions, and make the greatest contribution to the understanding and development of their area of research.

The critical evaluation of each work should consider :

  • Provenance -- what are the author's credentials? Are the author's arguments supported by evidence [e.g. primary historical material, case studies, narratives, statistics, recent scientific findings]?
  • Methodology -- were the techniques used to identify, gather, and analyze the data appropriate to addressing the research problem? Was the sample size appropriate? Were the results effectively interpreted and reported?
  • Objectivity -- is the author's perspective even-handed or prejudicial? Is contrary data considered or is certain pertinent information ignored to prove the author's point?
  • Persuasiveness -- which of the author's theses are most convincing or least convincing?
  • Validity -- are the author's arguments and conclusions convincing? Does the work ultimately contribute in any significant way to an understanding of the subject?

II.  Development of the Literature Review

Four Basic Stages of Writing 1.  Problem formulation -- which topic or field is being examined and what are its component issues? 2.  Literature search -- finding materials relevant to the subject being explored. 3.  Data evaluation -- determining which literature makes a significant contribution to the understanding of the topic. 4.  Analysis and interpretation -- discussing the findings and conclusions of pertinent literature.

Consider the following issues before writing the literature review: Clarify If your assignment is not specific about what form your literature review should take, seek clarification from your professor by asking these questions: 1.  Roughly how many sources would be appropriate to include? 2.  What types of sources should I review (books, journal articles, websites; scholarly versus popular sources)? 3.  Should I summarize, synthesize, or critique sources by discussing a common theme or issue? 4.  Should I evaluate the sources in any way beyond evaluating how they relate to understanding the research problem? 5.  Should I provide subheadings and other background information, such as definitions and/or a history? Find Models Use the exercise of reviewing the literature to examine how authors in your discipline or area of interest have composed their literature review sections. Read them to get a sense of the types of themes you might want to look for in your own research or to identify ways to organize your final review. The bibliography or reference section of sources you've already read, such as required readings in the course syllabus, are also excellent entry points into your own research. Narrow the Topic The narrower your topic, the easier it will be to limit the number of sources you need to read in order to obtain a good survey of relevant resources. Your professor will probably not expect you to read everything that's available about the topic, but you'll make the act of reviewing easier if you first limit scope of the research problem. A good strategy is to begin by searching the USC Libraries Catalog for recent books about the topic and review the table of contents for chapters that focuses on specific issues. You can also review the indexes of books to find references to specific issues that can serve as the focus of your research. For example, a book surveying the history of the Israeli-Palestinian conflict may include a chapter on the role Egypt has played in mediating the conflict, or look in the index for the pages where Egypt is mentioned in the text. Consider Whether Your Sources are Current Some disciplines require that you use information that is as current as possible. This is particularly true in disciplines in medicine and the sciences where research conducted becomes obsolete very quickly as new discoveries are made. However, when writing a review in the social sciences, a survey of the history of the literature may be required. In other words, a complete understanding the research problem requires you to deliberately examine how knowledge and perspectives have changed over time. Sort through other current bibliographies or literature reviews in the field to get a sense of what your discipline expects. You can also use this method to explore what is considered by scholars to be a "hot topic" and what is not.

III.  Ways to Organize Your Literature Review

Chronology of Events If your review follows the chronological method, you could write about the materials according to when they were published. This approach should only be followed if a clear path of research building on previous research can be identified and that these trends follow a clear chronological order of development. For example, a literature review that focuses on continuing research about the emergence of German economic power after the fall of the Soviet Union. By Publication Order your sources by publication chronology, then, only if the order demonstrates a more important trend. For instance, you could order a review of literature on environmental studies of brown fields if the progression revealed, for example, a change in the soil collection practices of the researchers who wrote and/or conducted the studies. Thematic [“conceptual categories”] A thematic literature review is the most common approach to summarizing prior research in the social and behavioral sciences. Thematic reviews are organized around a topic or issue, rather than the progression of time, although the progression of time may still be incorporated into a thematic review. For example, a review of the Internet’s impact on American presidential politics could focus on the development of online political satire. While the study focuses on one topic, the Internet’s impact on American presidential politics, it would still be organized chronologically reflecting technological developments in media. The difference in this example between a "chronological" and a "thematic" approach is what is emphasized the most: themes related to the role of the Internet in presidential politics. Note that more authentic thematic reviews tend to break away from chronological order. A review organized in this manner would shift between time periods within each section according to the point being made. Methodological A methodological approach focuses on the methods utilized by the researcher. For the Internet in American presidential politics project, one methodological approach would be to look at cultural differences between the portrayal of American presidents on American, British, and French websites. Or the review might focus on the fundraising impact of the Internet on a particular political party. A methodological scope will influence either the types of documents in the review or the way in which these documents are discussed.

Other Sections of Your Literature Review Once you've decided on the organizational method for your literature review, the sections you need to include in the paper should be easy to figure out because they arise from your organizational strategy. In other words, a chronological review would have subsections for each vital time period; a thematic review would have subtopics based upon factors that relate to the theme or issue. However, sometimes you may need to add additional sections that are necessary for your study, but do not fit in the organizational strategy of the body. What other sections you include in the body is up to you. However, only include what is necessary for the reader to locate your study within the larger scholarship about the research problem.

Here are examples of other sections, usually in the form of a single paragraph, you may need to include depending on the type of review you write:

  • Current Situation : Information necessary to understand the current topic or focus of the literature review.
  • Sources Used : Describes the methods and resources [e.g., databases] you used to identify the literature you reviewed.
  • History : The chronological progression of the field, the research literature, or an idea that is necessary to understand the literature review, if the body of the literature review is not already a chronology.
  • Selection Methods : Criteria you used to select (and perhaps exclude) sources in your literature review. For instance, you might explain that your review includes only peer-reviewed [i.e., scholarly] sources.
  • Standards : Description of the way in which you present your information.
  • Questions for Further Research : What questions about the field has the review sparked? How will you further your research as a result of the review?

IV.  Writing Your Literature Review

Once you've settled on how to organize your literature review, you're ready to write each section. When writing your review, keep in mind these issues.

Use Evidence A literature review section is, in this sense, just like any other academic research paper. Your interpretation of the available sources must be backed up with evidence [citations] that demonstrates that what you are saying is valid. Be Selective Select only the most important points in each source to highlight in the review. The type of information you choose to mention should relate directly to the research problem, whether it is thematic, methodological, or chronological. Related items that provide additional information, but that are not key to understanding the research problem, can be included in a list of further readings . Use Quotes Sparingly Some short quotes are appropriate if you want to emphasize a point, or if what an author stated cannot be easily paraphrased. Sometimes you may need to quote certain terminology that was coined by the author, is not common knowledge, or taken directly from the study. Do not use extensive quotes as a substitute for using your own words in reviewing the literature. Summarize and Synthesize Remember to summarize and synthesize your sources within each thematic paragraph as well as throughout the review. Recapitulate important features of a research study, but then synthesize it by rephrasing the study's significance and relating it to your own work and the work of others. Keep Your Own Voice While the literature review presents others' ideas, your voice [the writer's] should remain front and center. For example, weave references to other sources into what you are writing but maintain your own voice by starting and ending the paragraph with your own ideas and wording. Use Caution When Paraphrasing When paraphrasing a source that is not your own, be sure to represent the author's information or opinions accurately and in your own words. Even when paraphrasing an author’s work, you still must provide a citation to that work.

V.  Common Mistakes to Avoid

These are the most common mistakes made in reviewing social science research literature.

  • Sources in your literature review do not clearly relate to the research problem;
  • You do not take sufficient time to define and identify the most relevant sources to use in the literature review related to the research problem;
  • Relies exclusively on secondary analytical sources rather than including relevant primary research studies or data;
  • Uncritically accepts another researcher's findings and interpretations as valid, rather than examining critically all aspects of the research design and analysis;
  • Does not describe the search procedures that were used in identifying the literature to review;
  • Reports isolated statistical results rather than synthesizing them in chi-squared or meta-analytic methods; and,
  • Only includes research that validates assumptions and does not consider contrary findings and alternative interpretations found in the literature.

Cook, Kathleen E. and Elise Murowchick. “Do Literature Review Skills Transfer from One Course to Another?” Psychology Learning and Teaching 13 (March 2014): 3-11; Fink, Arlene. Conducting Research Literature Reviews: From the Internet to Paper . 2nd ed. Thousand Oaks, CA: Sage, 2005; Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1998; Jesson, Jill. Doing Your Literature Review: Traditional and Systematic Techniques . London: SAGE, 2011; Literature Review Handout. Online Writing Center. Liberty University; Literature Reviews. The Writing Center. University of North Carolina; Onwuegbuzie, Anthony J. and Rebecca Frels. Seven Steps to a Comprehensive Literature Review: A Multimodal and Cultural Approach . Los Angeles, CA: SAGE, 2016; Ridley, Diana. The Literature Review: A Step-by-Step Guide for Students . 2nd ed. Los Angeles, CA: SAGE, 2012; Randolph, Justus J. “A Guide to Writing the Dissertation Literature Review." Practical Assessment, Research, and Evaluation. vol. 14, June 2009; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016; Taylor, Dena. The Literature Review: A Few Tips On Conducting It. University College Writing Centre. University of Toronto; Writing a Literature Review. Academic Skills Centre. University of Canberra.

Writing Tip

Break Out of Your Disciplinary Box!

Thinking interdisciplinarily about a research problem can be a rewarding exercise in applying new ideas, theories, or concepts to an old problem. For example, what might cultural anthropologists say about the continuing conflict in the Middle East? In what ways might geographers view the need for better distribution of social service agencies in large cities than how social workers might study the issue? You don’t want to substitute a thorough review of core research literature in your discipline for studies conducted in other fields of study. However, particularly in the social sciences, thinking about research problems from multiple vectors is a key strategy for finding new solutions to a problem or gaining a new perspective. Consult with a librarian about identifying research databases in other disciplines; almost every field of study has at least one comprehensive database devoted to indexing its research literature.

Frodeman, Robert. The Oxford Handbook of Interdisciplinarity . New York: Oxford University Press, 2010.

Another Writing Tip

Don't Just Review for Content!

While conducting a review of the literature, maximize the time you devote to writing this part of your paper by thinking broadly about what you should be looking for and evaluating. Review not just what scholars are saying, but how are they saying it. Some questions to ask:

  • How are they organizing their ideas?
  • What methods have they used to study the problem?
  • What theories have been used to explain, predict, or understand their research problem?
  • What sources have they cited to support their conclusions?
  • How have they used non-textual elements [e.g., charts, graphs, figures, etc.] to illustrate key points?

When you begin to write your literature review section, you'll be glad you dug deeper into how the research was designed and constructed because it establishes a means for developing more substantial analysis and interpretation of the research problem.

Hart, Chris. Doing a Literature Review: Releasing the Social Science Research Imagination . Thousand Oaks, CA: Sage Publications, 1 998.

Yet Another Writing Tip

When Do I Know I Can Stop Looking and Move On?

Here are several strategies you can utilize to assess whether you've thoroughly reviewed the literature:

  • Look for repeating patterns in the research findings . If the same thing is being said, just by different people, then this likely demonstrates that the research problem has hit a conceptual dead end. At this point consider: Does your study extend current research?  Does it forge a new path? Or, does is merely add more of the same thing being said?
  • Look at sources the authors cite to in their work . If you begin to see the same researchers cited again and again, then this is often an indication that no new ideas have been generated to address the research problem.
  • Search Google Scholar to identify who has subsequently cited leading scholars already identified in your literature review [see next sub-tab]. This is called citation tracking and there are a number of sources that can help you identify who has cited whom, particularly scholars from outside of your discipline. Here again, if the same authors are being cited again and again, this may indicate no new literature has been written on the topic.

Onwuegbuzie, Anthony J. and Rebecca Frels. Seven Steps to a Comprehensive Literature Review: A Multimodal and Cultural Approach . Los Angeles, CA: Sage, 2016; Sutton, Anthea. Systematic Approaches to a Successful Literature Review . Los Angeles, CA: Sage Publications, 2016.

  • << Previous: Theoretical Framework
  • Next: Citation Tracking >>
  • Last Updated: May 18, 2024 11:38 AM
  • URL: https://libguides.usc.edu/writingguide

Libraries | Research Guides

Literature reviews, what is a literature review, learning more about how to do a literature review.

  • Planning the Review
  • The Research Question
  • Choosing Where to Search
  • Organizing the Review
  • Writing the Review

A literature review is a review and synthesis of existing research on a topic or research question. A literature review is meant to analyze the scholarly literature, make connections across writings and identify strengths, weaknesses, trends, and missing conversations. A literature review should address different aspects of a topic as it relates to your research question. A literature review goes beyond a description or summary of the literature you have read. 

  • Sage Research Methods Core Collection This link opens in a new window SAGE Research Methods supports research at all levels by providing material to guide users through every step of the research process. SAGE Research Methods is the ultimate methods library with more than 1000 books, reference works, journal articles, and instructional videos by world-leading academics from across the social sciences, including the largest collection of qualitative methods books available online from any scholarly publisher. – Publisher

Cover Art

  • Next: Planning the Review >>
  • Last Updated: May 2, 2024 10:39 AM
  • URL: https://libguides.northwestern.edu/literaturereviews
  • Link to facebook
  • Link to linkedin
  • Link to twitter
  • Link to youtube
  • Writing Tips

What is the Purpose of a Literature Review?

What is the Purpose of a Literature Review?

4-minute read

  • 23rd October 2023

If you’re writing a research paper or dissertation , then you’ll most likely need to include a comprehensive literature review . In this post, we’ll review the purpose of literature reviews, why they are so significant, and the specific elements to include in one. Literature reviews can:

1. Provide a foundation for current research.

2. Define key concepts and theories.

3. Demonstrate critical evaluation.

4. Show how research and methodologies have evolved.

5. Identify gaps in existing research.

6. Support your argument.

Keep reading to enter the exciting world of literature reviews!

What is a Literature Review?

A literature review is a critical summary and evaluation of the existing research (e.g., academic journal articles and books) on a specific topic. It is typically included as a separate section or chapter of a research paper or dissertation, serving as a contextual framework for a study. Literature reviews can vary in length depending on the subject and nature of the study, with most being about equal length to other sections or chapters included in the paper. Essentially, the literature review highlights previous studies in the context of your research and summarizes your insights in a structured, organized format. Next, let’s look at the overall purpose of a literature review.

Find this useful?

Subscribe to our newsletter and get writing tips from our editors straight to your inbox.

Literature reviews are considered an integral part of research across most academic subjects and fields. The primary purpose of a literature review in your study is to:

Provide a Foundation for Current Research

Since the literature review provides a comprehensive evaluation of the existing research, it serves as a solid foundation for your current study. It’s a way to contextualize your work and show how your research fits into the broader landscape of your specific area of study.  

Define Key Concepts and Theories

The literature review highlights the central theories and concepts that have arisen from previous research on your chosen topic. It gives your readers a more thorough understanding of the background of your study and why your research is particularly significant .

Demonstrate Critical Evaluation 

A comprehensive literature review shows your ability to critically analyze and evaluate a broad range of source material. And since you’re considering and acknowledging the contribution of key scholars alongside your own, it establishes your own credibility and knowledge.

Show How Research and Methodologies Have Evolved

Another purpose of literature reviews is to provide a historical perspective and demonstrate how research and methodologies have changed over time, especially as data collection methods and technology have advanced. And studying past methodologies allows you, as the researcher, to understand what did and did not work and apply that knowledge to your own research.  

Identify Gaps in Existing Research

Besides discussing current research and methodologies, the literature review should also address areas that are lacking in the existing literature. This helps further demonstrate the relevance of your own research by explaining why your study is necessary to fill the gaps.

Support Your Argument

A good literature review should provide evidence that supports your research questions and hypothesis. For example, your study may show that your research supports existing theories or builds on them in some way. Referencing previous related studies shows your work is grounded in established research and will ultimately be a contribution to the field.  

Literature Review Editing Services 

Ensure your literature review is polished and ready for submission by having it professionally proofread and edited by our expert team. Our literature review editing services will help your research stand out and make an impact. Not convinced yet? Send in your free sample today and see for yourself! 

Share this article:

Post A New Comment

Got content that needs a quick turnaround? Let us polish your work. Explore our editorial business services.

9-minute read

How to Use Infographics to Boost Your Presentation

Is your content getting noticed? Capturing and maintaining an audience’s attention is a challenge when...

8-minute read

Why Interactive PDFs Are Better for Engagement

Are you looking to enhance engagement and captivate your audience through your professional documents? Interactive...

7-minute read

Seven Key Strategies for Voice Search Optimization

Voice search optimization is rapidly shaping the digital landscape, requiring content professionals to adapt their...

Five Creative Ways to Showcase Your Digital Portfolio

Are you a creative freelancer looking to make a lasting impression on potential clients or...

How to Ace Slack Messaging for Contractors and Freelancers

Effective professional communication is an important skill for contractors and freelancers navigating remote work environments....

3-minute read

How to Insert a Text Box in a Google Doc

Google Docs is a powerful collaborative tool, and mastering its features can significantly enhance your...

Logo Harvard University

Make sure your writing is the best it can be with our expert English proofreading and editing.

Why is it important to do a literature review in research?

Why is it important to do a literature review in research?

Scientific Communication in Healthcare industry

The importance of scientific communication in the healthcare industry

importance and role of biostatistics in clinical research, biostatistics in public health, biostatistics in pharmacy, biostatistics in nursing,biostatistics in clinical trials,clinical biostatistics

The Importance and Role of Biostatistics in Clinical Research

 “A substantive, thorough, sophisticated literature review is a precondition for doing substantive, thorough, sophisticated research”. Boote and Baile 2005

Authors of manuscripts treat writing a literature review as a routine work or a mere formality. But a seasoned one knows the purpose and importance of a well-written literature review.  Since it is one of the basic needs for researches at any level, they have to be done vigilantly. Only then the reader will know that the basics of research have not been neglected.

Importance of Literature Review In Research

The aim of any literature review is to summarize and synthesize the arguments and ideas of existing knowledge in a particular field without adding any new contributions.   Being built on existing knowledge they help the researcher to even turn the wheels of the topic of research.  It is possible only with profound knowledge of what is wrong in the existing findings in detail to overpower them.  For other researches, the literature review gives the direction to be headed for its success. 

The common perception of literature review and reality:

As per the common belief, literature reviews are only a summary of the sources related to the research. And many authors of scientific manuscripts believe that they are only surveys of what are the researches are done on the chosen topic.  But on the contrary, it uses published information from pertinent and relevant sources like

  • Scholarly books
  • Scientific papers
  • Latest studies in the field
  • Established school of thoughts
  • Relevant articles from renowned scientific journals

and many more for a field of study or theory or a particular problem to do the following:

  • Summarize into a brief account of all information
  • Synthesize the information by restructuring and reorganizing
  • Critical evaluation of a concept or a school of thought or ideas
  • Familiarize the authors to the extent of knowledge in the particular field
  • Encapsulate
  • Compare & contrast

By doing the above on the relevant information, it provides the reader of the scientific manuscript with the following for a better understanding of it:

  • It establishes the authors’  in-depth understanding and knowledge of their field subject
  • It gives the background of the research
  • Portrays the scientific manuscript plan of examining the research result
  • Illuminates on how the knowledge has changed within the field
  • Highlights what has already been done in a particular field
  • Information of the generally accepted facts, emerging and current state of the topic of research
  • Identifies the research gap that is still unexplored or under-researched fields
  • Demonstrates how the research fits within a larger field of study
  • Provides an overview of the sources explored during the research of a particular topic

Importance of literature review in research:

The importance of literature review in scientific manuscripts can be condensed into an analytical feature to enable the multifold reach of its significance.  It adds value to the legitimacy of the research in many ways:

  • Provides the interpretation of existing literature in light of updated developments in the field to help in establishing the consistency in knowledge and relevancy of existing materials
  • It helps in calculating the impact of the latest information in the field by mapping their progress of knowledge.
  • It brings out the dialects of contradictions between various thoughts within the field to establish facts
  • The research gaps scrutinized initially are further explored to establish the latest facts of theories to add value to the field
  • Indicates the current research place in the schema of a particular field
  • Provides information for relevancy and coherency to check the research
  • Apart from elucidating the continuance of knowledge, it also points out areas that require further investigation and thus aid as a starting point of any future research
  • Justifies the research and sets up the research question
  • Sets up a theoretical framework comprising the concepts and theories of the research upon which its success can be judged
  • Helps to adopt a more appropriate methodology for the research by examining the strengths and weaknesses of existing research in the same field
  • Increases the significance of the results by comparing it with the existing literature
  • Provides a point of reference by writing the findings in the scientific manuscript
  • Helps to get the due credit from the audience for having done the fact-finding and fact-checking mission in the scientific manuscripts
  • The more the reference of relevant sources of it could increase more of its trustworthiness with the readers
  • Helps to prevent plagiarism by tailoring and uniquely tweaking the scientific manuscript not to repeat other’s original idea
  • By preventing plagiarism , it saves the scientific manuscript from rejection and thus also saves a lot of time and money
  • Helps to evaluate, condense and synthesize gist in the author’s own words to sharpen the research focus
  • Helps to compare and contrast to  show the originality and uniqueness of the research than that of the existing other researches
  • Rationalizes the need for conducting the particular research in a specified field
  • Helps to collect data accurately for allowing any new methodology of research than the existing ones
  • Enables the readers of the manuscript to answer the following questions of its readers for its better chances for publication
  • What do the researchers know?
  • What do they not know?
  • Is the scientific manuscript reliable and trustworthy?
  • What are the knowledge gaps of the researcher?

22. It helps the readers to identify the following for further reading of the scientific manuscript:

  • What has been already established, discredited and accepted in the particular field of research
  • Areas of controversy and conflicts among different schools of thought
  • Unsolved problems and issues in the connected field of research
  • The emerging trends and approaches
  • How the research extends, builds upon and leaves behind from the previous research

A profound literature review with many relevant sources of reference will enhance the chances of the scientific manuscript publication in renowned and reputed scientific journals .

References:

http://www.math.montana.edu/jobo/phdprep/phd6.pdf

journal Publishing services  |  Scientific Editing Services  |  Medical Writing Services  |  scientific research writing service  |  Scientific communication services

Related Topics:

Meta Analysis

Scientific Research Paper Writing

Medical Research Paper Writing

Scientific Communication in healthcare

pubrica academy

pubrica academy

Related posts.

review of related literature importance

Statistical analyses of case-control studies

review of related literature importance

PUB - Selecting material (e.g. excipient, active pharmaceutical ingredient) for drug development

Selecting material (e.g. excipient, active pharmaceutical ingredient, packaging material) for drug development

review of related literature importance

PUB - Health Economics of Data Modeling

Health economics in clinical trials

Comments are closed.

Elsevier QRcode Wechat

  • Research Process

Literature Review in Research Writing

  • 4 minute read

Table of Contents

Research on research? If you find this idea rather peculiar, know that nowadays, with the huge amount of information produced daily all around the world, it is becoming more and more difficult to keep up to date with all of it. In addition to the sheer amount of research, there is also its origin. We are witnessing the economic and intellectual emergence of countries like China, Brazil, Turkey, and United Arab Emirates, for example, that are producing scholarly literature in their own languages. So, apart from the effort of gathering information, there must also be translators prepared to unify all of it in a single language to be the object of the literature survey. At Elsevier, our team of translators is ready to support researchers by delivering high-quality scientific translations , in several languages, to serve their research – no matter the topic.

What is a literature review?

A literature review is a study – or, more accurately, a survey – involving scholarly material, with the aim to discuss published information about a specific topic or research question. Therefore, to write a literature review, it is compulsory that you are a real expert in the object of study. The results and findings will be published and made available to the public, namely scientists working in the same area of research.

How to Write a Literature Review

First of all, don’t forget that writing a literature review is a great responsibility. It’s a document that is expected to be highly reliable, especially concerning its sources and findings. You have to feel intellectually comfortable in the area of study and highly proficient in the target language; misconceptions and errors do not have a place in a document as important as a literature review. In fact, you might want to consider text editing services, like those offered at Elsevier, to make sure your literature is following the highest standards of text quality. You want to make sure your literature review is memorable by its novelty and quality rather than language errors.

Writing a literature review requires expertise but also organization. We cannot teach you about your topic of research, but we can provide a few steps to guide you through conducting a literature review:

  • Choose your topic or research question: It should not be too comprehensive or too limited. You have to complete your task within a feasible time frame.
  • Set the scope: Define boundaries concerning the number of sources, time frame to be covered, geographical area, etc.
  • Decide which databases you will use for your searches: In order to search the best viable sources for your literature review, use highly regarded, comprehensive databases to get a big picture of the literature related to your topic.
  • Search, search, and search: Now you’ll start to investigate the research on your topic. It’s critical that you keep track of all the sources. Start by looking at research abstracts in detail to see if their respective studies relate to or are useful for your own work. Next, search for bibliographies and references that can help you broaden your list of resources. Choose the most relevant literature and remember to keep notes of their bibliographic references to be used later on.
  • Review all the literature, appraising carefully it’s content: After reading the study’s abstract, pay attention to the rest of the content of the articles you deem the “most relevant.” Identify methodologies, the most important questions they address, if they are well-designed and executed, and if they are cited enough, etc.

If it’s the first time you’ve published a literature review, note that it is important to follow a special structure. Just like in a thesis, for example, it is expected that you have an introduction – giving the general idea of the central topic and organizational pattern – a body – which contains the actual discussion of the sources – and finally the conclusion or recommendations – where you bring forward whatever you have drawn from the reviewed literature. The conclusion may even suggest there are no agreeable findings and that the discussion should be continued.

Why are literature reviews important?

Literature reviews constantly feed new research, that constantly feeds literature reviews…and we could go on and on. The fact is, one acts like a force over the other and this is what makes science, as a global discipline, constantly develop and evolve. As a scientist, writing a literature review can be very beneficial to your career, and set you apart from the expert elite in your field of interest. But it also can be an overwhelming task, so don’t hesitate in contacting Elsevier for text editing services, either for profound edition or just a last revision. We guarantee the very highest standards. You can also save time by letting us suggest and make the necessary amendments to your manuscript, so that it fits the structural pattern of a literature review. Who knows how many worldwide researchers you will impact with your next perfectly written literature review.

Know more: How to Find a Gap in Research .

Language Editing Services by Elsevier Author Services:

What is a research gap

What is a Research Gap

Know the diferent types of Scientific articles

  • Manuscript Preparation

Types of Scientific Articles

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

Writing in Environmental Engineering

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Writing a good review article

Writing a good review article

Input your search keywords and press Enter.

Harvey Cushing/John Hay Whitney Medical Library

  • Collections
  • Research Help

YSN Doctoral Programs: Steps in Conducting a Literature Review

  • Biomedical Databases
  • Global (Public Health) Databases
  • Soc. Sci., History, and Law Databases
  • Grey Literature
  • Trials Registers
  • Data and Statistics
  • Public Policy
  • Google Tips
  • Recommended Books
  • Steps in Conducting a Literature Review

What is a literature review?

A literature review is an integrated analysis -- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.  That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

A literature review may be a stand alone work or the introduction to a larger research paper, depending on the assignment.  Rely heavily on the guidelines your instructor has given you.

Why is it important?

A literature review is important because it:

  • Explains the background of research on a topic.
  • Demonstrates why a topic is significant to a subject area.
  • Discovers relationships between research studies/ideas.
  • Identifies major themes, concepts, and researchers on a topic.
  • Identifies critical gaps and points of disagreement.
  • Discusses further research questions that logically come out of the previous studies.

APA7 Style resources

Cover Art

APA Style Blog - for those harder to find answers

1. Choose a topic. Define your research question.

Your literature review should be guided by your central research question.  The literature represents background and research developments related to a specific research question, interpreted and analyzed by you in a synthesized way.

  • Make sure your research question is not too broad or too narrow.  Is it manageable?
  • Begin writing down terms that are related to your question. These will be useful for searches later.
  • If you have the opportunity, discuss your topic with your professor and your class mates.

2. Decide on the scope of your review

How many studies do you need to look at? How comprehensive should it be? How many years should it cover? 

  • This may depend on your assignment.  How many sources does the assignment require?

3. Select the databases you will use to conduct your searches.

Make a list of the databases you will search. 

Where to find databases:

  • use the tabs on this guide
  • Find other databases in the Nursing Information Resources web page
  • More on the Medical Library web page
  • ... and more on the Yale University Library web page

4. Conduct your searches to find the evidence. Keep track of your searches.

  • Use the key words in your question, as well as synonyms for those words, as terms in your search. Use the database tutorials for help.
  • Save the searches in the databases. This saves time when you want to redo, or modify, the searches. It is also helpful to use as a guide is the searches are not finding any useful results.
  • Review the abstracts of research studies carefully. This will save you time.
  • Use the bibliographies and references of research studies you find to locate others.
  • Check with your professor, or a subject expert in the field, if you are missing any key works in the field.
  • Ask your librarian for help at any time.
  • Use a citation manager, such as EndNote as the repository for your citations. See the EndNote tutorials for help.

Review the literature

Some questions to help you analyze the research:

  • What was the research question of the study you are reviewing? What were the authors trying to discover?
  • Was the research funded by a source that could influence the findings?
  • What were the research methodologies? Analyze its literature review, the samples and variables used, the results, and the conclusions.
  • Does the research seem to be complete? Could it have been conducted more soundly? What further questions does it raise?
  • If there are conflicting studies, why do you think that is?
  • How are the authors viewed in the field? Has this study been cited? If so, how has it been analyzed?

Tips: 

  • Review the abstracts carefully.  
  • Keep careful notes so that you may track your thought processes during the research process.
  • Create a matrix of the studies for easy analysis, and synthesis, across all of the studies.
  • << Previous: Recommended Books
  • Last Updated: Jan 4, 2024 10:52 AM
  • URL: https://guides.library.yale.edu/YSNDoctoral

Usc Upstate Library Home

Literature Review: Purpose of a Literature Review

  • Literature Review
  • Purpose of a Literature Review
  • Work in Progress
  • Compiling & Writing
  • Books, Articles, & Web Pages
  • Types of Literature Reviews
  • Departmental Differences
  • Citation Styles & Plagiarism
  • Know the Difference! Systematic Review vs. Literature Review

The purpose of a literature review is to:

  • Provide a foundation of knowledge on a topic
  • Identify areas of prior scholarship to prevent duplication and give credit to other researchers
  • Identify inconstancies: gaps in research, conflicts in previous studies, open questions left from other research
  • Identify the need for additional research (justifying your research)
  • Identify the relationship of works in the context of their contribution to the topic and other works
  • Place your own research within the context of existing literature, making a case for why further study is needed.

Videos & Tutorials

VIDEO: What is the role of a literature review in research? What's it mean to "review" the literature? Get the big picture of what to expect as part of the process. This video is published under a Creative Commons 3.0 BY-NC-SA US license. License, credits, and contact information can be found here: https://www.lib.ncsu.edu/tutorials/litreview/

Elements in a Literature Review

  • Elements in a Literature Review txt of infographic
  • << Previous: Literature Review
  • Next: Searching >>
  • Last Updated: Oct 19, 2023 12:07 PM
  • URL: https://uscupstate.libguides.com/Literature_Review

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.

Cover of Handbook of eHealth Evaluation: An Evidence-based Approach

Handbook of eHealth Evaluation: An Evidence-based Approach [Internet].

Chapter 9 methods for literature reviews.

Guy Paré and Spyros Kitsiou .

9.1. Introduction

Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour ( vom Brocke et al., 2009 ). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and synthesizing the contents of many empirical and conceptual papers. Among other methods, literature reviews are essential for: (a) identifying what has been written on a subject or topic; (b) determining the extent to which a specific research area reveals any interpretable trends or patterns; (c) aggregating empirical findings related to a narrow research question to support evidence-based practice; (d) generating new frameworks and theories; and (e) identifying topics or questions requiring more investigation ( Paré, Trudel, Jaana, & Kitsiou, 2015 ).

Literature reviews can take two major forms. The most prevalent one is the “literature review” or “background” section within a journal paper or a chapter in a graduate thesis. This section synthesizes the extant literature and usually identifies the gaps in knowledge that the empirical study addresses ( Sylvester, Tate, & Johnstone, 2013 ). It may also provide a theoretical foundation for the proposed study, substantiate the presence of the research problem, justify the research as one that contributes something new to the cumulated knowledge, or validate the methods and approaches for the proposed study ( Hart, 1998 ; Levy & Ellis, 2006 ).

The second form of literature review, which is the focus of this chapter, constitutes an original and valuable work of research in and of itself ( Paré et al., 2015 ). Rather than providing a base for a researcher’s own work, it creates a solid starting point for all members of the community interested in a particular area or topic ( Mulrow, 1987 ). The so-called “review article” is a journal-length paper which has an overarching purpose to synthesize the literature in a field, without collecting or analyzing any primary data ( Green, Johnson, & Adams, 2006 ).

When appropriately conducted, review articles represent powerful information sources for practitioners looking for state-of-the art evidence to guide their decision-making and work practices ( Paré et al., 2015 ). Further, high-quality reviews become frequently cited pieces of work which researchers seek out as a first clear outline of the literature when undertaking empirical studies ( Cooper, 1988 ; Rowe, 2014 ). Scholars who track and gauge the impact of articles have found that review papers are cited and downloaded more often than any other type of published article ( Cronin, Ryan, & Coughlan, 2008 ; Montori, Wilczynski, Morgan, Haynes, & Hedges, 2003 ; Patsopoulos, Analatos, & Ioannidis, 2005 ). The reason for their popularity may be the fact that reading the review enables one to have an overview, if not a detailed knowledge of the area in question, as well as references to the most useful primary sources ( Cronin et al., 2008 ). Although they are not easy to conduct, the commitment to complete a review article provides a tremendous service to one’s academic community ( Paré et al., 2015 ; Petticrew & Roberts, 2006 ). Most, if not all, peer-reviewed journals in the fields of medical informatics publish review articles of some type.

The main objectives of this chapter are fourfold: (a) to provide an overview of the major steps and activities involved in conducting a stand-alone literature review; (b) to describe and contrast the different types of review articles that can contribute to the eHealth knowledge base; (c) to illustrate each review type with one or two examples from the eHealth literature; and (d) to provide a series of recommendations for prospective authors of review articles in this domain.

9.2. Overview of the Literature Review Process and Steps

As explained in Templier and Paré (2015) , there are six generic steps involved in conducting a review article:

  • formulating the research question(s) and objective(s),
  • searching the extant literature,
  • screening for inclusion,
  • assessing the quality of primary studies,
  • extracting data, and
  • analyzing data.

Although these steps are presented here in sequential order, one must keep in mind that the review process can be iterative and that many activities can be initiated during the planning stage and later refined during subsequent phases ( Finfgeld-Connett & Johnson, 2013 ; Kitchenham & Charters, 2007 ).

Formulating the research question(s) and objective(s): As a first step, members of the review team must appropriately justify the need for the review itself ( Petticrew & Roberts, 2006 ), identify the review’s main objective(s) ( Okoli & Schabram, 2010 ), and define the concepts or variables at the heart of their synthesis ( Cooper & Hedges, 2009 ; Webster & Watson, 2002 ). Importantly, they also need to articulate the research question(s) they propose to investigate ( Kitchenham & Charters, 2007 ). In this regard, we concur with Jesson, Matheson, and Lacey (2011) that clearly articulated research questions are key ingredients that guide the entire review methodology; they underscore the type of information that is needed, inform the search for and selection of relevant literature, and guide or orient the subsequent analysis. Searching the extant literature: The next step consists of searching the literature and making decisions about the suitability of material to be considered in the review ( Cooper, 1988 ). There exist three main coverage strategies. First, exhaustive coverage means an effort is made to be as comprehensive as possible in order to ensure that all relevant studies, published and unpublished, are included in the review and, thus, conclusions are based on this all-inclusive knowledge base. The second type of coverage consists of presenting materials that are representative of most other works in a given field or area. Often authors who adopt this strategy will search for relevant articles in a small number of top-tier journals in a field ( Paré et al., 2015 ). In the third strategy, the review team concentrates on prior works that have been central or pivotal to a particular topic. This may include empirical studies or conceptual papers that initiated a line of investigation, changed how problems or questions were framed, introduced new methods or concepts, or engendered important debate ( Cooper, 1988 ). Screening for inclusion: The following step consists of evaluating the applicability of the material identified in the preceding step ( Levy & Ellis, 2006 ; vom Brocke et al., 2009 ). Once a group of potential studies has been identified, members of the review team must screen them to determine their relevance ( Petticrew & Roberts, 2006 ). A set of predetermined rules provides a basis for including or excluding certain studies. This exercise requires a significant investment on the part of researchers, who must ensure enhanced objectivity and avoid biases or mistakes. As discussed later in this chapter, for certain types of reviews there must be at least two independent reviewers involved in the screening process and a procedure to resolve disagreements must also be in place ( Liberati et al., 2009 ; Shea et al., 2009 ). Assessing the quality of primary studies: In addition to screening material for inclusion, members of the review team may need to assess the scientific quality of the selected studies, that is, appraise the rigour of the research design and methods. Such formal assessment, which is usually conducted independently by at least two coders, helps members of the review team refine which studies to include in the final sample, determine whether or not the differences in quality may affect their conclusions, or guide how they analyze the data and interpret the findings ( Petticrew & Roberts, 2006 ). Ascribing quality scores to each primary study or considering through domain-based evaluations which study components have or have not been designed and executed appropriately makes it possible to reflect on the extent to which the selected study addresses possible biases and maximizes validity ( Shea et al., 2009 ). Extracting data: The following step involves gathering or extracting applicable information from each primary study included in the sample and deciding what is relevant to the problem of interest ( Cooper & Hedges, 2009 ). Indeed, the type of data that should be recorded mainly depends on the initial research questions ( Okoli & Schabram, 2010 ). However, important information may also be gathered about how, when, where and by whom the primary study was conducted, the research design and methods, or qualitative/quantitative results ( Cooper & Hedges, 2009 ). Analyzing and synthesizing data : As a final step, members of the review team must collate, summarize, aggregate, organize, and compare the evidence extracted from the included studies. The extracted data must be presented in a meaningful way that suggests a new contribution to the extant literature ( Jesson et al., 2011 ). Webster and Watson (2002) warn researchers that literature reviews should be much more than lists of papers and should provide a coherent lens to make sense of extant knowledge on a given topic. There exist several methods and techniques for synthesizing quantitative (e.g., frequency analysis, meta-analysis) and qualitative (e.g., grounded theory, narrative analysis, meta-ethnography) evidence ( Dixon-Woods, Agarwal, Jones, Young, & Sutton, 2005 ; Thomas & Harden, 2008 ).

9.3. Types of Review Articles and Brief Illustrations

EHealth researchers have at their disposal a number of approaches and methods for making sense out of existing literature, all with the purpose of casting current research findings into historical contexts or explaining contradictions that might exist among a set of primary research studies conducted on a particular topic. Our classification scheme is largely inspired from Paré and colleagues’ (2015) typology. Below we present and illustrate those review types that we feel are central to the growth and development of the eHealth domain.

9.3.1. Narrative Reviews

The narrative review is the “traditional” way of reviewing the extant literature and is skewed towards a qualitative interpretation of prior knowledge ( Sylvester et al., 2013 ). Put simply, a narrative review attempts to summarize or synthesize what has been written on a particular topic but does not seek generalization or cumulative knowledge from what is reviewed ( Davies, 2000 ; Green et al., 2006 ). Instead, the review team often undertakes the task of accumulating and synthesizing the literature to demonstrate the value of a particular point of view ( Baumeister & Leary, 1997 ). As such, reviewers may selectively ignore or limit the attention paid to certain studies in order to make a point. In this rather unsystematic approach, the selection of information from primary articles is subjective, lacks explicit criteria for inclusion and can lead to biased interpretations or inferences ( Green et al., 2006 ). There are several narrative reviews in the particular eHealth domain, as in all fields, which follow such an unstructured approach ( Silva et al., 2015 ; Paul et al., 2015 ).

Despite these criticisms, this type of review can be very useful in gathering together a volume of literature in a specific subject area and synthesizing it. As mentioned above, its primary purpose is to provide the reader with a comprehensive background for understanding current knowledge and highlighting the significance of new research ( Cronin et al., 2008 ). Faculty like to use narrative reviews in the classroom because they are often more up to date than textbooks, provide a single source for students to reference, and expose students to peer-reviewed literature ( Green et al., 2006 ). For researchers, narrative reviews can inspire research ideas by identifying gaps or inconsistencies in a body of knowledge, thus helping researchers to determine research questions or formulate hypotheses. Importantly, narrative reviews can also be used as educational articles to bring practitioners up to date with certain topics of issues ( Green et al., 2006 ).

Recently, there have been several efforts to introduce more rigour in narrative reviews that will elucidate common pitfalls and bring changes into their publication standards. Information systems researchers, among others, have contributed to advancing knowledge on how to structure a “traditional” review. For instance, Levy and Ellis (2006) proposed a generic framework for conducting such reviews. Their model follows the systematic data processing approach comprised of three steps, namely: (a) literature search and screening; (b) data extraction and analysis; and (c) writing the literature review. They provide detailed and very helpful instructions on how to conduct each step of the review process. As another methodological contribution, vom Brocke et al. (2009) offered a series of guidelines for conducting literature reviews, with a particular focus on how to search and extract the relevant body of knowledge. Last, Bandara, Miskon, and Fielt (2011) proposed a structured, predefined and tool-supported method to identify primary studies within a feasible scope, extract relevant content from identified articles, synthesize and analyze the findings, and effectively write and present the results of the literature review. We highly recommend that prospective authors of narrative reviews consult these useful sources before embarking on their work.

Darlow and Wen (2015) provide a good example of a highly structured narrative review in the eHealth field. These authors synthesized published articles that describe the development process of mobile health ( m-health ) interventions for patients’ cancer care self-management. As in most narrative reviews, the scope of the research questions being investigated is broad: (a) how development of these systems are carried out; (b) which methods are used to investigate these systems; and (c) what conclusions can be drawn as a result of the development of these systems. To provide clear answers to these questions, a literature search was conducted on six electronic databases and Google Scholar . The search was performed using several terms and free text words, combining them in an appropriate manner. Four inclusion and three exclusion criteria were utilized during the screening process. Both authors independently reviewed each of the identified articles to determine eligibility and extract study information. A flow diagram shows the number of studies identified, screened, and included or excluded at each stage of study selection. In terms of contributions, this review provides a series of practical recommendations for m-health intervention development.

9.3.2. Descriptive or Mapping Reviews

The primary goal of a descriptive review is to determine the extent to which a body of knowledge in a particular research topic reveals any interpretable pattern or trend with respect to pre-existing propositions, theories, methodologies or findings ( King & He, 2005 ; Paré et al., 2015 ). In contrast with narrative reviews, descriptive reviews follow a systematic and transparent procedure, including searching, screening and classifying studies ( Petersen, Vakkalanka, & Kuzniarz, 2015 ). Indeed, structured search methods are used to form a representative sample of a larger group of published works ( Paré et al., 2015 ). Further, authors of descriptive reviews extract from each study certain characteristics of interest, such as publication year, research methods, data collection techniques, and direction or strength of research outcomes (e.g., positive, negative, or non-significant) in the form of frequency analysis to produce quantitative results ( Sylvester et al., 2013 ). In essence, each study included in a descriptive review is treated as the unit of analysis and the published literature as a whole provides a database from which the authors attempt to identify any interpretable trends or draw overall conclusions about the merits of existing conceptualizations, propositions, methods or findings ( Paré et al., 2015 ). In doing so, a descriptive review may claim that its findings represent the state of the art in a particular domain ( King & He, 2005 ).

In the fields of health sciences and medical informatics, reviews that focus on examining the range, nature and evolution of a topic area are described by Anderson, Allen, Peckham, and Goodwin (2008) as mapping reviews . Like descriptive reviews, the research questions are generic and usually relate to publication patterns and trends. There is no preconceived plan to systematically review all of the literature although this can be done. Instead, researchers often present studies that are representative of most works published in a particular area and they consider a specific time frame to be mapped.

An example of this approach in the eHealth domain is offered by DeShazo, Lavallie, and Wolf (2009). The purpose of this descriptive or mapping review was to characterize publication trends in the medical informatics literature over a 20-year period (1987 to 2006). To achieve this ambitious objective, the authors performed a bibliometric analysis of medical informatics citations indexed in medline using publication trends, journal frequencies, impact factors, Medical Subject Headings (MeSH) term frequencies, and characteristics of citations. Findings revealed that there were over 77,000 medical informatics articles published during the covered period in numerous journals and that the average annual growth rate was 12%. The MeSH term analysis also suggested a strong interdisciplinary trend. Finally, average impact scores increased over time with two notable growth periods. Overall, patterns in research outputs that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline (DeShazo et al., 2009).

9.3.3. Scoping Reviews

Scoping reviews attempt to provide an initial indication of the potential size and nature of the extant literature on an emergent topic (Arksey & O’Malley, 2005; Daudt, van Mossel, & Scott, 2013 ; Levac, Colquhoun, & O’Brien, 2010). A scoping review may be conducted to examine the extent, range and nature of research activities in a particular area, determine the value of undertaking a full systematic review (discussed next), or identify research gaps in the extant literature ( Paré et al., 2015 ). In line with their main objective, scoping reviews usually conclude with the presentation of a detailed research agenda for future works along with potential implications for both practice and research.

Unlike narrative and descriptive reviews, the whole point of scoping the field is to be as comprehensive as possible, including grey literature (Arksey & O’Malley, 2005). Inclusion and exclusion criteria must be established to help researchers eliminate studies that are not aligned with the research questions. It is also recommended that at least two independent coders review abstracts yielded from the search strategy and then the full articles for study selection ( Daudt et al., 2013 ). The synthesized evidence from content or thematic analysis is relatively easy to present in tabular form (Arksey & O’Malley, 2005; Thomas & Harden, 2008 ).

One of the most highly cited scoping reviews in the eHealth domain was published by Archer, Fevrier-Thomas, Lokker, McKibbon, and Straus (2011) . These authors reviewed the existing literature on personal health record ( phr ) systems including design, functionality, implementation, applications, outcomes, and benefits. Seven databases were searched from 1985 to March 2010. Several search terms relating to phr s were used during this process. Two authors independently screened titles and abstracts to determine inclusion status. A second screen of full-text articles, again by two independent members of the research team, ensured that the studies described phr s. All in all, 130 articles met the criteria and their data were extracted manually into a database. The authors concluded that although there is a large amount of survey, observational, cohort/panel, and anecdotal evidence of phr benefits and satisfaction for patients, more research is needed to evaluate the results of phr implementations. Their in-depth analysis of the literature signalled that there is little solid evidence from randomized controlled trials or other studies through the use of phr s. Hence, they suggested that more research is needed that addresses the current lack of understanding of optimal functionality and usability of these systems, and how they can play a beneficial role in supporting patient self-management ( Archer et al., 2011 ).

9.3.4. Forms of Aggregative Reviews

Healthcare providers, practitioners, and policy-makers are nowadays overwhelmed with large volumes of information, including research-based evidence from numerous clinical trials and evaluation studies, assessing the effectiveness of health information technologies and interventions ( Ammenwerth & de Keizer, 2004 ; Deshazo et al., 2009 ). It is unrealistic to expect that all these disparate actors will have the time, skills, and necessary resources to identify the available evidence in the area of their expertise and consider it when making decisions. Systematic reviews that involve the rigorous application of scientific strategies aimed at limiting subjectivity and bias (i.e., systematic and random errors) can respond to this challenge.

Systematic reviews attempt to aggregate, appraise, and synthesize in a single source all empirical evidence that meet a set of previously specified eligibility criteria in order to answer a clearly formulated and often narrow research question on a particular topic of interest to support evidence-based practice ( Liberati et al., 2009 ). They adhere closely to explicit scientific principles ( Liberati et al., 2009 ) and rigorous methodological guidelines (Higgins & Green, 2008) aimed at reducing random and systematic errors that can lead to deviations from the truth in results or inferences. The use of explicit methods allows systematic reviews to aggregate a large body of research evidence, assess whether effects or relationships are in the same direction and of the same general magnitude, explain possible inconsistencies between study results, and determine the strength of the overall evidence for every outcome of interest based on the quality of included studies and the general consistency among them ( Cook, Mulrow, & Haynes, 1997 ). The main procedures of a systematic review involve:

  • Formulating a review question and developing a search strategy based on explicit inclusion criteria for the identification of eligible studies (usually described in the context of a detailed review protocol).
  • Searching for eligible studies using multiple databases and information sources, including grey literature sources, without any language restrictions.
  • Selecting studies, extracting data, and assessing risk of bias in a duplicate manner using two independent reviewers to avoid random or systematic errors in the process.
  • Analyzing data using quantitative or qualitative methods.
  • Presenting results in summary of findings tables.
  • Interpreting results and drawing conclusions.

Many systematic reviews, but not all, use statistical methods to combine the results of independent studies into a single quantitative estimate or summary effect size. Known as meta-analyses , these reviews use specific data extraction and statistical techniques (e.g., network, frequentist, or Bayesian meta-analyses) to calculate from each study by outcome of interest an effect size along with a confidence interval that reflects the degree of uncertainty behind the point estimate of effect ( Borenstein, Hedges, Higgins, & Rothstein, 2009 ; Deeks, Higgins, & Altman, 2008 ). Subsequently, they use fixed or random-effects analysis models to combine the results of the included studies, assess statistical heterogeneity, and calculate a weighted average of the effect estimates from the different studies, taking into account their sample sizes. The summary effect size is a value that reflects the average magnitude of the intervention effect for a particular outcome of interest or, more generally, the strength of a relationship between two variables across all studies included in the systematic review. By statistically combining data from multiple studies, meta-analyses can create more precise and reliable estimates of intervention effects than those derived from individual studies alone, when these are examined independently as discrete sources of information.

The review by Gurol-Urganci, de Jongh, Vodopivec-Jamsek, Atun, and Car (2013) on the effects of mobile phone messaging reminders for attendance at healthcare appointments is an illustrative example of a high-quality systematic review with meta-analysis. Missed appointments are a major cause of inefficiency in healthcare delivery with substantial monetary costs to health systems. These authors sought to assess whether mobile phone-based appointment reminders delivered through Short Message Service ( sms ) or Multimedia Messaging Service ( mms ) are effective in improving rates of patient attendance and reducing overall costs. To this end, they conducted a comprehensive search on multiple databases using highly sensitive search strategies without language or publication-type restrictions to identify all rct s that are eligible for inclusion. In order to minimize the risk of omitting eligible studies not captured by the original search, they supplemented all electronic searches with manual screening of trial registers and references contained in the included studies. Study selection, data extraction, and risk of bias assessments were performed inde­­pen­dently by two coders using standardized methods to ensure consistency and to eliminate potential errors. Findings from eight rct s involving 6,615 participants were pooled into meta-analyses to calculate the magnitude of effects that mobile text message reminders have on the rate of attendance at healthcare appointments compared to no reminders and phone call reminders.

Meta-analyses are regarded as powerful tools for deriving meaningful conclusions. However, there are situations in which it is neither reasonable nor appropriate to pool studies together using meta-analytic methods simply because there is extensive clinical heterogeneity between the included studies or variation in measurement tools, comparisons, or outcomes of interest. In these cases, systematic reviews can use qualitative synthesis methods such as vote counting, content analysis, classification schemes and tabulations, as an alternative approach to narratively synthesize the results of the independent studies included in the review. This form of review is known as qualitative systematic review.

A rigorous example of one such review in the eHealth domain is presented by Mickan, Atherton, Roberts, Heneghan, and Tilson (2014) on the use of handheld computers by healthcare professionals and their impact on access to information and clinical decision-making. In line with the methodological guide­lines for systematic reviews, these authors: (a) developed and registered with prospero ( www.crd.york.ac.uk/ prospero / ) an a priori review protocol; (b) conducted comprehensive searches for eligible studies using multiple databases and other supplementary strategies (e.g., forward searches); and (c) subsequently carried out study selection, data extraction, and risk of bias assessments in a duplicate manner to eliminate potential errors in the review process. Heterogeneity between the included studies in terms of reported outcomes and measures precluded the use of meta-analytic methods. To this end, the authors resorted to using narrative analysis and synthesis to describe the effectiveness of handheld computers on accessing information for clinical knowledge, adherence to safety and clinical quality guidelines, and diagnostic decision-making.

In recent years, the number of systematic reviews in the field of health informatics has increased considerably. Systematic reviews with discordant findings can cause great confusion and make it difficult for decision-makers to interpret the review-level evidence ( Moher, 2013 ). Therefore, there is a growing need for appraisal and synthesis of prior systematic reviews to ensure that decision-making is constantly informed by the best available accumulated evidence. Umbrella reviews , also known as overviews of systematic reviews, are tertiary types of evidence synthesis that aim to accomplish this; that is, they aim to compare and contrast findings from multiple systematic reviews and meta-analyses ( Becker & Oxman, 2008 ). Umbrella reviews generally adhere to the same principles and rigorous methodological guidelines used in systematic reviews. However, the unit of analysis in umbrella reviews is the systematic review rather than the primary study ( Becker & Oxman, 2008 ). Unlike systematic reviews that have a narrow focus of inquiry, umbrella reviews focus on broader research topics for which there are several potential interventions ( Smith, Devane, Begley, & Clarke, 2011 ). A recent umbrella review on the effects of home telemonitoring interventions for patients with heart failure critically appraised, compared, and synthesized evidence from 15 systematic reviews to investigate which types of home telemonitoring technologies and forms of interventions are more effective in reducing mortality and hospital admissions ( Kitsiou, Paré, & Jaana, 2015 ).

9.3.5. Realist Reviews

Realist reviews are theory-driven interpretative reviews developed to inform, enhance, or supplement conventional systematic reviews by making sense of heterogeneous evidence about complex interventions applied in diverse contexts in a way that informs policy decision-making ( Greenhalgh, Wong, Westhorp, & Pawson, 2011 ). They originated from criticisms of positivist systematic reviews which centre on their “simplistic” underlying assumptions ( Oates, 2011 ). As explained above, systematic reviews seek to identify causation. Such logic is appropriate for fields like medicine and education where findings of randomized controlled trials can be aggregated to see whether a new treatment or intervention does improve outcomes. However, many argue that it is not possible to establish such direct causal links between interventions and outcomes in fields such as social policy, management, and information systems where for any intervention there is unlikely to be a regular or consistent outcome ( Oates, 2011 ; Pawson, 2006 ; Rousseau, Manning, & Denyer, 2008 ).

To circumvent these limitations, Pawson, Greenhalgh, Harvey, and Walshe (2005) have proposed a new approach for synthesizing knowledge that seeks to unpack the mechanism of how “complex interventions” work in particular contexts. The basic research question — what works? — which is usually associated with systematic reviews changes to: what is it about this intervention that works, for whom, in what circumstances, in what respects and why? Realist reviews have no particular preference for either quantitative or qualitative evidence. As a theory-building approach, a realist review usually starts by articulating likely underlying mechanisms and then scrutinizes available evidence to find out whether and where these mechanisms are applicable ( Shepperd et al., 2009 ). Primary studies found in the extant literature are viewed as case studies which can test and modify the initial theories ( Rousseau et al., 2008 ).

The main objective pursued in the realist review conducted by Otte-Trojel, de Bont, Rundall, and van de Klundert (2014) was to examine how patient portals contribute to health service delivery and patient outcomes. The specific goals were to investigate how outcomes are produced and, most importantly, how variations in outcomes can be explained. The research team started with an exploratory review of background documents and research studies to identify ways in which patient portals may contribute to health service delivery and patient outcomes. The authors identified six main ways which represent “educated guesses” to be tested against the data in the evaluation studies. These studies were identified through a formal and systematic search in four databases between 2003 and 2013. Two members of the research team selected the articles using a pre-established list of inclusion and exclusion criteria and following a two-step procedure. The authors then extracted data from the selected articles and created several tables, one for each outcome category. They organized information to bring forward those mechanisms where patient portals contribute to outcomes and the variation in outcomes across different contexts.

9.3.6. Critical Reviews

Lastly, critical reviews aim to provide a critical evaluation and interpretive analysis of existing literature on a particular topic of interest to reveal strengths, weaknesses, contradictions, controversies, inconsistencies, and/or other important issues with respect to theories, hypotheses, research methods or results ( Baumeister & Leary, 1997 ; Kirkevold, 1997 ). Unlike other review types, critical reviews attempt to take a reflective account of the research that has been done in a particular area of interest, and assess its credibility by using appraisal instruments or critical interpretive methods. In this way, critical reviews attempt to constructively inform other scholars about the weaknesses of prior research and strengthen knowledge development by giving focus and direction to studies for further improvement ( Kirkevold, 1997 ).

Kitsiou, Paré, and Jaana (2013) provide an example of a critical review that assessed the methodological quality of prior systematic reviews of home telemonitoring studies for chronic patients. The authors conducted a comprehensive search on multiple databases to identify eligible reviews and subsequently used a validated instrument to conduct an in-depth quality appraisal. Results indicate that the majority of systematic reviews in this particular area suffer from important methodological flaws and biases that impair their internal validity and limit their usefulness for clinical and decision-making purposes. To this end, they provide a number of recommendations to strengthen knowledge development towards improving the design and execution of future reviews on home telemonitoring.

9.4. Summary

Table 9.1 outlines the main types of literature reviews that were described in the previous sub-sections and summarizes the main characteristics that distinguish one review type from another. It also includes key references to methodological guidelines and useful sources that can be used by eHealth scholars and researchers for planning and developing reviews.

Table 9.1. Typology of Literature Reviews (adapted from Paré et al., 2015).

Typology of Literature Reviews (adapted from Paré et al., 2015).

As shown in Table 9.1 , each review type addresses different kinds of research questions or objectives, which subsequently define and dictate the methods and approaches that need to be used to achieve the overarching goal(s) of the review. For example, in the case of narrative reviews, there is greater flexibility in searching and synthesizing articles ( Green et al., 2006 ). Researchers are often relatively free to use a diversity of approaches to search, identify, and select relevant scientific articles, describe their operational characteristics, present how the individual studies fit together, and formulate conclusions. On the other hand, systematic reviews are characterized by their high level of systematicity, rigour, and use of explicit methods, based on an “a priori” review plan that aims to minimize bias in the analysis and synthesis process (Higgins & Green, 2008). Some reviews are exploratory in nature (e.g., scoping/mapping reviews), whereas others may be conducted to discover patterns (e.g., descriptive reviews) or involve a synthesis approach that may include the critical analysis of prior research ( Paré et al., 2015 ). Hence, in order to select the most appropriate type of review, it is critical to know before embarking on a review project, why the research synthesis is conducted and what type of methods are best aligned with the pursued goals.

9.5. Concluding Remarks

In light of the increased use of evidence-based practice and research generating stronger evidence ( Grady et al., 2011 ; Lyden et al., 2013 ), review articles have become essential tools for summarizing, synthesizing, integrating or critically appraising prior knowledge in the eHealth field. As mentioned earlier, when rigorously conducted review articles represent powerful information sources for eHealth scholars and practitioners looking for state-of-the-art evidence. The typology of literature reviews we used herein will allow eHealth researchers, graduate students and practitioners to gain a better understanding of the similarities and differences between review types.

We must stress that this classification scheme does not privilege any specific type of review as being of higher quality than another ( Paré et al., 2015 ). As explained above, each type of review has its own strengths and limitations. Having said that, we realize that the methodological rigour of any review — be it qualitative, quantitative or mixed — is a critical aspect that should be considered seriously by prospective authors. In the present context, the notion of rigour refers to the reliability and validity of the review process described in section 9.2. For one thing, reliability is related to the reproducibility of the review process and steps, which is facilitated by a comprehensive documentation of the literature search process, extraction, coding and analysis performed in the review. Whether the search is comprehensive or not, whether it involves a methodical approach for data extraction and synthesis or not, it is important that the review documents in an explicit and transparent manner the steps and approach that were used in the process of its development. Next, validity characterizes the degree to which the review process was conducted appropriately. It goes beyond documentation and reflects decisions related to the selection of the sources, the search terms used, the period of time covered, the articles selected in the search, and the application of backward and forward searches ( vom Brocke et al., 2009 ). In short, the rigour of any review article is reflected by the explicitness of its methods (i.e., transparency) and the soundness of the approach used. We refer those interested in the concepts of rigour and quality to the work of Templier and Paré (2015) which offers a detailed set of methodological guidelines for conducting and evaluating various types of review articles.

To conclude, our main objective in this chapter was to demystify the various types of literature reviews that are central to the continuous development of the eHealth field. It is our hope that our descriptive account will serve as a valuable source for those conducting, evaluating or using reviews in this important and growing domain.

  • Ammenwerth E., de Keizer N. An inventory of evaluation studies of information technology in health care. Trends in evaluation research, 1982-2002. International Journal of Medical Informatics. 2004; 44 (1):44–56. [ PubMed : 15778794 ]
  • Anderson S., Allen P., Peckham S., Goodwin N. Asking the right questions: scoping studies in the commissioning of research on the organisation and delivery of health services. Health Research Policy and Systems. 2008; 6 (7):1–12. [ PMC free article : PMC2500008 ] [ PubMed : 18613961 ] [ CrossRef ]
  • Archer N., Fevrier-Thomas U., Lokker C., McKibbon K. A., Straus S.E. Personal health records: a scoping review. Journal of American Medical Informatics Association. 2011; 18 (4):515–522. [ PMC free article : PMC3128401 ] [ PubMed : 21672914 ]
  • Arksey H., O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8 (1):19–32.
  • A systematic, tool-supported method for conducting literature reviews in information systems. Paper presented at the Proceedings of the 19th European Conference on Information Systems ( ecis 2011); June 9 to 11; Helsinki, Finland. 2011.
  • Baumeister R. F., Leary M.R. Writing narrative literature reviews. Review of General Psychology. 1997; 1 (3):311–320.
  • Becker L. A., Oxman A.D. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Overviews of reviews; pp. 607–631.
  • Borenstein M., Hedges L., Higgins J., Rothstein H. Introduction to meta-analysis. Hoboken, nj : John Wiley & Sons Inc; 2009.
  • Cook D. J., Mulrow C. D., Haynes B. Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine. 1997; 126 (5):376–380. [ PubMed : 9054282 ]
  • Cooper H., Hedges L.V. In: The handbook of research synthesis and meta-analysis. 2nd ed. Cooper H., Hedges L. V., Valentine J. C., editors. New York: Russell Sage Foundation; 2009. Research synthesis as a scientific process; pp. 3–17.
  • Cooper H. M. Organizing knowledge syntheses: A taxonomy of literature reviews. Knowledge in Society. 1988; 1 (1):104–126.
  • Cronin P., Ryan F., Coughlan M. Undertaking a literature review: a step-by-step approach. British Journal of Nursing. 2008; 17 (1):38–43. [ PubMed : 18399395 ]
  • Darlow S., Wen K.Y. Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal. 2015 (online before print). [ PubMed : 25916831 ] [ CrossRef ]
  • Daudt H. M., van Mossel C., Scott S.J. Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. bmc Medical Research Methodology. 2013; 13 :48. [ PMC free article : PMC3614526 ] [ PubMed : 23522333 ] [ CrossRef ]
  • Davies P. The relevance of systematic reviews to educational policy and practice. Oxford Review of Education. 2000; 26 (3-4):365–378.
  • Deeks J. J., Higgins J. P. T., Altman D.G. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Analysing data and undertaking meta-analyses; pp. 243–296.
  • Deshazo J. P., Lavallie D. L., Wolf F.M. Publication trends in the medical informatics literature: 20 years of “Medical Informatics” in mesh . bmc Medical Informatics and Decision Making. 2009; 9 :7. [ PMC free article : PMC2652453 ] [ PubMed : 19159472 ] [ CrossRef ]
  • Dixon-Woods M., Agarwal S., Jones D., Young B., Sutton A. Synthesising qualitative and quantitative evidence: a review of possible methods. Journal of Health Services Research and Policy. 2005; 10 (1):45–53. [ PubMed : 15667704 ]
  • Finfgeld-Connett D., Johnson E.D. Literature search strategies for conducting knowledge-building and theory-generating qualitative systematic reviews. Journal of Advanced Nursing. 2013; 69 (1):194–204. [ PMC free article : PMC3424349 ] [ PubMed : 22591030 ]
  • Grady B., Myers K. M., Nelson E. L., Belz N., Bennett L., Carnahan L. … Guidelines Working Group. Evidence-based practice for telemental health. Telemedicine Journal and E Health. 2011; 17 (2):131–148. [ PubMed : 21385026 ]
  • Green B. N., Johnson C. D., Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine. 2006; 5 (3):101–117. [ PMC free article : PMC2647067 ] [ PubMed : 19674681 ]
  • Greenhalgh T., Wong G., Westhorp G., Pawson R. Protocol–realist and meta-narrative evidence synthesis: evolving standards ( rameses ). bmc Medical Research Methodology. 2011; 11 :115. [ PMC free article : PMC3173389 ] [ PubMed : 21843376 ]
  • Gurol-Urganci I., de Jongh T., Vodopivec-Jamsek V., Atun R., Car J. Mobile phone messaging reminders for attendance at healthcare appointments. Cochrane Database System Review. 2013; 12 cd 007458. [ PMC free article : PMC6485985 ] [ PubMed : 24310741 ] [ CrossRef ]
  • Hart C. Doing a literature review: Releasing the social science research imagination. London: SAGE Publications; 1998.
  • Higgins J. P. T., Green S., editors. Cochrane handbook for systematic reviews of interventions: Cochrane book series. Hoboken, nj : Wiley-Blackwell; 2008.
  • Jesson J., Matheson L., Lacey F.M. Doing your literature review: traditional and systematic techniques. Los Angeles & London: SAGE Publications; 2011.
  • King W. R., He J. Understanding the role and methods of meta-analysis in IS research. Communications of the Association for Information Systems. 2005; 16 :1.
  • Kirkevold M. Integrative nursing research — an important strategy to further the development of nursing science and nursing practice. Journal of Advanced Nursing. 1997; 25 (5):977–984. [ PubMed : 9147203 ]
  • Kitchenham B., Charters S. ebse Technical Report Version 2.3. Keele & Durham. uk : Keele University & University of Durham; 2007. Guidelines for performing systematic literature reviews in software engineering.
  • Kitsiou S., Paré G., Jaana M. Systematic reviews and meta-analyses of home telemonitoring interventions for patients with chronic diseases: a critical assessment of their methodological quality. Journal of Medical Internet Research. 2013; 15 (7):e150. [ PMC free article : PMC3785977 ] [ PubMed : 23880072 ]
  • Kitsiou S., Paré G., Jaana M. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. Journal of Medical Internet Research. 2015; 17 (3):e63. [ PMC free article : PMC4376138 ] [ PubMed : 25768664 ]
  • Levac D., Colquhoun H., O’Brien K. K. Scoping studies: advancing the methodology. Implementation Science. 2010; 5 (1):69. [ PMC free article : PMC2954944 ] [ PubMed : 20854677 ]
  • Levy Y., Ellis T.J. A systems approach to conduct an effective literature review in support of information systems research. Informing Science. 2006; 9 :181–211.
  • Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P. A. et al. Moher D. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine. 2009; 151 (4):W-65. [ PubMed : 19622512 ]
  • Lyden J. R., Zickmund S. L., Bhargava T. D., Bryce C. L., Conroy M. B., Fischer G. S. et al. McTigue K. M. Implementing health information technology in a patient-centered manner: Patient experiences with an online evidence-based lifestyle intervention. Journal for Healthcare Quality. 2013; 35 (5):47–57. [ PubMed : 24004039 ]
  • Mickan S., Atherton H., Roberts N. W., Heneghan C., Tilson J.K. Use of handheld computers in clinical practice: a systematic review. bmc Medical Informatics and Decision Making. 2014; 14 :56. [ PMC free article : PMC4099138 ] [ PubMed : 24998515 ]
  • Moher D. The problem of duplicate systematic reviews. British Medical Journal. 2013; 347 (5040) [ PubMed : 23945367 ] [ CrossRef ]
  • Montori V. M., Wilczynski N. L., Morgan D., Haynes R. B., Hedges T. Systematic reviews: a cross-sectional study of location and citation counts. bmc Medicine. 2003; 1 :2. [ PMC free article : PMC281591 ] [ PubMed : 14633274 ]
  • Mulrow C. D. The medical review article: state of the science. Annals of Internal Medicine. 1987; 106 (3):485–488. [ PubMed : 3813259 ] [ CrossRef ]
  • Evidence-based information systems: A decade later. Proceedings of the European Conference on Information Systems ; 2011. Retrieved from http://aisel ​.aisnet.org/cgi/viewcontent ​.cgi?article ​=1221&context ​=ecis2011 .
  • Okoli C., Schabram K. A guide to conducting a systematic literature review of information systems research. ssrn Electronic Journal. 2010
  • Otte-Trojel T., de Bont A., Rundall T. G., van de Klundert J. How outcomes are achieved through patient portals: a realist review. Journal of American Medical Informatics Association. 2014; 21 (4):751–757. [ PMC free article : PMC4078283 ] [ PubMed : 24503882 ]
  • Paré G., Trudel M.-C., Jaana M., Kitsiou S. Synthesizing information systems knowledge: A typology of literature reviews. Information & Management. 2015; 52 (2):183–199.
  • Patsopoulos N. A., Analatos A. A., Ioannidis J.P. A. Relative citation impact of various study designs in the health sciences. Journal of the American Medical Association. 2005; 293 (19):2362–2366. [ PubMed : 15900006 ]
  • Paul M. M., Greene C. M., Newton-Dame R., Thorpe L. E., Perlman S. E., McVeigh K. H., Gourevitch M.N. The state of population health surveillance using electronic health records: A narrative review. Population Health Management. 2015; 18 (3):209–216. [ PubMed : 25608033 ]
  • Pawson R. Evidence-based policy: a realist perspective. London: SAGE Publications; 2006.
  • Pawson R., Greenhalgh T., Harvey G., Walshe K. Realist review—a new method of systematic review designed for complex policy interventions. Journal of Health Services Research & Policy. 2005; 10 (Suppl 1):21–34. [ PubMed : 16053581 ]
  • Petersen K., Vakkalanka S., Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology. 2015; 64 :1–18.
  • Petticrew M., Roberts H. Systematic reviews in the social sciences: A practical guide. Malden, ma : Blackwell Publishing Co; 2006.
  • Rousseau D. M., Manning J., Denyer D. Evidence in management and organizational science: Assembling the field’s full weight of scientific knowledge through syntheses. The Academy of Management Annals. 2008; 2 (1):475–515.
  • Rowe F. What literature review is not: diversity, boundaries and recommendations. European Journal of Information Systems. 2014; 23 (3):241–255.
  • Shea B. J., Hamel C., Wells G. A., Bouter L. M., Kristjansson E., Grimshaw J. et al. Boers M. amstar is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of Clinical Epidemiology. 2009; 62 (10):1013–1020. [ PubMed : 19230606 ]
  • Shepperd S., Lewin S., Straus S., Clarke M., Eccles M. P., Fitzpatrick R. et al. Sheikh A. Can we systematically review studies that evaluate complex interventions? PLoS Medicine. 2009; 6 (8):e1000086. [ PMC free article : PMC2717209 ] [ PubMed : 19668360 ]
  • Silva B. M., Rodrigues J. J., de la Torre Díez I., López-Coronado M., Saleem K. Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics. 2015; 56 :265–272. [ PubMed : 26071682 ]
  • Smith V., Devane D., Begley C., Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. bmc Medical Research Methodology. 2011; 11 (1):15. [ PMC free article : PMC3039637 ] [ PubMed : 21291558 ]
  • Sylvester A., Tate M., Johnstone D. Beyond synthesis: re-presenting heterogeneous research literature. Behaviour & Information Technology. 2013; 32 (12):1199–1215.
  • Templier M., Paré G. A framework for guiding and evaluating literature reviews. Communications of the Association for Information Systems. 2015; 37 (6):112–137.
  • Thomas J., Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. bmc Medical Research Methodology. 2008; 8 (1):45. [ PMC free article : PMC2478656 ] [ PubMed : 18616818 ]
  • Reconstructing the giant: on the importance of rigour in documenting the literature search process. Paper presented at the Proceedings of the 17th European Conference on Information Systems ( ecis 2009); Verona, Italy. 2009.
  • Webster J., Watson R.T. Analyzing the past to prepare for the future: Writing a literature review. Management Information Systems Quarterly. 2002; 26 (2):11.
  • Whitlock E. P., Lin J. S., Chou R., Shekelle P., Robinson K.A. Using existing systematic reviews in complex systematic reviews. Annals of Internal Medicine. 2008; 148 (10):776–782. [ PubMed : 18490690 ]

This publication is licensed under a Creative Commons License, Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0): see https://creativecommons.org/licenses/by-nc/4.0/

  • Cite this Page Paré G, Kitsiou S. Chapter 9 Methods for Literature Reviews. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.
  • PDF version of this title (4.5M)
  • Disable Glossary Links

In this Page

  • Introduction
  • Overview of the Literature Review Process and Steps
  • Types of Review Articles and Brief Illustrations
  • Concluding Remarks

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Ev... Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Evidence-based Approach

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

  • Open access
  • Published: 13 May 2024

Neighborhood based computational approaches for the prediction of lncRNA-disease associations

  • Mariella Bonomo 1 &
  • Simona E. Rombo 1 , 2  

BMC Bioinformatics volume  25 , Article number:  187 ( 2024 ) Cite this article

106 Accesses

Metrics details

Long non-coding RNAs (lncRNAs) are a class of molecules involved in important biological processes. Extensive efforts have been provided to get deeper understanding of disease mechanisms at the lncRNA level, guiding towards the detection of biomarkers for disease diagnosis, treatment, prognosis and prevention. Unfortunately, due to costs and time complexity, the number of possible disease-related lncRNAs verified by traditional biological experiments is very limited. Computational approaches for the prediction of disease-lncRNA associations allow to identify the most promising candidates to be verified in laboratory, reducing costs and time consuming.

We propose novel approaches for the prediction of lncRNA-disease associations, all sharing the idea of exploring associations among lncRNAs, other intermediate molecules (e.g., miRNAs) and diseases, suitably represented by tripartite graphs. Indeed, while only a few lncRNA-disease associations are still known, plenty of interactions between lncRNAs and other molecules, as well as associations of the latters with diseases, are available. A first approach presented here, NGH, relies on neighborhood analysis performed on a tripartite graph, built upon lncRNAs, miRNAs and diseases. A second approach (CF) relies on collaborative filtering; a third approach (NGH-CF) is obtained boosting NGH by collaborative filtering. The proposed approaches have been validated on both synthetic and real data, and compared against other methods from the literature. It results that neighborhood analysis allows to outperform competitors, and when it is combined with collaborative filtering the prediction accuracy further improves, scoring a value of AUC equal to 0966.

Availability

Source code and sample datasets are available at: https://github.com/marybonomo/LDAsPredictionApproaches.git

Peer Review reports

Introduction

More than \(98\%\) of the human genome consists of non-coding regions, considered in the past as “junk” DNA. However, in the last decades evidence has been shown that non-coding genome elements often play an important role in regulating various critical biological processes [ 1 ]. An important class of non-coding molecules which have started to receive great attention in the last few years is represented by long non-coding RNAs (lncRNAs), that is, RNAs not translated into functional proteins, and longer than 200 nucleotides.

LncRNAs have been found to interplay with other molecules in order to perform important biological tasks, such as modulating chromatin function, regulating the assembly and function of membraneless nuclear bodies, interfering with signalling pathways [ 2 , 3 ]. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Therefore, the alteration and dysregulation of lncRNAs have been associated with the occurrence and progress of many complex diseases [ 4 ].

The discovery of novel lncRNA-disease associations (LDAs) may provide valuable input to the understanding of disease mechanisms at lncRNA level, as well as to the detection of disease biomarkers for disease diagnosis, treatment, prognosis and prevention. Unfortunately, verifying that a specific lncRNA may have a role in the occurrence/progress of a given disease is an expensive process, therefore the number of disease-related lncRNAs verified by traditional biological experiments is yet very limited. Computational approaches for the prediction of potential LDAs can effectively decrease the time and cost of biological experiments, allowing for the identification of the most promising lncRNA-disease pairs to be further verified in laboratory (see [ 5 ] for a comprehensive review on the topic). Such approaches often train predictive models on the basis of the known and experimentally validated lncRNA-disease pairs (e.g., [ 6 , 7 , 8 , 9 ]). In other cases, they rely on the analysis of lncRNAs related information stored in public databases, such as their interaction with other types of molecules (e.g., [ 10 , 11 , 12 , 13 , 14 , 15 ]). As an example, large amounts of lncRNA-miRNA interactions have been collected in public databases, and plenty of experimentally confirmed miRNA-disease associations are available as well. However, although non-coding RNA function and its association with human complex diseases have been widely studied in the literature (see [ 16 , 17 , 18 ]), how to provide biologists with more accurate and ready-to-use software tools for LDAs prediction is yet an open challenge, due to the specific characteristics of lncRNAs (e.g., they are much less characterized than other non-coding RNAs.)

We propose three novel computational approaches for the prediction of LDAs, relying on the use of known lncRNA-miRNA interactions (LMIs) and miRNA-disease associations (MDAs). In particular, we model the problem of LDAs prediction as a neighborhood analysis performed on tripartite graphs, where the three sets of vertices represent lncRNAs, miRNAs and diseases, respectively, and vertices are linked according to LMIs and MDAs. Based on the assumption that similar lncRNAs interact with similar diseases [ 12 ], the first approach proposed here (NGH) aims at identifying novel LDAs by analyzing the behaviour of lncRNAs which are neighbors , in terms of their intermediate relationships with miRNAs. The main idea here is that neighborhood analysis automatically guides towards the detection of similar behaviours, and without the need of using a-priory known LDAs for training. Therefore, differently than other approaches from the literature, those proposed here do not involve verified LDAs in the prediction step, thus avoiding possible biases due to the fact that the number and variety of verified LDAs is yet very limited. The second presented approach (CF) relies on collaborative filtering, applied on the basis of common miRNAs shared by different lncRNAs. We have also explored the combination of neighborhood analysis with collaborative filtering, showing that this notably improves the LDAs prediction accuracy. Indeed, the third approach we have designed (NGH-CF) boosts NGH with collaborative filtering, and it is the best performing one, although also NGH and CF have been able to reach high accuracy values across all the different considered validation tests. In particular, Fig.  1 summarizes the research flowchart explained above.

figure 1

Flowchart of the research pipeline. The miRNA-lncRNA interactions and miRNA-disease associations are exploited for the construction of the tripartite graph. The tripartite graph, in its turn, is at the basis of both neighborhood analysis and collaborative filtering steps, from which the three proposed approaches are obtained: NGH from neighborhood analysis, CF from collaborative filtering, NGH-CF from the combination of the two ones. Each prediction approach returns in output a LDAs rank

The proposed approaches have been exhaustively validated on both synthetic and real datasets, and the result is that they outperform (also significantly) the other methods from the literature. The experimental analysis shows that the improvement in accuracy achieved by the methods proposed here is due to their ability in capturing specific situations neglected by competitors. Examples of that are represented by true LDAs, detected by our approaches and not by the other approaches in the literature, where the involved lncRNA does not present intermediate molecules in common with the associated disease, although its neighbor lncRNAs share a large number of miRNAs with that disease. Moreover, it is shown that our approaches are robust to noise obtained by perturbing a controlled percentage of lncRNA-miRNA interactions and miRNA-disease associations, with NGH-CF the best one also for robustness. The obtained experimental results show that the prediction methods proposed here may effectively support biologists in selecting significant associations to be further verified in laboratory.

Novel putative LDAs coming from the consensus of the three proposed methods, and not yet registered in the available databases as experimentally verified, are provided. Interestingly, the core of novel LDAs returned with highest score by all three approaches finds evidence in the recent literature, while many other high scored predicted LDAs involve less studied lncRNAs, thus providing useful insights for their better characterization.

A first group of approaches aim at using existing true validated cases to train the prediction system, in order to make it able to correctly detect novel cases.

In [ 19 ] a Laplacian Regularized Least Squares is proposed to infer candidates LDAs ( LRLSLDA ) by applying a semi-supervised learning framework. LRLSLDA assumes that similar diseases tend to correlate with functionally similar lncRNAs, and vice versa. Thus, known LDAs and lncRNA expression profiles are combined to prioritize disease-associated lncRNA candidates by LRLSLDA, which does not require negative samples (i.e., confirmed uncorrelated LDAs). In [ 20 ] the method SKF-LDA is proposed that constructs a lncRNA-disease correlation matrix, based on the known LDAs. Then, it calculates the similarity between lncRNAs and that between diseases, according to specific metrics, and integrates such data. Finally, a predicted LDA matrix is obtained by the Laplacian Regularized Least Squares method. The method ENCFLDA [ 6 ] combines matrix decomposition and collaborative filtering. It uses matrix factorization combined with elastic networks and a collaborative filtering algorithm, making the prediction model more stable and eliminating the problem of data over-fitting. HGNNLDA recently proposed in [ 21 ] is based on hypergraph neural network, where the associations are modeled as a lncRNA-drug bipartite graph to build lncRNA hypergraph and drug hypergraph. Hypergraph convolution is then used to learn correlation of higher-order neighbors from the lncRNA and drug hypergraphs. LDAI-ISPS proposed in [ 22 ] is a LDAs inference approach based on space projections of integrated networks, recostructing the disease (lncRNA) integrated similarities network via integrating multiple information, such as disease semantic similarities, lncRNA functional similarities, and known LDAs. A space projection score is finally obtained via vector projections of the weighted networks. In [ 7 ] a consensual prediction approach called HOPEXGB is presented, to identify disease-related miRNAs and lncRNAs by high-order proximity preserved embedding and extreme gradient boosting. The authors build a heterogeneous disease-miRNA-lncRNA (DML) information network by linking lncRNA, miRNA, and disease nodes based on their correlation, and generate a negative dataset based on the similarities between unknown and known associations, in order to reduce the false negative rate in the data set for model construction. The method MAGCNSE proposed in [ 23 ] builds multiple feature matrices based on semantic similarity and disease Gaussian interaction profile kernel similarity of both lncRNAs and diseases. MAGCNSE adaptively assigns weights to the different feature matrices built upon the lncRNAs and diseases similarities. Then, it uses a convolutional neural network to further extract features from multi-channel feature matrices, in order to obtain the final representations of lncRNAs and diseases that is used for the LDAs prediction task.

LDAFGAN [ 8 ] is a model designed for predicting associations between long non-coding RNAs (lncRNAs) and diseases. This method is based on a generative and a discriminative networks, typically implemented as multilayer fully connected neural networks, which generate synthetic data based on some underlying distribution. The generative and discriminative networks are trained together in an adversarial manner. The generative network tries to generate realistic representations of lncRNA-disease associations, while the discriminative network tries to distinguish between real and fake associations. This adversarial training process helps the generative network learn to generate more realistic associations. Once the model is trained, it can predict associations between new lncRNAs and diseases without requiring associated data for those specific lncRNAs. The model captures the data distribution during training, which enables it to make predictions even for unseen lncRNAs. The approach GCNFORMER [ 9 ] is based on graph convolutional network and transformer. First, it integrates the intraclass similarity and interclass connections between miRNAs, lncRNAs and diseases, building a graph adjacency matrix. Then, the method extracts the features between various nodes, by a graph convolutional network. To obtain the global dependencies between inputs and outputs, a transformer encoder with a multiheaded attention mechanism to forecast lncRNA-disease associations is finally applied.

As for the approaches summarized above, it is worth to point out that they may suffer of the fact that the experimentally verified LDAs are still very limited, therefore the training set may be rather incomplete and not enough diversified. For this reason, when such approaches are applied for de novo LDAs prediction, their performance may drastically go down [ 12 ].

Other approaches from the literature use intermediate molecules (e.g., miRNA) to infer novel LDAs. Such approaches are the most related to those we propose here.

The author in [ 11 ] proposes HGLDA , relying on HyperGeometric distribution for LDAs inference, that integrates MDAs and LMIs information. HGLDA has been successfully applied to predict Breast Cancer, Lung Cancer and Colorectal Cancer-related lncRNAs. NcPred [ 10 ] is a resource propagation technique, using a tripartite network where the edges associate each lncRNA with a disease through its targets. The algorithm proposed in [ 10 ] is based on a multilevel resource transfer technique, which computes the weights between each lncRNA-disease pair and, at each step, considers the resource transferred from the previous step. The approach in [ 24 ], referred to as LDA-TG for short in the following, is the antecedent of the approaches proposed here. It relies on the construction of a tripartite graph, built upon MDAs and LMIs. A score is assigned to each possible LDA ( l ,  d ) by considering both their respective interactions with common miRNAs, and the interactions with miRNAs shared by the considered disease d and other lncRNAs in the neighborhood of l on the tripartite graph. The approaches proposed here differ from LDA-TG for two main reasons. First, the score of LDA-TG is different from the one we introduce here, that allows to reach a better accuracy. Second, a further step based on collaborative filtering is considered here, which also improves the accuracy performance. A method for LDAs prediction relying on a matrix completion technique inspired by recommender systems is presented in [ 14 ]. A two-layer multi-weighted nearest-neighbor prediction model is adopted, using a method similar to memory-based collaborative filtering. Weights are assigned to neighbors for reassigning values to the target matrix, that is an adjacency matrix consisting of lncRNAs, diseases and miRNA. SSMF-BLNP [ 25 ] is based on the combination of selective similarity matrix fusion (SSMF) and bidirectional linear neighborhood label propagation (BLNP). In SSMF, self-similarity networks of lncRNAs and diseases are obtained by selective preprocessing and nonlinear iterative fusion. In BLNP, the initial LDAs are employed in both lncRNA and disease directions as label information for linear neighborhood label propagation.

A third category includes approaches based on integrative frameworks, proposed to take into account different types of information related to lncRNAs, such as their interactions with other molecules, their involvement in disorders and diseases, their similarities. This may improve the prediction step, taking into account simultaneously independent factors.

IntNetLncSim [ 26 ] relies on the construction of an integrated network that comprises lncRNA regulatory data, miRNA-mRNA and mRNA-mRNA interactions. The method computes a similarity score for all pairs of lncRNAs in the integrated network, then analyzes the information flow based on random walk with damping. This allows to infer novel LDAs by exploring the function of lncRNAs. SIMCLDA [ 12 ] identifies LDAs by using inductive matrix completion, based on the integration of known LDAs, disease-gene interactions and gene-gene interactions. The main idea in [ 12 ] is to extract feature vectors of lncRNAs and diseases by principal component analysis, and to calculate the interaction profile for a new lncRNA by the interaction profiles. MFLDA [ 27 ] is a Matrix Factorization based LDAs prediction model that first encodes directly (or indirectly) relevant data sources related to lncRNAs or diseases in individual relational data matrices, and presets weights for these matrices. Then, it simultaneously optimizes the weights and low-rank matrix tri-factorization of each relational data matrix. RWSF-BLP , proposed in [ 28 ], applies a random walk-based multi-similarity fusion method to integrate different similarity matrices, mainly based on semantic and expression data, and bidirectional label propagation. The framework LRWRHLDA is proposed in [ 15 ] based on the construction of a global multi-layer network for LDAs prediction. First, four isomorphic networks including a lncRNA similarity network, a disease similarity network, a gene similarity network and a miRNA similarity network are constructed. Then, six heterogeneous networks involving known lncRNA-disease, lncRNA-gene, lncRNA-miRNA, disease-gene, disease-miRNA, and gene-miRNA associations are built to design the multi-layer network. In [ 29 ] the LDAP-WMPS LDA prediction model is proposed, based on weight matrix and projection score. LDAP-WMPS consists on three steps: the first one computes the disease projection score; the second step calculates the lncRNA projection score; the third step fuses the disease projection score and the lncRNA projection score proportionally, then it normalizes them to get the prediction score matrix.

For most of the approaches summarized above, the performance is evaluated using the LOOCV framework, such that each known LDA is left out in turn as a test sample, and how well this test sample is ranked relative to the candidate samples (all the LDAs without the evidence to confirm their relationships) is computed.

The main goal of the research presented here is to provide more accurate computational methods for the prediction of novel LDAs, candidate for experimental validation in laboratory. To this aim, external information on both molecular interactions (e.g., lncRNA-miRNA interactions) and genotype-phenotype associations (e.g., miRNA-disease associations) is assumed to be available. Indeed, while only a restricted number of validated LDAs is yet available, large amounts of interactions between lncRNAs and other molecules (e.g., miRNAs, genes, proteins), as well as associations between these other molecules and diseases, are known and annotated in curated databases.

A commonly recognized assumption is that lncRNAs with similar behaviour in terms of their molecular interactions with other molecules, may also reflect such a similarity for their involvement in the occurrence and progress of disorders and diseases [ 12 ]. This is even more effective if the correlation with diseases is “mediated” by the molecules they interact with. Based on this observation, we have designed three novel prediction methods that all consider the notion of lncRNA “neighbors”, intended as lncRNAs which share common mediators among the molecules they physically interact with. Here, we focus on miRNAs as mediator molecules. However, the proposed approaches are general enough to allow also the inclusion of other different molecules. Relationships among lncRNAs, mediators and diseases are modeled through tripartite graphs in all the proposed approaches (see Fig.  1 that illustrates the flowchart of the presented research pipeline).

Problem statement Let \({\mathcal {L}}=\{l_1, l_2, \ldots , l_h\}\) be a set of lncRNAs and \({\mathcal {D}}=\{d_1, d_2, \ldots , d_k\}\) be a set of diseases. The goal is to return an ordered set of triplets \({\mathcal {R}}=\{\langle l_x, d_y, s_{xy}\rangle \}\) (with \(x\in [1,h]\) , and \(y\in [1,k]\) ), ranked according to the score \(s_{xy}\) .

The top triplets in \({\mathcal {R}}\) correspond to those pairs \((l_x, d_y)\) with most chances to represent putative LDAs which may be considered for further analysis in laboratory, while the triplets in the bottom correspond to lncRNAs and diseases which are unlikely to be related each other. A key aspect for the solution of the problem defined above is the score computation, that is the main aim of the approaches introduced in the following.

NGH: neighborhood based approach

A model of tripartite graph is adopted here to take into account that lncRNAs interacting with common mediators may be involved in common diseases.

Let \(T_{LMD}=\langle I, A \rangle\) be a tripartite graph defined on the three sets of disjoint vertexes L , M and D , such that \((l,m) \in I\) are edges between vertexes \(l \in L\) and \(m \in M\) , \((m,d) \in A\) are edges between vertexes \(m \in M\) and \(d \in D\) , respectively. In particular, L is associated to a set of lncRNAs, M to a set of miRNA and D to a set of diseases. Moreover, edges of the type ( l ,  m ) represent molecular interactions between lncRNAs and miRNA, experimentally validated in laboratory; edges of the type ( m ,  d ) correspond to known miRNA-disease associations, according to the existing literature. In both cases, interactions and associations annotated and stored in public databases may be taken into account.

The following definitions hold.

Definition 1

(Neighbors) Two lncRNAs \(l_h, l_k \in L\) are neighbors in \(T_{LMD}=\langle I, A \rangle\) if there exists at least a \(m_x \in M\) such that \((l_h, m_x) \in I\) and \((l_k, m_x) \in I\) .

Definition 2

(Prediction Score) The Prediction Score for the pair \((l_i,d_j)\) such that \(l_i \in L\) and \(d_j \in D\) is defined as:

\(M_{l_i}\) is the set of annotated miRNA interacting with \(l_i\) ,

\(M_{d_j}\) is the set of miRNA found to be associated to \(d_j\) ,

\(M_{l_x}\) is the set of miRNA interacting with the neighbor \(l_x\) of \(l_i\) (for each neighbor of \(l_i\) ),

\(\alpha\) is a real value in [0, 1] used to balance the two terms of the formula.

Definition 3

(Normalized prediction score) The Normalized Prediction Score for the pair \((l_i,d_j)\) such that \(l_i \in L\) , \(d_j \in D\) and \(s_{ij}\) is the Prediction Score for \((l_i,d_j)\) , is defined as:

NGH-CF: NGH extended with collaborative filtering

We remark that the main idea here is trying to infer the behaviour of a lncRNA, from that of its neighbors. Moreover, it is worth to point out that the notion of neighbor is related to the presence of miRNAs interacting with the same lncRNAs. However, not all the miRNA-lncRNA interactions have already been discovered, and miRNA-disease associations as well. This intuitively reminds to a typical context of data incompleteness where Collaborative Filtering may be successful in supporting the prediction process [ 30 ].

In more detail, what to be encoded by the Collaborative Filter is that lncRNAs presenting similar behaviours in terms of interactions with miRNAs, should reflect such a similarity also in their involvement with the occurrence and progress of diseases, mediated by those miRNAs. To this aim, a matrix R is considered here such that each element \(r_{ij}\) represents if (or to what extent) the lncRNA i and the disease j may be considered related. We call R relationship matrix (it is also known as rating matrix in other contexts, such as for example in the prediction of user-item associations). How to obtain \(r_{ij}\) is at the basis of the two variants of the approach presented in this section.

Due to the fact that R is usually a very sparse matrix, it can be factored into other two matrices L and D such that R \(\approx\) \(L\) \(^T\) \(D\) . In particular, matrix factorization models map both lncRNAs and diseases to a joint latent factor space F of dimensionality f , such that each lncRNA i is associated with a vector \(l_i \in F\) , each disease j with a vector \(d_j \in F\) , and their relationships are modeled as inner products in that space. Indeed, for each lncRNA i , the elements of \(l_i\) measure the extent to which it possesses those latent factors, and the same holds for each disease j and the corresponding elements of \(d_j\) . The resulting dot product in the factor space captures the affinity between lncRNA i and disease j , with reference to the considered latent factors. To this aim, there are two important tasks to be solved:

Mapping lncRNAs and diseases into the corresponding latent factors vectors.

Fill the matrix R , that is, the training set.

To learn the factor vectors \(l_i\) and \(d_j\) , a possible choice is to minimize the regularized squared error on the set of known relationships:

where \(\chi\) is the set of ( i ,  j ) pairs for which \(r_{ij}\) is not equal to zero in the matrix R . To this aim, we apply the ALS technique [ 31 ], which rotates between fixing the \(l_i\) ’s and fixing the \(d_j\) ’s. When all \(l_i\) ’s are fixed, the system recomputes the \(d_j\) ’s by solving a least-squares problem, and vice versa.

Filling the matrix R is performed according to two different criteria, resulting in the two different variants of the approach presented in this section, namely, CF and NGH-CF, respectively. According to the first criteria (CF), \(r_{ij}\) is set equal to 1 if the lncRNA i and the disease j share at least one miRNA in common, to 0 otherwise. The second variant (NGH-CF) works instead as a booster to improve the accuracy of NGH. In this latter case, the matrix R is filled by the normalized score ( 2 ). For both variants, the considered score to rank the predicted LDAs is given by the final value returned by the ALS technique applied on the corresponding matrix R .

Validation methodologies

We remark that the proposed approaches for LDAs prediction return a rank of LDAs, sorted according to the score that is characteristic of the considered approach, such that top triplets may be assumed as the most promising putative LDAs for further analysis in laboratory. As in other contexts [ 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 ], the performance of a prediction tool may be evaluated using suitable external criteria . Here, an external criterion relies on the existence of LDAs that are known to be true from the literature or, even better, from public repositories, where associations already verified in laboratory are annotated. A gold standard is constructed, containing only such true LDAs. The putative LDAs returned by the prediction method can thus be compared against those in the gold standard. In order to work properly, this validation methodology requires the gold standard information to be independent on that considered, in its turn, from the method under evaluation during its prediction task. This is satisfied in our case, due to the fact that all three approaches introduced in the previous sections do not exploit any type of knowledge referred to known LDAs during prediction, relying instead on known miRNA-lncRNA interactions and miRNA-disease associations, which come from independent sources.

According to the above mentioned validation methodology, the proposed approaches can be validated with references to the Receiver Operating Characteristics (ROC) analysis [ 34 ]. In particular, each predicted LDA is associated to a label, that is true if that association is contained in the considered gold standard, and false otherwise.

By varying the threshold value, it is possible to compute the true positive rate (TPR) and the false positive rate (FPR), by refferring to the percentage of the true/false predictions whose ranking is higher/below than the considered threshold value. ROC curve can be drawn by plotting TPR versus FPR at different threshold values. The Area Under ROC Curve (ROC-AUC) is further calculated to evaluate the performance of the tested methods. ROC-AUC equal to 1 indicates perfect performance, ROC-AUC equal to 0.5 random performance.

Similarly to the ROC curve, the Precision-Recall (PR) curve can be drawn as well, combining the positive predictive value (PPV, Precision), i.e., the fraction of predicted LDAs which are true in the gold standard, and the TPR (Recall), in a single visualization, at the threshold varying. The higher on y-axis the obtained curve is, the better the prediction method performance. The Area Under PR curve (AUPR) is more sensitive than AUC to the improvements for the positive class prediction [ 35 ], that is important for the case studied here. Indeed, only true LDAs are known, therefore no negative samples are included in the gold standard.

Another important measure useful to evaluate the prediction accuracy of a method and that can be considered here is the F1-score, defined as the harmonic mean of Precision and Recall to symmetrically represent both metrics in a single one.

We have validated the proposed approaches on both syntetic and real datasets, as explained below.

Synthetic data

A synthetic dataset has been built with 15 lncRNAs, 35 miRNA and 10 diseases, such that three different sets of LDAs may be identified, as follows (see also Table 1 , where the characteristics of each LDA are summarized).

Set 1: 26 LDAs, such that each lncRNA has from 3 to 4 miRNAs shared with the same disease (strongly linked lncRNAs) .

Set 2: 16 LDAs, each lncRNA having only one miRNA shared with a disease, and from 2 to 5 neighbors that are strongly linked with that same disease (directly linked lncRNAs and strong neighborhood) .

Set 3: 12 LDAs involving lncRNAs without any miRNA in common with a certain disease, and a number between 2 and 5 neighbors that are strongly linked with that same disease (only strong neighborhood) .

Experimentally verified data downloaded from starBase [ 36 ] and from HMDD [ 37 ] have been considered for the lncRNA-miRNA interactions and for the miRNA-disease associations, respectively. In particular, the latest version of HMDD, updated at 2019, has been used. Overall, \(1,\!114\) lncRNAs, \(1,\!058\) miRNAs, 885 diseases, \(10,\!112\) lncRNA-miRNA interactions and \(16,\!904\) miRNA-disease associations have been included in the analysis.

In order to evaluate the prediction accuracy of the approaches proposed here against those from the literature, three different gold standards have been considered. A first gold standard dataset GS1 has been obtained from the LncRNA-Disease database [ 38 ], resulting in 183 known and verified LDAs. A second, more restrictive, gold standard GS2 with 157 LDAs has been built by the intersection of data from [ 38 ] and [ 39 ]. Finally, also a larger gold standard dataset GS3 has been included in the analysis, by extracting LDAs from MNDRv2.0 database [ 40 ], where associations both experimentally verified and retrieved from manual literature curation are stored, resulting in 408 known LDAs.

Comparison on real data

The approaches proposed here have been compared against other approaches from the literature, over the three different gold standards described in the previous Section. In particular, all approaches considered from the literature have been run according to the default setting of their parameters, reported on the corresponding scientific publications and/or on their manual instructions.

Our approaches have been compared at first on GS1 against those approaches taking exactly the same input than ours, that are HGLDA [ 11 ], ncPred [ 10 ] and LDA-TG [ 24 ]. In particular, we have implemented HGLDA and used the corresponding p-value score, corrected by FDR as suggested by [ 11 ], for the ROC analysis. Moreover, we have normalized also the scores returned by ncPred and LDA-TG for the predicted LDAs, according to the formula in Definition 3 . Indeed, we have observed experimentally that such a normalization improves the accuracy of both methods from the literature, resulting in a better AUC. As for the novel approaches proposed here, the Normalized Prediction Score has been considered for NGH, while the approximated rating score resulting from ALS [ 31 ] is used for both CF and NGH-CF. Figure  2 shows the AUC scored by each method on GS1, while in Fig.  3 the different ROC curves are plotted. In particular, NGH scores a value of AUC equal to 0.914, thus outperforming the other three methods previously presented in the literature, i.e., HGLDA, ncPred and LDA-TG, that reach 0.876, 0.886 and 0.866, respectively (we remark also that performance of both ncPred and LDA-TG has been slightly improved with respect to their original one, by normalizing their scores). As for the novel approaches based on collaborative filtering, they both present a better accuracy than the others, with CF having AUC equal to 0.957 and NGH-CF to 0.966, respectively. Therefore, these results confirm that taking into account the collaborative effects of lncRNAs and miRNAs is useful to improve LDAs prediction, and the most successful approach is NGH-CF, that is, the neighborhood based approach boosted by collaborative filtering.

figure 2

Comparison of the scored AUC on GS1

figure 3

ROC curves for the compared methods on GS1

Another interesting issue is represented by the “agreement” between the different methods taking the same input, in terms of the returned best scoring LDAs. Table 2 shows the Jaccard Index computed between the proposed approaches and those receiving the same input, on the top \(5\%\) LDAs in the corresponding ranks, sorted from the best to the worst score values for each method. It emerges that results by HGLDA and ncPred have a small match with the other approaches (at most 0.23), while NGH-CF has high agreement with CF (0.74), as well as with NGH and LDA-TG (both 0.70). LDA-TG and CF present a sufficient match in their best predictions (0.59). This latter comparison based on agreement shows that approaches based on neighborhood analysis share a larger set of LDAs, in the top part of their ranks.

The proposed approaches have been compared also against other two recent methods from the literature, i.e., SIMCLDA and HGNNLDA, which receive in input different data than ours, including mRNA and drugs. For this reason, the more restrictive gold standard GS2 has been exploited for the comparison, where only lncRNAs and diseases having some correspondences with the additional input data of SIMCLDA and HGNNLDA are included. Figure  4 shows the comparison of the scored AUC on GS2, while Fig.  5 the corresponding ROC curves. In particular, the behaviour of all approaches previously tested does not change significantly on this other gold standard, moreover all the other approaches overcome SIMCLDA. On the other hand, HGNNLDA has a better performance than HGLDA, NcPred and LDA-TG, although it has a worse accuracy than NGH, CF and NGH-CF. The former confirms its superiority with regards to all considered approaches.

figure 4

Comparison of the scored AUC on GS2

figure 5

ROC curves for the compared methods on GS2

The proposed approaches have been compared also against LDAP-WMPS on GS3. Figure  6 shows the AUC values scored by all compared approaches on GS3, while Fig.  7 the corresponding ROC curves. In particular, the behaviour of all approaches previously tested does not change on this other gold standard, and LDAP-WMPS has better performance than the other approaches except for NGH, CF, NGH-CF and HGNNLDA.

figure 6

Comparison of the scored AUC on GS3

figure 7

ROC curves for the compared methods on GS3

The AUPR values scored by the compared methods on GS1, GS2, and GS3 are shown in Fig.  8 , while the corresponding PR-curves are plotted in Fig.  9 . In particular, for GS1 results are analogous to the ROC analysis, with NGH-CF the best performing one, followed by CF and NGH, while HGLDA is the worst. On GS2, NGH-CF and CF keep their superiority, followed by SMCLDA and NGH, while HGLDA is yet the worst one. On GS3, NGH-CF is the first, Cf the second and both HGNNLDA and LDAP-WMPS outperform NGH, while HGLDA in this case slightly outperforms LDA-TG, ncPred and SMCLDA, which results to be the worst one.

figure 8

AUPR hystogram for the compared methods on GS1, GS2, GS3

figure 9

Precision-recall curves for the compared methods on GS1,GS2,GS3

Figures 10 , 11 and 12 show the F1-score values obtained, for all methods compared on GS1, GS2 and GS3, respectively, at the varying of a threshold fixed on the method score. In Tables 3 , 4 and 5 it is shown, for each gold standard, the highest value of F1-score obtained by each considered method, as well as the corresponding Precision and Recall values, and the minimum threshold value for which the highest F1-score value has been reached. On GS1 and GS2, the three best performing approaches are NGH-CF, CF and NGH, in this order. On GS3 the order is the same, and LDAP-WMPS performs equally to NGH.

figure 10

F1-score for the compared methods on GS1

figure 11

F1-Score for the compared methods on GS2

figure 12

F1-Score for the compared methods on GS3

Robustness analysis

The main aim of the analysis discussed here is to measure to what extent the proposed methods are able to correctly recognize verified LDAs, even if part of the existing associations are missed, i.e., the sets of known and verified lncRNA-miRNA interactions and miRNA-disease associations are not complete. This is important to verify that the proposed approaches can provide reliable predictions also in presence of data incompleteness, that is often the case when lncRNAs are involved. Therefore, the robustness of each proposed method has been evaluated by performing progressive alterations of the input associations coming from the real datasets, according to the following three different criteria.

Progressively eliminate the \(5\%\) , \(10\%\) , \(15\%\) and \(20\%\) of lncRNA-miRNA interactions from the input data.

Progressively eliminate the \(5\%\) , \(10\%\) , \(15\%\) and \(20\%\) of miRNA-disease associations from the input data.

Progressively eliminate the \(5\%\) , \(10\%\) , \(15\%\) and \(20\%\) of both lncRNA-miRNA interactions and miRNA-disease associations (half and half), from the input data.

Tests summarized above have been performed for 20 times each. Tables 6 , 7 and 8 show the mean of the AUC values for NGH, CF and NGH-CF, respectively, over the 20 tests. In particular, all methods perform well on the three test typologies at \(5\%\) , the worst being NGH-CF, which however presents an average AUC equal to 0.84 for case 1), that is still a high value. NGH-CF is also the method that presents the best robustness on case 3), keeping the value of 0.92 also at \(20\%\) , while CF is the worst performing in case 3), indeed its average AUC decreases from 0.95 at \(5\%\) to 0.63 already at \(10\%\) , and then to 0.50 at \(20\%\) . This behaviour in case 3), where both lncRNA-miRNA interactions and miRNA-disease associations are progressively eliminated, deserves some observations. Indeed, results show that the combination of neighborhood analysis and collaborative filtering is the most robust one with regards to this perturbation, while collaborative filtering alone is the worst performing. On the other hand, CF results to be the most robust in case 1), where only lncRNA-miRNA interactions are eliminated, and this is due to the fact that CF does not take into account how many miRNAs are shared by pairs of lncRNAs. As for case 2), performance of all methods is comparable and generally good, possibly in consideration of the fact that a large number of miRNA-disease associations are available, therefore discarding small percentages of them does not affect largely the final prediction.

Comparison on specific situations

In this section further experimental tests are described, showing how well the considered methods perform in detecting specific situations, depicted through the synthetic dataset first, and then searched for in the real data. In particular, the basic observation here is that prediction approaches from the literature usually fail in detecting true LDAs, when the involved lncRNAs and diseases do not have a large number of shared miRNAs (referring to those approaches taking the same input than ours). The novel approaches we propose are particularly effective in managing the situation depicted above, through neighborhood analysis and collaborative filtering, allowing to detect similar behaviours shared by different lncRNAs, depending on the miRNAs they interact with.

For each set of LDAs defined in the synthetic data (i.e., set 1, set 2, and set 3), and for each tested method (i.e., HGLDA, NCPRED, NHG, CF, NGH-CF), Table 9 shows the percentage of LDAs in that set which is recognized at the top \(10\%\) , \(20\%\) , \(30\%\) , \(50\%\) of the rank of all LDAs, sorted by the score returned by the considered method. As an example, for HGLDA the \(32\%\) of LDAs of set 1 are located in the top \(10\%\) of its rank, where instead none LDAs in set 2 or 3 find place.

Looking at these results some interesting considerations come out. First of all, for the methods HGLDA, NCPRED, NHG and CF most associations of the set 1 are located in the top \(50\%\) of their corresponding ranks, while NGH-CF has a different behaviour. Indeed, it locates a lower number of such LDAs in the highest part of its rank than the other approaches, possibly due to the fact that it leaves room for a larger number of associations in the other two sets in the top ranked positions. As for LDAs in the set 2, all methods recognize some of them already in the top \(10\%\) , except for HGLDA, as alredy highlighted. The approaches able to recognize the larger percentages of these associations at the top \(50\%\) of their rank are NGH and NGH-CF. LDAs in the set 3 are the most difficult to recognize, due to the fact that the lncRNA and the disease do not share any miRNA in common. Indeed, the worst performing methods in this case are HGLDA, which is able to locate some of these associations only at the top \(50\%\) (according to the percentages we considered here), and NCPRED, which performs slightly better although it reaches the same percentage of located associations than HGLDA at \(50\%\) (the \(28\%\) ). As expected, approaches based on neighborhood analysis and collaborative filtering perform better, with the best one resulting to be NGH-CF.

In the previous section we have shown that all methods proposed here are able to detect specific situations, characterized by the fact that a lncRNA may have very few (or none) common miRNAs with a disease, and its neighbors share instead a large set of miRNAs with that disease. We have checked if this case occurs among the verified LDAs that our approaches find and their competitors do not. Table 10 shows, only by meaning of example, 10 experimentally verified LDAs, included in GS1, that are top ranked for the novel approaches proposed here, whereas they are in the bottom rank of the other approaches from the literature compared on GS1. Six out of such LDAs do not present any common miRNAs between the lncRNA and the disease, while four share only one miRNA. All involved lncRNAs present neighbors with a large number of miRNAs in common with the disease in that LDA, in accordance with the hypothesis that the ability in capturing this situation allows to obtain a better accuracy.

Survival analysis has been also performed by one of the TCGA Computational Tools, that is, TANRIC [ 41 ], on four of the pairs in Table 10 . In particular, those lncRNAs and diseases available in TANRIC have been chosen. Results are reported in Figures 13 , 14 , 15 and 16 , showing that the over-expression of the considered lncRNA determines a lower survival probability over the time, for all four considered cases.

figure 13

Survival analysis related to SNHG16 and bladder neoplasm

figure 14

Survival analysis related to CBR3-AS1 and prostate neoplasm

figure 15

Survival analysis related to MALAT1 and bladder neoplasm

figure 16

Survival analysis related to MEG3 and breast neoplasm

In the previous sections the effectiveness and robustness of the proposed approaches have been illustrated, showing that all three are able to return reliable predictions, as well as to detect specific situations which may occur in true predictions and are missed by competitors. Here we provide a discussion on some novel LDAs predicted by NGH, CF and NGH-CF.

Table 11 shows seven LDAs which are not present in the considered gold standards, and that have been returned by all three methods proposed here, with highest score. The first of these associations is between CDKN2B-AS1 and LEUKEMIA, confirmed by recent literature [ 42 , 43 ]. Indeed, CDKN2B-AS1 was found to be highly expressed in pediatric T-ALL peripheral blood mononuclear cells [ 42 ], moreover genome-wide association studies show that it is associated to Chronic Lymphocytic Leukaemia risk in Europeans [ 43 ]. As for the second association between DLEU2 and LEUKEMIA, DLEU2 is a long non-coding transcript with several splice variants, which has been identified by [ 44 ] through a comprehensive sequencing of a commonly deleted region in leukemia (i.e., the 13q14 region). Different investigations reported up regulation of this lncRNA in several types of cancers. The lncRNA H19 regulates GLIOMA angiogenesis [ 45 , 46 ], while MAP3K14 is one of the well-recognized biomarkers in the prognosis of renal cancer, which is reminiscent of the pancreatic metastasis from renal cell carcinoma [ 47 ]. MEG3 has been recently found to be important for the prediction of LEUKEMIA risk [ 48 ]. Multiple studies have shown that MIR155HG is highly expressed in diffuse large B-cell (DLBC) lymphoma and primary mediastinal B-cell lymphoma, and in chronic lymphocytic leukemia. The transcription factor MYB activates MIR155HG activity, which causes the epigenetic state of MIR155HG to be dysregulated and causes an abnormal increase in MIR155 [ 49 ]. Also the last top-ranked association in Table 11 between TUG1 and NON-SMALL CELL LUNG CARCINOMA has found evidence in the literature [ 50 , 51 , 52 ].

Tables 12 , 13 , and 14 show the top 100 (sorted by the scores returned by each method) novel LDA predictions that NGH and CF, NGH and NGH-CF, CF and NGH-CF have in common, respectively. Many of the lncRNAs involved in such top-ranked LDAs are not yet characterized in the literature, therefore results presented here may be considered a first attempt to provide novel knowledge about them, through their inferred association with known diseases.

We have explored the application of neighborhood analysis, combined with collaborative filtering, for the improvement of LDAs prediction accuracy. The three approaches proposed here have been evaluated and compared first against their direct competitors from the literature, i.e., the other methods which also use lncRNA-miRNA interactions and miRNA-disease associations, without exploiting a priori known LDAs. It results that all methods proposed here are able to outperform direct competitors, the best one (NGH-CF) also significantly (AUC equal to 0.966 against the 0.886 by NCPRED). In particular, it has been shown that the improvement in accuracy is due to the fact that our approaches capture specific situations neglected by competitors, relying on similar lncRNAs behaviour in terms of their interactions with the considered intermediate molecules (i.e., miRNAs). The proposed approaches have been then compared also against other recent methods, taking different inputs (e.g., integrative approaches), and the experimental evaluation shows that they are able to outperform them as well.

It is worth pointing out the importance of providing reliable data in input to the LDAs prediction approaches. As discussed in this manuscript, information on the lncRNAs relationships with other molecules, and between intermediate molecules and diseases, is provided in input to the proposed approaches. Reliable datasets have been used to perform the experimental analysis provided here. However, as the user may provide also different input datasets, it is important to point out that the reliability of the obtained predictions strictly depends on that of input information.

As neighborhood analysis has resulted to be effective in characterizing lncRNAs with regards to their association with known diseases, we plan to apply it also for predicting possible common functions among lncRNAs, for example by clustering them according to their interactions, which has shown to be successful for other types of molecules [ 53 ]. Moreover, due to the success of integrative approaches on the analysis of biological data [ 54 ], we expect that including other types of intermediate molecules, such as for example genes and proteins, in the main pipeline of the proposed approaches may further improve their accuracy.

In conclusion, the use of reliable input data and the integration of different types of information coming from molecular interactions seem to be the most promising future directions for LDAs prediction.

Availability of data and materials

The source code is available at: https://github.com/marybonomo/LDAsPredictionApproaches.git In particular, executable software for NGH, CF, and NGH-CF are provided, as well as syntetic and real input datasets used here; the three different gold standard datasets GS1, GS2, GS3; the final obtained results.

Medico-Salsench E, et al. The non-coding genome in genetic brain disorders: New targets for therapy? Essays Biochem. 2021;65(4):671–83.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

Article   CAS   PubMed   Google Scholar  

Zhao H, Shi J, Zhang Y, et al. LncTarD: a manually-curated database of experimentally-supported functional lncRNA–target regulations in human diseases. Nucl Acids Res. 2019;48(D1):D118–D126. ISSN: 0305-1048.

Liao Q, et al. Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co- expression network. Nuc Acids Res. 2011;39:3864–78.

Article   CAS   Google Scholar  

Chen X, et al. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinf. 2017;18(4):558–76.

CAS   Google Scholar  

Wang B, et al. lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering. Sci Rep. 2022;12:7.

Google Scholar  

He J, et al. HOPEXGB: a consensual model for predicting miRNA/lncRNA-disease associations using a heterogeneous disease-miRNA-lncRNA information network. J Chem Inf Model 2023

Zhong H, et al. Association filtering and generative adversarial networks for predicting lncRNA-associated disease. BMC Bioinf. 2023;24(1):234.

Dengju Y, et al. GCNFORMER: graph convolutional network and transformer for predicting lncRNA-disease associations. BMC Bioinf. 2024;25(1):5.

Article   Google Scholar  

Alaimo S, Giugno R, Pulvirenti A. ncPred: ncRNA-disease association prediction through Tripartite network-based inference. Front Bioeng Biot. 2014;2:71.

Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep. 2015;5:13186.

Lu C, et al. Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics. 2018;34(19):3357–64.

Xuan Z, Li J, Yu X, Feng J, et al. A probabilistic matrix factorization method for identifying lncRNA-disease associations. Genes 2019;10(2)

Du X, et al. lncRNA-disease association prediction method based on the nearest neighbor matrix completion model. Sci Rep. 2022;12(1):21653.

Wang L, et al. Prediction of lncRNA-disease association based on a Laplace normalized random walk with restart algorithm on heterogeneous networks. BMC Bioinf. 2022;23(1):1–20.

Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: taxonomy, trends and challenges of computational models. Brief Bioinf. 2022;23(5):bbac358.

Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: experimental results, databases, webservers and data fusion. Brief Bioinf. 2022;23(6):bbac397.

Huang L, Zhang L, Chen X. Updated review of advances in microRNAs and complex diseases: towards systematic evaluation of computational models. Brief Bioinf. 2022;23(6):bbac407.

Chen X, Yan G. Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics. 2013;29(20):2617–24.

Xie G, et al. SKF-LDA: similarity kernel fusion for predicting lncRNA-disease association. Mol Therapy-Nucleic Acids. 2019;18:45–55.

Liu D, et al. HGNNLDA: predicting lncRNA-drug sensitivity associations via a dual channel hypergraph neural network. IEEE/ACM transactions on computational biology and bioinformatics, 2023;1–11.

Zhang Y, et al. LDAI-ISPS: lncRNA-disease associations inference based on integrated space projection scores. Int J Molecular Sci. 2020;21(4):1508.

Liang Y, et al. MAGCNSE: predicting lncRNA-disease associations using multi-view attention graph convolutional network and stacking ensemble model. BMC Bioinf. 2022;23(1):189.

Bonomo M, La Placa A, Rombo SE. Prediction of lncRNA-disease associations from tripartite graphs. In: Heterogeneous data management, polystores, and analytics for healthcare - VLDB workshops, poly 2020 and DMAH 2020, virtual event, August 31 and September 4, 2020, Revised Selected Papers. Springer, Berlin, 2020;205–210. ISSN: 978-3-030-71054-5

Xie G, et al. Predicting lncRNA-disease associations based on combining selective similarity matrix fusion and bidirectional linear neighborhood label propagation. Brief Bioinform. 2023;24(1):bbac595.

Article   PubMed   Google Scholar  

Cheng L, et al. ntNetLncSim: an integrative network analysis method to infer human lncRNA functional similarity. Oncotarget. 2016;7(30):47864–74.

Article   PubMed   PubMed Central   Google Scholar  

Guangyuan F, et al. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations. Bioinformatics. 2018;34:1529–37.

Xie G, et al. RWSF-BLP: a novel lncRNA-disease association prediction model using random walk-based multi-similarity fusion and bidirectional label propagation. Mol Genet Genom. 2021;296:473–83.

Wang B, et al. lncRNA-disease association prediction based on the weight matrix and projection score. PLOS One. 2023;18(1): e0278817.

Duan R, Jiang C, Jain HK. Combining review-based collaborative filtering and matrix factorization: a solution to rating’s sparsity problem”. Decis Support Syst 2022;156:113748. ISSN: 0167–9236.

Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer. 2009;42(8):30–7.

Parida L, Pizzi C, Rombo SE. Irredundant tandem motifs. Theoret Comput Sci. 2014;525:89–102.

Bonomo M, et al. Topological ranks reveal functional knowledge encoded in biological networks: a comparative analysis. Brief Bioinform. 2022;23(3):bbac101.

Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861–74.

Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS One. 2015;10(3): e0118432.

Li J, et al. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2013;42:D92–7.

Li Y, et al. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 2014;42:D1070–4.

Chen G, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41:D983–6.

Gao Y, et al. Lnc2Cancer 3.0: an updated resource for experimentally supported lncRNA/circRNA cancer associations and web tools based on RNA-seq and scRNA-seq data. Nucleic Acids Res. 2021;49(D1):D1251–8.

Cui T, et al. MNDR v2. 0: an updated resource of ncRNA-disease associations in mammals. Nucleic Acids Res. 2018;46(D1):D371–4.

CAS   PubMed   Google Scholar  

Li J, et al. TANRIC: an interactive open platform to explore the function of lncRNAs in cancer. Cancer Res. 2015;75(18):3728–37.

Chen L, et al. lncRNA CDKN2B-AS1 contributes to tumorigenesis and chemoresistance in pediatric T-cell acute lymphoblastic leukemia through miR-335-3p/TRAF5 axis. In: Anti-cancer drugs, Wolters Kluwer Health, Inc. (2020)

Song C, et al. CDKN2B-AS1: an indispensable long non-coding RNA in multiple diseases. Current Pharm Des. 2020;26(41):5335–46.

Ghafouri-Fard S, et al. Deleted in lymphocytic leukemia 2 (DLEU2): an lncRNA with dissimilar roles in different cancers. Biomed Pharmacother. 2021;133: 111093.

Jia P, et al. Long non-coding RNA H19 regulates glioma angiogenesis and the biological behavior of glioma-associated endothelial cells by inhibiting microRNA-29a. Cancer Lett. 2016;381(2):359–69.

Liu Z, et al. LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1 α /VEGFaxis. Neoplasma. 2020;67(1):111–8.

Zhou S, et al. A novel immune-related gene prognostic Index (IRGPI) in pancreatic adenocarcinoma (PAAD) and its implications in the tumor microenvironment. Cancers. 2022;14(22):5652.

Pei J, et al. Novel contribution of long non-coding RNA MEG3 genotype to prediction of childhood leukemia risk. Cancer Genom Proteom. 2022;19(1):27–34.

Peng L, et al. MIR155HG is a prognostic biomarker and associated with immune infiltration and immune checkpoint molecules expression in multiple cancers. Cancer Med. 2019;8(17):7161–73.

Zhang E, et al. P53-regulated long non-coding RNA TUG1 affects cell proliferation in human non-small cell lung cancer, partly through epigenetically regulating HOXB7 expression. Cell Death Dis. 2014;5(5):e1243–e1243.

Lin P, et al. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer. 2016;16:1–10.

Niu Y, et al. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2. Mol Cancer. 2017;16(1):1–13.

Pizzuti C, Rombo SE. An evolutionary restricted neighborhood search clustering approach for PPI networks. Neurocomputing. 2014;145:53–61.

Rombo SE, Ursino D (2021) Integrative bioinformatics and omics data source interoperability in the next-generation sequencing era

Download references

Acknowledgements

The authors are grateful to the Anonymous Reviewers, for the constructive and useful suggestions that allowed to significantly improve the quality of this manuscript. Some of the results shown here are in part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga .

PRIN “multicriteria data structures and algorithms: from compressed to learned indexes, and beyond”, Grant No. 2017WR7SHH, funded by MIUR (closed). “Modelling and analysis of big knowledge graphs for web and medical problem solving” (CUP: E55F22000270001), “Computational Approaches for Decision Support in Precision Medicine” (CUP:E53C22001930001), and “Knowledge graphs e altre rappresentazioni compatte della conoscenza per l’analisi di big data” (CUP: E53C23001670001), funded by INdAM GNCS 2022, 2023, 2024 projects, respectively. “Models and Algorithms relying on knowledge Graphs for sustainable Development goals monitoring and Accomplishment - MAGDA” (CUP: B77G24000050001), funded by the European Union under the PNRR program related to “Future Artificial Intelligence - FAIR”.

Author information

Authors and affiliations.

Kazaam Lab s.r.l., Palermo, Italy

Mariella Bonomo & Simona E. Rombo

Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy

Simona E. Rombo

You can also search for this author in PubMed   Google Scholar

Contributions

MB and SER equally contributed to the research presented in this manuscript. MB implemented and run the software, SER performed the analysis of results. Both authors wrote and reviewed the entire manuscript.

Corresponding author

Correspondence to Mariella Bonomo .

Ethics declarations

Ethics approval and consent to participate.

Not Applicable

Consent for publication

Competing interests.

SER is editor of BMC Bionformatics. MB has no Conflict of interest.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Bonomo, M., Rombo, S.E. Neighborhood based computational approaches for the prediction of lncRNA-disease associations. BMC Bioinformatics 25 , 187 (2024). https://doi.org/10.1186/s12859-024-05777-8

Download citation

Received : 13 December 2023

Accepted : 11 April 2024

Published : 13 May 2024

DOI : https://doi.org/10.1186/s12859-024-05777-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • LncRNA-disease associations
  • Molecular interactions
  • Bioinformatics
  • Long non-coding RNA

BMC Bioinformatics

ISSN: 1471-2105

review of related literature importance

  • Case Report
  • Open access
  • Published: 11 May 2024

Carbon monoxide poisoning with hippocampi lesions on MRI: cases report and literature review

  • Wenxia Li 1   na1 ,
  • Jun Meng 2   na1 ,
  • Jing Lei 2 ,
  • Cheng Li 2 &
  • Wei Yue 1 , 2  

BMC Neurology volume  24 , Article number:  159 ( 2024 ) Cite this article

141 Accesses

Metrics details

Carbon monoxide (CO) poisoning is now one of the leading causes of poisoning-related mortality worldwide. The central nervous system is the most vulnerable structure in acute CO poisoning. MRI is of great significance in the diagnosis and prognosis of CO toxic encephalopathy. The imaging features of CO poisoning are diverse. We report atypical hippocampal lesions observed on MRI in four patients after acute CO exposure.

Case presentations

We report four patients who presented to the emergency department with loss of consciousness. The diagnosis of CO poisoning was confirmed on the basis of their detailed history, physical examination and laboratory tests. Brain MRI in all of these patients revealed abnormal signal intensity in hippocampi bilaterally. They all received hyperbaric oxygen therapy. The prognosis of all four patients was poor.

Hippocampi, as a relatively rare lesion on MRI of CO poisoning, is of important significance both in the early and delayed stages of acute CO poisoning. In this article, we summarize the case reports of hippocampal lesions on MRI in patients with CO poisoning in recent years, in order to provide reference for the diagnosis and prognosis of CO poisoning.

Peer Review reports

Carbon monoxide (CO) is a colorless, tasteless, odorless gas that is imperceptible to human [ 1 ]. In several countries or regions, there is a high mortality rate due to CO poisoning. Of these, more patients die from unintentional CO poisoning than intentional reasons [ 2 ]. The central nervous system is the most vulnerable structure in acute CO poisoning due to its high energy demands [ 3 ]. MRI and related imaging modalities, the commonly used clinical imaging method, is important in assessing the severity of brain damage from CO poisoning and, to some extent, can predicts the prognosis of CO poisoning brain damage [ 4 ]. The imaging features of CO poisoning are diverse. It has been reported that the bilateral basal ganglia, especially the globus pallidus (GP), and the centrum semiovale are the most common sites of lesion in acute CO poisoning MRI, while cases involving the medial temporal lobe in the region of hippocampi are rare [ 4 , 5 ]. We herein report four patients with CO poisoning who were studied by MRI during the acute phase and all were found to have lesions in the hippocampal region (Table  1 ).

A 65-year-old male was found unconscious and unresponsive to verbal stimuli in the house on 1/27/2018. The house he was in had a coal stove and the coals were burning incompletely. According to the investigation, he had suffered accidental CO poisoning as a result of a fault in the household’s heating. He was exposed in CO for approximately 15 h. There was no vomit beside him and he was not experiencing seizures. Then, he was transported to the hospital. In the emergency room, His vital signs were normal with the Glasgow coma score (GCS) 12. He was drowsy with an intact pupillary light response. He did not respond to verbal stimuli. His arterial carboxyl hemoglobin (COHb) was measured at 39%. Doctors treated him with hyperbaric oxygen therapy (HBOT) on 3 times. The patient became conscious 17 h after admission, responding to painful stimuli, and was able to move his limbs as instructed with GCS ranging from 12 to 15. Although he could understand words correctly, he still could not express himself. The patient received continuous HBOT on 5 separate days after admission. After 10 days of admission, his neurological function was largely restored. However, around the 20th day of hospitalization, the patient suddenly developed new neurological symptoms. He exhibited increased muscle tone, severely impaired cognitive function, memory loss, and mixed aphasia. Doctors considered him to have delayed neurological syndrome caused by CO poisoning. The MRI scan of his brain approximately 48 h after exposure to CO showed the bilateral hippocampi abnormalities (Fig.  1 A).

figure 1

DWI obtained from four patients with acute carbon monoxide poisoning. ( A ) A 65-year-old man (patient A, COHb: 39%) examined at 48 h post-exposure, with demonstration of restricted diffusion (arrows) in the bilateral hippocampi. ( B ) A 61-year-old man (patient B, COHb: 19.2%) examined at 24 h post-exposure, with demonstration of restricted diffusion (arrows) in the bilateral hippocampi and globus pallidus. ( C ) A 62-year-old man (patient C, COHb: 7.8%) examined at 72 h post-exposure, with demonstration of restricted diffusion (arrows) in the bilateral hippocampi. ( D ) A 24-year-old woman (patient D, COHb: 7%) examined at 12 h post-exposure, with demonstration of restricted diffusion (arrows) in the bilateral medial temporal lobe and cerebral peduncle

A 61-year-old male was found unconscious and unresponsive to verbal stimuli inside his house on 12/29/2021. The house he was staying in had a coal stove for heating. And the carbon in the coal stove was burning incompletely. It is found that he was suffered from accidental CO poisoning after falling asleep. He was in the CO filled house for at least 10 h. He suffered from vomiting, urinary and fecal incontinence. His arterial COHb was 19.2%. After admission, the patient’s respiratory rate and heart rate were unstable, unresponsive to dizzand pain stimuli. And the patient was coma with GCS of 10. The patient received continuous HBOT during his hospitalization for 8 continuous days. During the subsequent hospitalization, the patient remained comatose with GCS ranging from 10 to 8. At the time of discharge, the patient’s consciousness was still in coma, unresponsive to verbal stimuli, and responsive to heavy pain stimuli. The MRI scan of the brain approximately 24 h after his exposure to CO showed the abnormalities in the bilateral hippocampi and basal ganglia (Fig.  1 B).

A 62-year-old male was found unconscious and unresponsive to verbal stimuli in the house on 2/13/2023. He was beside a relatively large amount of vomit. He was unresponsive to painful stimuli. There were traces of burning charcoal in the house he was in and the person in the house with him was dead. This patient, along with the deceased in the same house, was accidentally poisoned with CO due to a house fire. His arterial COHb was 7.8%. The patient was comatose on admission with a GCS score of 8. His heart rate, respiratory rate and blood pressure were unstable. The patient’s pupillary light reflection was poor and his limbs did not respond to painful stimuli. The patient then received 2 HBO treatments. Twelve hours after admission, the patient’s mental state changed from coma to consciousness, but his cognitive function still did not recover, as exhibited by memory loss and unresponsiveness. The patient received continuous HBOT for 7 days. At the time of discharge, the patient’s consciousness shifted to conscious, with GCS ranging from 8 to 15, but he still had symptoms of memory loss. The MRI scan of the brain approximately 72 h after his exposure to CO showed abnormal signals in the bilateral hippocampi (Fig.  1 C).

A 24-year-old female was found unconscious and unresponsive to verbal stimuli in the house on 2/16/2023. Her perioral area had white frothy secretions. Her family stated that she had been inside the house with a coal stove burning for warmth and that she had said she was dizzy. The patient was depressed. And this time she attempted suicide by burning coal. Her arterial COHb was 7%. On admission, the patient remained in a comatose state with a GCS score of 7, and her vital signs were unstable. The patient was unresponsive to verbal and pain stimuli, but the pupillary light reflection was present. During her hospitalization, the patient received continuous hyperbaric oxygen therapy for 5 times. At the time of discharge, the consciousness of the patient changed from coma to lethargy with brief spontaneous eye opening. And GCS was ranging from 7 to 10. The MRI scan of the brain approximately 12 h after her exposure to CO showed abnormal signals in the medial temporal lobe and cerebral peduncle (Fig.  1 D).

Literature review and discussion

The pathophysiologic mechanism of CO poisoning involves the binding of CO to hemoglobin to form COHb [ 6 ]. CO shows a 250-fold higher affinity for hemoglobin than oxygen and competitively binds to it to form COHb. COHb has no ability to carry oxygen and is not easily dissociated, which also shifts the hemoglobin oxygenation curve to the left. In this case, blood oxygen is not easily released to the tissues, resulting in cellular hypoxia [ 7 , 8 ]. At the same time, CO affects mitochondrial metabolism, which can aggravate tissue hypoxia [ 9 ]. Furthermore, studies have shown that hypotension and cardiac dysfunction induced by CO also can lead to circulatory hypoxia in the body [ 10 , 11 ]. The pathological changes in the brain tissue of patients with CO poisoning are similar to those of hypoxic encephalopathy, like cerebral edema and varying degrees of necrosis. Cerebral edema and ischemia can be followed by cerebral circulatory disorders, causing ischemic cerebral necrosis and further aggravating cerebral hypoxia [ 4 ].

CO poisoning causes a wide variety of symptoms that exhibit an unspecific character. Patients often present with tachycardia, headache, vomiting, fainting, and seizures [ 12 ]. Studies have shown that approximately 20% of patients with CO poisoning experience a progression from acute to chronic symptoms, and approximately 10% develop delayed neurological syndrome [ 13 ]. Some scholars have categorized the degree of poisoning as mild, moderate, or severe based on COHb concentration [ 14 ]. Hence, concentration of COHb seems to be somewhat proportional to the severity of clinical symptoms, as seen in the four patients we reported. However, it has been found that concentration of COHb is closely related to that of CO in the air at the time of intoxication and the duration of exposure, whereas the degree of intoxication is not only related to the concentration of COHb, but also to the the clinical manifestations, especially the individual’s tolerance to hypoxia [ 15 ]. Therefore, COHb concentration cannot be used to determine the severity of the patient’s symptoms and prognosis.

MRI, one of the most commonly used imaging methods, is of great significance in the diagnosis and prognosis of CO toxic encephalopathy. MRI can provide an objective assessment of brain damage [ 16 ]. Some researchers defined the time between CO exposure and MRI as the hyperacute phase within 24 h, the acute phase between 24 h and 7 days, the subacute phase between 8 and 21 days, and the chronic phase over 22 days [ 4 ]. The early stage of acute CO toxic encephalopathy on MRI mainly involves the cerebral white matte (CWM) and basal ganglia (especially the GP) [ 17 ]. Current conventional MRI studies have focused on some typical manifestations in the chronic phase, i.e., typical findings of bilateral high signal in basal ganglia and CWM on T2WI-weighted images [ 18 ]. Many studies have shown that magnetic resonance DWI can help to assess ischemic-hypoxic brain damage in both the hyperacute and acute phases of CO poisoning. DWI can characterize cell toxic edema in damaged CWM more sensitively and earlier than conventional MRI [ 15 ]. Moon et al. [ 19 ] found that DWI could reflect cytotoxic edema after CWM injury more sensitively than conventional MRI and may contribute to the prediction of long-term neurologic outcomes after discharge from the hospital.

With regard to damage to gray matter structures other than the GP during the acute phase of CO poisoning, few reports have described hippocampal lesions, and most of the cases were combined with other areas of abnormality. Of the 19 patients with acute CO poisoning reported by Donnell et al. [ 20 ], four patients exhibited abnormal signals in medial temporal lobe in the region of hippocampi, most of which were bilateral and combined with abnormalities in other locations. Kim et al. [ 15 ] reported the DWI imaging characteristics of 7 patients with acute phase of CO poisoning, of whom 2 had hippocampal lesions that showed limited diffusion of the lesion site on the DWI/ADC maps and their symptoms manifested as lethargy or coma. Henke et al. [ 21 ] reported a patient with CO poisoning who showed undefined high signal in the hippocampal lesions bilaterally on T2-weighted images 5 days after poisoning. His symptoms presented with severe amnesia and disorientation. There also have been previous reports describing damage to hippocampi in the chronic phase in patients with CO poisoning. Bastin et al. [ 22 ] performed brain MRI in a patient with CO poisoning 18 years after the event. The results showed that the hippocampal volume of this patient was reduced by more than 50% compared to a normal healthy population. The patient’s clinical presentation was characterized as severely impaired recall. Tamura et al. [ 23 ] examined MRI of a patient with acute CO poisoning 1 year after the event. The rate of hippocampal volume reduction in the first year after CO poisoning was approximately 4% compared to her previous MRI. Furthermore, in a report on hippocampal lesions revealed that acute phase hippocampal lesions may portend a very poor prognosis [ 20 ]. In all four patients we reported, the first MRI was performed within 72 h of the event, and DWI imaging showed that all patients presented with bilateral hippocampal lesions with or without abnormalities in other areas. The four patients we reported had clinical signs of impaired consciousness in the acute phase, two patients developed cognitive dysfunction with severe impairment of short-time memory in the acute phase, and two patients suffered from a persistent coma. All four patients were treated with hyperbaric oxygen, reduction of cerebral edema, and improvement of coronary flow, but the prognosis was not good, and one of them developed delayed neurological syndrome, which is similar to the report of Donnell et al [ 20 ].

Most of these patients with hippocampal lesions after CO poisoning reported above developed cognitive dysfunction during the recovery period, and most had a poor prognosis. The hippocampus is an important region for memory, learning, and emotional activities and has a high metabolic rate. Therefore, the hippocampus is very vulnerable to ischemia and hypoxia. In the animal model of acute CO poisoning, the hippocampal neurons of CO-poisoned rats were obviously damaged and hippocampal neurogenesis were significantly inhibited, which is consistent with the imaging performance of the cases reported in this study. Therefore, we conducted a systematic review of MRI of CO poisoning showing abnormal lesions in hippocampi (Table  2 ). The results found that, firstly, isolated bilateral hippocampal lesions are rare in the acute phase of poisoning, and most of them were reported as unilateral or bilateral hippocampal abnormalities combined with lesions in other parts of the brain, whereas the two patients reported in the present study had isolated bilateral hippocampal lesions; secondly, most of the patients with hippocampal lesions had cognitive dysfunctions in their clinical presentation, and two of the patients reported in the present study developed cognitive dysfunctions; finally, the hippocampal lesions in acute phase may portend a poor prognosis; in the present case, two patients had remaining cognitive dysfunction, and two patient was in lethargy or coma state.

Our cases illustrated that the hippocampi, as an atypical presentation, can be seen on MRI in a few patients with CO poisoning. Hippocampal lesions indicated by MRI are extremely significant in acute and subacute phases in patients with acute CO toxic brain injury. MRI is able to detect hippocampal lesions in acute injuries with sudden onset of neurologic deficits, and may also be able to predict, to some extent, brain injury in patients in the mid- to long-term, suggesting a prognosis for the patient. In this article, we summarize the case reports of hippocampal lesions on MRI in patients with CO poisoning in recent years, in order to provide reference for the diagnosis and prognosis of CO poisoning.

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Abbreviations

basal ganglia

carbon monoxide

carboxyl hemoglobin

cerebral white matte

globus pallidus

Glasgow coma score

hyperbaric oxygen therapy

medial temporal lobe

temporal white matter

Inagaki T, Ishino H, Seno H, Umegae N, Aoyama T. A long-term follow-up study of serial magnetic resonance images in patients with delayed encephalopathy after acute carbon monoxide poisoning. J Neuropsychiatry Clin Neurosci. 1997;51 6:421–3. https://doi.org/10.1111/j.1440-1819.1997.tb02611.x

Article   Google Scholar  

Braubach M, Algoet A, Beaton M, Lauriou S, Héroux ME, Krzyzanowski M. Mortality associated with exposure to carbon monoxide in WHO European Member States. Indoor Air. 2013;23 2:115–25. https://doi.org/10.1111/ina.12007

Article   CAS   Google Scholar  

Lippi G, Rastelli G, Meschi T, Borghi L, Cervellin G. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin Biochem. 2012;45(16–17):1278–85. https://doi.org/10.1016/j.clinbiochem.2012.06.004

Article   CAS   PubMed   Google Scholar  

Beppu T. The role of MRI in assessment of brain damage from carbon monoxide poisoning: a review of the literature. AJNR Am J Neuroradiol. 2014;35(4):625–31. https://doi.org/10.3174/ajnr.A3489

Article   CAS   PubMed   PubMed Central   Google Scholar  

Liu XL, Guan L. Research progress on head imaging features of carbon monoxide poisoning and delayed encephalopathy. Zhonghua Lao Dong Wei Sheng Zhi ye bing Za Zhi. 2023;41 1:57–62; https://doi.org/10.3760/cma.j.cn121094-20220223-00088

Piantadosi CA. Carbon monoxide poisoning. The New England journal of medicine. 2002;347 14:1054–5; https://doi.org/10.1056/NEJMp020104

Dolan MC. Carbon monoxide poisoning. Can Med Assoc J. 1985;133 5:392–9.

Google Scholar  

Ernst A, Zibrak JD. Carbon monoxide poisoning. N Engl J Med. 1998;339 22:1603–8. https://doi.org/10.1056/nejm199811263392206

Ashcroft J, Fraser E, Krishnamoorthy S, Westwood-Ruttledge S. Carbon monoxide poisoning. BMJ. 2019;365:l2299. https://doi.org/10.1136/bmj.l2299

Article   PubMed   Google Scholar  

Okeda R, Funata N, Takano T, Miyazaki Y, Higashino F, Yokoyama K, et al. The pathogenesis of carbon monoxide encephalopathy in the acute phase–physiological and morphological correlation. Acta Neuropathol. 1981;54 1:1–10. https://doi.org/10.1007/bf00691327

Laher I. Stressors and cardiovascular disease. Heart Mind. 2022;6(4):209–10. https://doi.org/10.4103/hm.hm_56_22

Reynolds CR, Hopkins RO, Bigler ED. Continuing decline of memory skills with significant recovery of intellectual function following severe carbon monoxide exposure: clinical, psychometric, and neuroimaging findings. Arch Clin Neuropsychol. 1999;14(2):235–49.

CAS   PubMed   Google Scholar  

Weaver LK. Clinical practice. Carbon monoxide poisoning. N Engl J Med. 2009;360 12:1217–25. https://doi.org/10.1056/NEJMcp0808891

Bağcı Z, Arslan A, Arslan D. The value of Neutrophil:lymphocyte ratio and platelet:lymphocyte ratio in Predicting Clinical Severity in Children with Carbon Monoxide Poisoning. Indian J Pediatr. 2021;88 11:1121–6. https://doi.org/10.1007/s12098-021-03704-w

Kim DM, Lee IH, Park JY, Hwang SB, Yoo DS, Song CJ. Acute carbon monoxide poisoning: MRI findings with clinical correlation. Diagn Interv Imaging. 2017;98 4:299–306. https://doi.org/10.1016/j.diii.2016.10.004

Hopkins RO, Woon FL. Neuroimaging, cognitive, and neurobehavioral outcomes following carbon monoxide poisoning. Behav Cogn Neurosci Rev. 2006;5 3:141–55. https://doi.org/10.1177/1534582306289730

Jeon SB, Sohn CH, Seo DW, Oh BJ, Lim KS, Kang DW, et al. Acute brain lesions on magnetic resonance imaging and delayed neurological sequelae in Carbon Monoxide Poisoning. JAMA Neurol. 2018;75 4:436–43. https://doi.org/10.1001/jamaneurol.2017.4618

Wang X, Li Z, Berglass J, He W, Zhao J, Zhang M, et al. MRI and clinical manifestations of delayed encephalopathy after carbon monoxide poisoning. Pak J Pharm Sci. 2016;29(6 Suppl):2317–20.

Moon JM, Chun BJ, Baek BH, Hong YJ. Initial diffusion-weighted MRI and long-term neurologic outcomes in charcoal-burning carbon monoxide poisoning. Clin Toxicol. 2018;56 3:161–9. https://doi.org/10.1080/15563650.2017.1352098

O’Donnell P, Buxton PJ, Pitkin A, Jarvis LJ. The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning. Clin Radiol. 2000;55 4:273–80. https://doi.org/10.1053/crad.1999.0369

Henke K, Kroll NE, Behniea H, Amaral DG, Miller MB, Rafal R, et al. Memory lost and regained following bilateral hippocampal damage. J Cogn Neurosci. 1999;11 6:682–97. https://doi.org/10.1162/089892999563643

Bastin C, Linden M, Charnallet A, Denby C, Montaldi D, Roberts N, et al. Dissociation between recall and recognition memory performance in an amnesic patient with hippocampal damage following carbon monoxide poisoning. Neurocase. 2004;10(4):330–44. https://doi.org/10.1080/13554790490507650

Tamura T, Sugihara G, Takahashi H. Memory impairment and hippocampal volume after Carbon Monoxide Poisoning. Arch Clin Neuropsychol. 2021;36 1:145–8. https://doi.org/10.1093/arclin/acaa050

Download references

Acknowledgements

We thank the patients for agreeing to submit their cases.

This work was supported by Tianjin Key Medical Discipline (Specialty) Construction Project [grant number TJYXZDXK-052B].

Author information

Wenxia Li and Jun Meng have contributed equally to this work and share first authorship.

Authors and Affiliations

Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China

Wenxia Li & Wei Yue

Tianjin Huanhu Hospital, Tianjin, 300350, China

Jun Meng, Jing Lei, Cheng Li & Wei Yue

You can also search for this author in PubMed   Google Scholar

Contributions

WL and JM analyzed and interpreted patient data. WL and CL gathered the materials, searched databases and conducted a literature review. JL interpreted the MRI of the brain. LW, JM, CL and WY were responsible for writing the manuscript. All authors critically revised the article for important intellectual content and approved the final manuscript.

Corresponding author

Correspondence to Wei Yue .

Ethics declarations

Ethics approval and consent to participate.

Ethics approval given by the Ethics Committee of Tianjin Huanhu Hospital (No. 20 23–138).

Consent for publication

Written informed consent for patient information to be published was provided by the patient.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Li, W., Meng, J., Lei, J. et al. Carbon monoxide poisoning with hippocampi lesions on MRI: cases report and literature review. BMC Neurol 24 , 159 (2024). https://doi.org/10.1186/s12883-024-03668-2

Download citation

Received : 25 October 2023

Accepted : 03 May 2024

Published : 11 May 2024

DOI : https://doi.org/10.1186/s12883-024-03668-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Magnetic resonance imaging
  • Carbon monoxide
  • Case report

BMC Neurology

ISSN: 1471-2377

review of related literature importance

COMMENTS

  1. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  2. Conducting a Literature Review: Why Do A Literature Review?

    Literature review is approached as a process of engaging with the discourse of scholarly communities that will help graduate researchers refine, define, and express their own scholarly vision and voice. This orientation on research as an exploratory practice, rather than merely a series of predetermined steps in a systematic method, allows the ...

  3. What is the importance of a review of related literature in the study

    Importance and organization of a review of related literature (RRL) About Editage Insights. Editage Insights offers a wealth of free academic research and publishing resources and is a one-stop guide for authors and others involved in scholarly publishing.

  4. What is a literature review?

    A literature or narrative review is a comprehensive review and analysis of the published literature on a specific topic or research question. The literature that is reviewed contains: books, articles, academic articles, conference proceedings, association papers, and dissertations. It contains the most pertinent studies and points to important ...

  5. Literature Review: The What, Why and How-to Guide

    Example: Predictors and Outcomes of U.S. Quality Maternity Leave: A Review and Conceptual Framework: 10.1177/08948453211037398 ; Systematic review: "The authors of a systematic review use a specific procedure to search the research literature, select the studies to include in their review, and critically evaluate the studies they find." (p. 139).

  6. Importance of a Good Literature Review

    A literature review is not only a summary of key sources, but has an organizational pattern which combines both summary and synthesis, often within specific conceptual categories.A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that informs how you are planning to investigate a research problem.

  7. Reviewing literature for research: Doing it the right way

    Selecting the right quality of literature is the key to successful research literature review. The quality can be estimated by what is known as "The Evidence Pyramid.". The level of evidence of references obtained from the aforementioned search tools are depicted in Figure 9. Systematic reviews obtained from Cochrane library constitute ...

  8. What is the purpose of a literature review?

    A literature review is a survey of scholarly sources (such as books, journal articles, and theses) related to a specific topic or research question. It is often written as part of a thesis, dissertation, or research paper, in order to situate your work in relation to existing knowledge.

  9. 5. The Literature Review

    A literature review may consist of simply a summary of key sources, but in the social sciences, a literature review usually has an organizational pattern and combines both summary and synthesis, often within specific conceptual categories.A summary is a recap of the important information of the source, but a synthesis is a re-organization, or a reshuffling, of that information in a way that ...

  10. What is a Literature Review?

    A literature review is a review and synthesis of existing research on a topic or research question. A literature review is meant to analyze the scholarly literature, make connections across writings and identify strengths, weaknesses, trends, and missing conversations. A literature review should address different aspects of a topic as it ...

  11. What is the Purpose of a Literature Review?

    A literature review is a critical summary and evaluation of the existing research (e.g., academic journal articles and books) on a specific topic. It is typically included as a separate section or chapter of a research paper or dissertation, serving as a contextual framework for a study.

  12. Writing a literature review

    A formal literature review is an evidence-based, in-depth analysis of a subject. There are many reasons for writing one and these will influence the length and style of your review, but in essence a literature review is a critical appraisal of the current collective knowledge on a subject. Rather than just being an exhaustive list of all that ...

  13. Why is it important to do a literature review in research?

    Learn why literature review is essential for any research and how it helps to summarize, synthesize, evaluate and compare existing knowledge in a field. Find out how literature review can establish the legitimacy, relevance, impact and originality of your research and publication.

  14. Literature Review in Research Writing

    A literature review is a study - or, more accurately, a survey - involving scholarly material, with the aim to discuss published information about a specific topic or research question. Therefore, to write a literature review, it is compulsory that you are a real expert in the object of study. The results and findings will be published and ...

  15. Steps in Conducting a Literature Review

    A literature review is an integrated analysis-- not just a summary-- of scholarly writings and other relevant evidence related directly to your research question.That is, it represents a synthesis of the evidence that provides background information on your topic and shows a association between the evidence and your research question.

  16. Literature review as a research methodology: An ...

    A literature review can broadly be described as a more or less systematic way of ... Closely related to the semi-structured review approach is the integrative or critical review approach. ... deciding on inclusion and exclusion criteria is one of the most important steps when conducting your review. However, important to note is the need to ...

  17. How does the review of related literature (RRL) help the ...

    A review of related literature (RRL) is important for obtaining an overview of the current knowledge on the topic. It provides the investigator with a framework on which to build an appropriate hypothesis. Further, an RRL guides the researcher in the direction of adding something new to the field without duplicating previous efforts.

  18. How to Write Review of Related Literature (RRL) in Research

    Tips on how to write a review of related literature in research. Given that you will probably need to produce a number of these at some point, here are a few general tips on how to write an effective review of related literature 2. Define your topic, audience, and purpose: You will be spending a lot of time with this review, so choose a topic ...

  19. The Literature Review: A Foundation for High-Quality Medical Education

    Purpose and Importance of the Literature Review. An understanding of the current literature is critical for all phases of a research study. Lingard 9 recently invoked the "journal-as-conversation" metaphor as a way of understanding how one's research fits into the larger medical education conversation. As she described it: "Imagine yourself joining a conversation at a social event.

  20. Importance and Issues of Literature Review in Research

    Some Issues in Liter ature R eview. 1. A continuous and time consuming process runs. through out r esearch work (more whil e selecting. a resear ch problem and writing 'r eview of. liter ature ...

  21. Purpose of a Literature Review

    The purpose of a literature review is to: Provide a foundation of knowledge on a topic; Identify areas of prior scholarship to prevent duplication and give credit to other researchers; Identify inconstancies: gaps in research, conflicts in previous studies, open questions left from other research;

  22. PDF Literature Review: An Overview

    The literature review provides a way for the novice researcher to convince the proposal the reviewers that she is knowledgeable about the related research and the "intellectual traditions" that support the proposed study. The literature review provides the researcher with an opportunity to identify any gaps that may exist in the body of ...

  23. Chapter 9 Methods for Literature Reviews

    Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour (vom Brocke et al., 2009). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and ...

  24. Satisfied and high performing? A meta-analysis and systematic review of

    Job satisfaction has long been discussed as an important factor determining individual behavior at work. To what extent this relationship is also evident in the teaching profession is especially relevant given the manifold job tasks and tremendous responsibility teachers bear for the development of their students. From a theoretical perspective, teachers' job satisfaction should be ...

  25. Neighborhood based computational approaches for the prediction of

    Long non-coding RNAs (lncRNAs) are a class of molecules involved in important biological processes. Extensive efforts have been provided to get deeper understanding of disease mechanisms at the lncRNA level, guiding towards the detection of biomarkers for disease diagnosis, treatment, prognosis and prevention. Unfortunately, due to costs and time complexity, the number of possible disease ...

  26. Integrating Technology in Learning: A Literature Review

    The results of the literature review highlight the importance of investing in technology training for lecturers and students, developing interesting learning materials, and increasing technology accessibility for all students. The use of technology in learning has become an increasingly important topic in the modern educational context. This literature review investigates the concept of ...

  27. Carbon monoxide poisoning with hippocampi lesions on MRI: cases report

    WL and JM analyzed and interpreted patient data. WL and CL gathered the materials, searched databases and conducted a literature review. JL interpreted the MRI of the brain. LW, JM, CL and WY were responsible for writing the manuscript. All authors critically revised the article for important intellectual content and approved the final manuscript.