Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 22 November 2022

Single case studies are a powerful tool for developing, testing and extending theories

  • Lyndsey Nickels   ORCID: orcid.org/0000-0002-0311-3524 1 , 2 ,
  • Simon Fischer-Baum   ORCID: orcid.org/0000-0002-6067-0538 3 &
  • Wendy Best   ORCID: orcid.org/0000-0001-8375-5916 4  

Nature Reviews Psychology volume  1 ,  pages 733–747 ( 2022 ) Cite this article

698 Accesses

6 Citations

26 Altmetric

Metrics details

  • Neurological disorders

Psychology embraces a diverse range of methodologies. However, most rely on averaging group data to draw conclusions. In this Perspective, we argue that single case methodology is a valuable tool for developing and extending psychological theories. We stress the importance of single case and case series research, drawing on classic and contemporary cases in which cognitive and perceptual deficits provide insights into typical cognitive processes in domains such as memory, delusions, reading and face perception. We unpack the key features of single case methodology, describe its strengths, its value in adjudicating between theories, and outline its benefits for a better understanding of deficits and hence more appropriate interventions. The unique insights that single case studies have provided illustrate the value of in-depth investigation within an individual. Single case methodology has an important place in the psychologist’s toolkit and it should be valued as a primary research tool.

This is a preview of subscription content, access via your institution

Access options

Subscribe to this journal

Receive 12 digital issues and online access to articles

55,14 € per year

only 4,60 € per issue

Buy this article

  • Purchase on Springer Link
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

in single case research the main goal is to determine a

Similar content being viewed by others

in single case research the main goal is to determine a

Comparing meta-analyses and preregistered multiple-laboratory replication projects

in single case research the main goal is to determine a

The fundamental importance of method to theory

in single case research the main goal is to determine a

A critical evaluation of the p-factor literature

Corkin, S. Permanent Present Tense: The Unforgettable Life Of The Amnesic Patient, H. M . Vol. XIX, 364 (Basic Books, 2013).

Lilienfeld, S. O. Psychology: From Inquiry To Understanding (Pearson, 2019).

Schacter, D. L., Gilbert, D. T., Nock, M. K. & Wegner, D. M. Psychology (Worth Publishers, 2019).

Eysenck, M. W. & Brysbaert, M. Fundamentals Of Cognition (Routledge, 2018).

Squire, L. R. Memory and brain systems: 1969–2009. J. Neurosci. 29 , 12711–12716 (2009).

Article   PubMed   PubMed Central   Google Scholar  

Corkin, S. What’s new with the amnesic patient H.M.? Nat. Rev. Neurosci. 3 , 153–160 (2002).

Article   PubMed   Google Scholar  

Schubert, T. M. et al. Lack of awareness despite complex visual processing: evidence from event-related potentials in a case of selective metamorphopsia. Proc. Natl Acad. Sci. USA 117 , 16055–16064 (2020).

Behrmann, M. & Plaut, D. C. Bilateral hemispheric processing of words and faces: evidence from word impairments in prosopagnosia and face impairments in pure alexia. Cereb. Cortex 24 , 1102–1118 (2014).

Plaut, D. C. & Behrmann, M. Complementary neural representations for faces and words: a computational exploration. Cogn. Neuropsychol. 28 , 251–275 (2011).

Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 , 2425–2430 (2001).

Hirshorn, E. A. et al. Decoding and disrupting left midfusiform gyrus activity during word reading. Proc. Natl Acad. Sci. USA 113 , 8162–8167 (2016).

Kosakowski, H. L. et al. Selective responses to faces, scenes, and bodies in the ventral visual pathway of infants. Curr. Biol. 32 , 265–274.e5 (2022).

Harlow, J. Passage of an iron rod through the head. Boston Med. Surgical J . https://doi.org/10.1176/jnp.11.2.281 (1848).

Broca, P. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech). Bull. Soc. Anat. 6 , 330–357 (1861).

Google Scholar  

Dejerine, J. Contribution A L’étude Anatomo-pathologique Et Clinique Des Différentes Variétés De Cécité Verbale: I. Cécité Verbale Avec Agraphie Ou Troubles Très Marqués De L’écriture; II. Cécité Verbale Pure Avec Intégrité De L’écriture Spontanée Et Sous Dictée (Société de Biologie, 1892).

Liepmann, H. Das Krankheitsbild der Apraxie (“motorischen Asymbolie”) auf Grund eines Falles von einseitiger Apraxie (Fortsetzung). Eur. Neurol. 8 , 102–116 (1900).

Article   Google Scholar  

Basso, A., Spinnler, H., Vallar, G. & Zanobio, M. E. Left hemisphere damage and selective impairment of auditory verbal short-term memory. A case study. Neuropsychologia 20 , 263–274 (1982).

Humphreys, G. W. & Riddoch, M. J. The fractionation of visual agnosia. In Visual Object Processing: A Cognitive Neuropsychological Approach 281–306 (Lawrence Erlbaum, 1987).

Whitworth, A., Webster, J. & Howard, D. A Cognitive Neuropsychological Approach To Assessment And Intervention In Aphasia (Psychology Press, 2014).

Caramazza, A. On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies. Brain Cogn. 5 , 41–66 (1986).

Caramazza, A. & McCloskey, M. The case for single-patient studies. Cogn. Neuropsychol. 5 , 517–527 (1988).

Shallice, T. Cognitive neuropsychology and its vicissitudes: the fate of Caramazza’s axioms. Cogn. Neuropsychol. 32 , 385–411 (2015).

Shallice, T. From Neuropsychology To Mental Structure (Cambridge Univ. Press, 1988).

Coltheart, M. Assumptions and methods in cognitive neuropscyhology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 3–22 (Psychology Press, 2001).

McCloskey, M. & Chaisilprungraung, T. The value of cognitive neuropsychology: the case of vision research. Cogn. Neuropsychol. 34 , 412–419 (2017).

McCloskey, M. The future of cognitive neuropsychology. In The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (ed. Rapp, B.) 593–610 (Psychology Press, 2001).

Lashley, K. S. In search of the engram. In Physiological Mechanisms in Animal Behavior 454–482 (Academic Press, 1950).

Squire, L. R. & Wixted, J. T. The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34 , 259–288 (2011).

Stone, G. O., Vanhoy, M. & Orden, G. C. V. Perception is a two-way street: feedforward and feedback phonology in visual word recognition. J. Mem. Lang. 36 , 337–359 (1997).

Perfetti, C. A. The psycholinguistics of spelling and reading. In Learning To Spell: Research, Theory, And Practice Across Languages 21–38 (Lawrence Erlbaum, 1997).

Nickels, L. The autocue? self-generated phonemic cues in the treatment of a disorder of reading and naming. Cogn. Neuropsychol. 9 , 155–182 (1992).

Rapp, B., Benzing, L. & Caramazza, A. The autonomy of lexical orthography. Cogn. Neuropsychol. 14 , 71–104 (1997).

Bonin, P., Roux, S. & Barry, C. Translating nonverbal pictures into verbal word names. Understanding lexical access and retrieval. In Past, Present, And Future Contributions Of Cognitive Writing Research To Cognitive Psychology 315–522 (Psychology Press, 2011).

Bonin, P., Fayol, M. & Gombert, J.-E. Role of phonological and orthographic codes in picture naming and writing: an interference paradigm study. Cah. Psychol. Cogn./Current Psychol. Cogn. 16 , 299–324 (1997).

Bonin, P., Fayol, M. & Peereman, R. Masked form priming in writing words from pictures: evidence for direct retrieval of orthographic codes. Acta Psychol. 99 , 311–328 (1998).

Bentin, S., Allison, T., Puce, A., Perez, E. & McCarthy, G. Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8 , 551–565 (1996).

Jeffreys, D. A. Evoked potential studies of face and object processing. Vis. Cogn. 3 , 1–38 (1996).

Laganaro, M., Morand, S., Michel, C. M., Spinelli, L. & Schnider, A. ERP correlates of word production before and after stroke in an aphasic patient. J. Cogn. Neurosci. 23 , 374–381 (2011).

Indefrey, P. & Levelt, W. J. M. The spatial and temporal signatures of word production components. Cognition 92 , 101–144 (2004).

Valente, A., Burki, A. & Laganaro, M. ERP correlates of word production predictors in picture naming: a trial by trial multiple regression analysis from stimulus onset to response. Front. Neurosci. 8 , 390 (2014).

Kittredge, A. K., Dell, G. S., Verkuilen, J. & Schwartz, M. F. Where is the effect of frequency in word production? Insights from aphasic picture-naming errors. Cogn. Neuropsychol. 25 , 463–492 (2008).

Domdei, N. et al. Ultra-high contrast retinal display system for single photoreceptor psychophysics. Biomed. Opt. Express 9 , 157 (2018).

Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6 , 8885 (2015).

Coltheart, M. The assumptions of cognitive neuropsychology: reflections on Caramazza (1984, 1986). Cogn. Neuropsychol. 34 , 397–402 (2017).

Badecker, W. & Caramazza, A. A final brief in the case against agrammatism: the role of theory in the selection of data. Cognition 24 , 277–282 (1986).

Fischer-Baum, S. Making sense of deviance: Identifying dissociating cases within the case series approach. Cogn. Neuropsychol. 30 , 597–617 (2013).

Nickels, L., Howard, D. & Best, W. On the use of different methodologies in cognitive neuropsychology: drink deep and from several sources. Cogn. Neuropsychol. 28 , 475–485 (2011).

Dell, G. S. & Schwartz, M. F. Who’s in and who’s out? Inclusion criteria, model evaluation, and the treatment of exceptions in case series. Cogn. Neuropsychol. 28 , 515–520 (2011).

Schwartz, M. F. & Dell, G. S. Case series investigations in cognitive neuropsychology. Cogn. Neuropsychol. 27 , 477–494 (2010).

Cohen, J. A power primer. Psychol. Bull. 112 , 155–159 (1992).

Martin, R. C. & Allen, C. Case studies in neuropsychology. In APA Handbook Of Research Methods In Psychology Vol. 2 Research Designs: Quantitative, Qualitative, Neuropsychological, And Biological (eds Cooper, H. et al.) 633–646 (American Psychological Association, 2012).

Leivada, E., Westergaard, M., Duñabeitia, J. A. & Rothman, J. On the phantom-like appearance of bilingualism effects on neurocognition: (how) should we proceed? Bilingualism 24 , 197–210 (2021).

Arnett, J. J. The neglected 95%: why American psychology needs to become less American. Am. Psychol. 63 , 602–614 (2008).

Stolz, J. A., Besner, D. & Carr, T. H. Implications of measures of reliability for theories of priming: activity in semantic memory is inherently noisy and uncoordinated. Vis. Cogn. 12 , 284–336 (2005).

Cipora, K. et al. A minority pulls the sample mean: on the individual prevalence of robust group-level cognitive phenomena — the instance of the SNARC effect. Preprint at psyArXiv https://doi.org/10.31234/osf.io/bwyr3 (2019).

Andrews, S., Lo, S. & Xia, V. Individual differences in automatic semantic priming. J. Exp. Psychol. Hum. Percept. Perform. 43 , 1025–1039 (2017).

Tan, L. C. & Yap, M. J. Are individual differences in masked repetition and semantic priming reliable? Vis. Cogn. 24 , 182–200 (2016).

Olsson-Collentine, A., Wicherts, J. M. & van Assen, M. A. L. M. Heterogeneity in direct replications in psychology and its association with effect size. Psychol. Bull. 146 , 922–940 (2020).

Gratton, C. & Braga, R. M. Editorial overview: deep imaging of the individual brain: past, practice, and promise. Curr. Opin. Behav. Sci. 40 , iii–vi (2021).

Fedorenko, E. The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience. Curr. Opin. Behav. Sci. 40 , 105–112 (2021).

Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125 , 358–384 (2021).

Petit, S. et al. Toward an individualized neural assessment of receptive language in children. J. Speech Lang. Hear. Res. 63 , 2361–2385 (2020).

Jung, K.-H. et al. Heterogeneity of cerebral white matter lesions and clinical correlates in older adults. Stroke 52 , 620–630 (2021).

Falcon, M. I., Jirsa, V. & Solodkin, A. A new neuroinformatics approach to personalized medicine in neurology: the virtual brain. Curr. Opin. Neurol. 29 , 429–436 (2016).

Duncan, G. J., Engel, M., Claessens, A. & Dowsett, C. J. Replication and robustness in developmental research. Dev. Psychol. 50 , 2417–2425 (2014).

Open Science Collaboration. Estimating the reproducibility of psychological science. Science 349 , aac4716 (2015).

Tackett, J. L., Brandes, C. M., King, K. M. & Markon, K. E. Psychology’s replication crisis and clinical psychological science. Annu. Rev. Clin. Psychol. 15 , 579–604 (2019).

Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1 , 0021 (2017).

Oldfield, R. C. & Wingfield, A. The time it takes to name an object. Nature 202 , 1031–1032 (1964).

Oldfield, R. C. & Wingfield, A. Response latencies in naming objects. Q. J. Exp. Psychol. 17 , 273–281 (1965).

Brysbaert, M. How many participants do we have to include in properly powered experiments? A tutorial of power analysis with reference tables. J. Cogn. 2 , 16 (2019).

Brysbaert, M. Power considerations in bilingualism research: time to step up our game. Bilingualism https://doi.org/10.1017/S1366728920000437 (2020).

Machery, E. What is a replication? Phil. Sci. 87 , 545–567 (2020).

Nosek, B. A. & Errington, T. M. What is replication? PLoS Biol. 18 , e3000691 (2020).

Li, X., Huang, L., Yao, P. & Hyönä, J. Universal and specific reading mechanisms across different writing systems. Nat. Rev. Psychol. 1 , 133–144 (2022).

Rapp, B. (Ed.) The Handbook Of Cognitive Neuropsychology: What Deficits Reveal About The Human Mind (Psychology Press, 2001).

Code, C. et al. Classic Cases In Neuropsychology (Psychology Press, 1996).

Patterson, K., Marshall, J. C. & Coltheart, M. Surface Dyslexia: Neuropsychological And Cognitive Studies Of Phonological Reading (Routledge, 2017).

Marshall, J. C. & Newcombe, F. Patterns of paralexia: a psycholinguistic approach. J. Psycholinguist. Res. 2 , 175–199 (1973).

Castles, A. & Coltheart, M. Varieties of developmental dyslexia. Cognition 47 , 149–180 (1993).

Khentov-Kraus, L. & Friedmann, N. Vowel letter dyslexia. Cogn. Neuropsychol. 35 , 223–270 (2018).

Winskel, H. Orthographic and phonological parafoveal processing of consonants, vowels, and tones when reading Thai. Appl. Psycholinguist. 32 , 739–759 (2011).

Hepner, C., McCloskey, M. & Rapp, B. Do reading and spelling share orthographic representations? Evidence from developmental dysgraphia. Cogn. Neuropsychol. 34 , 119–143 (2017).

Hanley, J. R. & Sotiropoulos, A. Developmental surface dysgraphia without surface dyslexia. Cogn. Neuropsychol. 35 , 333–341 (2018).

Zihl, J. & Heywood, C. A. The contribution of single case studies to the neuroscience of vision: single case studies in vision neuroscience. Psych. J. 5 , 5–17 (2016).

Bouvier, S. E. & Engel, S. A. Behavioral deficits and cortical damage loci in cerebral achromatopsia. Cereb. Cortex 16 , 183–191 (2006).

Zihl, J. & Heywood, C. A. The contribution of LM to the neuroscience of movement vision. Front. Integr. Neurosci. 9 , 6 (2015).

Dotan, D. & Friedmann, N. Separate mechanisms for number reading and word reading: evidence from selective impairments. Cortex 114 , 176–192 (2019).

McCloskey, M. & Schubert, T. Shared versus separate processes for letter and digit identification. Cogn. Neuropsychol. 31 , 437–460 (2014).

Fayol, M. & Seron, X. On numerical representations. Insights from experimental, neuropsychological, and developmental research. In Handbook of Mathematical Cognition (ed. Campbell, J.) 3–23 (Psychological Press, 2005).

Bornstein, B. & Kidron, D. P. Prosopagnosia. J. Neurol. Neurosurg. Psychiat. 22 , 124–131 (1959).

Kühn, C. D., Gerlach, C., Andersen, K. B., Poulsen, M. & Starrfelt, R. Face recognition in developmental dyslexia: evidence for dissociation between faces and words. Cogn. Neuropsychol. 38 , 107–115 (2021).

Barton, J. J. S., Albonico, A., Susilo, T., Duchaine, B. & Corrow, S. L. Object recognition in acquired and developmental prosopagnosia. Cogn. Neuropsychol. 36 , 54–84 (2019).

Renault, B., Signoret, J.-L., Debruille, B., Breton, F. & Bolgert, F. Brain potentials reveal covert facial recognition in prosopagnosia. Neuropsychologia 27 , 905–912 (1989).

Bauer, R. M. Autonomic recognition of names and faces in prosopagnosia: a neuropsychological application of the guilty knowledge test. Neuropsychologia 22 , 457–469 (1984).

Haan, E. H. F., de, Young, A. & Newcombe, F. Face recognition without awareness. Cogn. Neuropsychol. 4 , 385–415 (1987).

Ellis, H. D. & Lewis, M. B. Capgras delusion: a window on face recognition. Trends Cogn. Sci. 5 , 149–156 (2001).

Ellis, H. D., Young, A. W., Quayle, A. H. & De Pauw, K. W. Reduced autonomic responses to faces in Capgras delusion. Proc. R. Soc. Lond. B 264 , 1085–1092 (1997).

Collins, M. N., Hawthorne, M. E., Gribbin, N. & Jacobson, R. Capgras’ syndrome with organic disorders. Postgrad. Med. J. 66 , 1064–1067 (1990).

Enoch, D., Puri, B. K. & Ball, H. Uncommon Psychiatric Syndromes 5th edn (Routledge, 2020).

Tranel, D., Damasio, H. & Damasio, A. R. Double dissociation between overt and covert face recognition. J. Cogn. Neurosci. 7 , 425–432 (1995).

Brighetti, G., Bonifacci, P., Borlimi, R. & Ottaviani, C. “Far from the heart far from the eye”: evidence from the Capgras delusion. Cogn. Neuropsychiat. 12 , 189–197 (2007).

Coltheart, M., Langdon, R. & McKay, R. Delusional belief. Annu. Rev. Psychol. 62 , 271–298 (2011).

Coltheart, M. Cognitive neuropsychiatry and delusional belief. Q. J. Exp. Psychol. 60 , 1041–1062 (2007).

Coltheart, M. & Davies, M. How unexpected observations lead to new beliefs: a Peircean pathway. Conscious. Cogn. 87 , 103037 (2021).

Coltheart, M. & Davies, M. Failure of hypothesis evaluation as a factor in delusional belief. Cogn. Neuropsychiat. 26 , 213–230 (2021).

McCloskey, M. et al. A developmental deficit in localizing objects from vision. Psychol. Sci. 6 , 112–117 (1995).

McCloskey, M., Valtonen, J. & Cohen Sherman, J. Representing orientation: a coordinate-system hypothesis and evidence from developmental deficits. Cogn. Neuropsychol. 23 , 680–713 (2006).

McCloskey, M. Spatial representations and multiple-visual-systems hypotheses: evidence from a developmental deficit in visual location and orientation processing. Cortex 40 , 677–694 (2004).

Gregory, E. & McCloskey, M. Mirror-image confusions: implications for representation and processing of object orientation. Cognition 116 , 110–129 (2010).

Gregory, E., Landau, B. & McCloskey, M. Representation of object orientation in children: evidence from mirror-image confusions. Vis. Cogn. 19 , 1035–1062 (2011).

Laine, M. & Martin, N. Cognitive neuropsychology has been, is, and will be significant to aphasiology. Aphasiology 26 , 1362–1376 (2012).

Howard, D. & Patterson, K. The Pyramids And Palm Trees Test: A Test Of Semantic Access From Words And Pictures (Thames Valley Test Co., 1992).

Kay, J., Lesser, R. & Coltheart, M. PALPA: Psycholinguistic Assessments Of Language Processing In Aphasia. 2: Picture & Word Semantics, Sentence Comprehension (Erlbaum, 2001).

Franklin, S. Dissociations in auditory word comprehension; evidence from nine fluent aphasic patients. Aphasiology 3 , 189–207 (1989).

Howard, D., Swinburn, K. & Porter, G. Putting the CAT out: what the comprehensive aphasia test has to offer. Aphasiology 24 , 56–74 (2010).

Conti-Ramsden, G., Crutchley, A. & Botting, N. The extent to which psychometric tests differentiate subgroups of children with SLI. J. Speech Lang. Hear. Res. 40 , 765–777 (1997).

Bishop, D. V. M. & McArthur, G. M. Individual differences in auditory processing in specific language impairment: a follow-up study using event-related potentials and behavioural thresholds. Cortex 41 , 327–341 (2005).

Bishop, D. V. M., Snowling, M. J., Thompson, P. A. & Greenhalgh, T., and the CATALISE-2 consortium. Phase 2 of CATALISE: a multinational and multidisciplinary Delphi consensus study of problems with language development: terminology. J. Child. Psychol. Psychiat. 58 , 1068–1080 (2017).

Wilson, A. J. et al. Principles underlying the design of ‘the number race’, an adaptive computer game for remediation of dyscalculia. Behav. Brain Funct. 2 , 19 (2006).

Basso, A. & Marangolo, P. Cognitive neuropsychological rehabilitation: the emperor’s new clothes? Neuropsychol. Rehabil. 10 , 219–229 (2000).

Murad, M. H., Asi, N., Alsawas, M. & Alahdab, F. New evidence pyramid. Evidence-based Med. 21 , 125–127 (2016).

Greenhalgh, T., Howick, J. & Maskrey, N., for the Evidence Based Medicine Renaissance Group. Evidence based medicine: a movement in crisis? Br. Med. J. 348 , g3725–g3725 (2014).

Best, W., Ping Sze, W., Edmundson, A. & Nickels, L. What counts as evidence? Swimming against the tide: valuing both clinically informed experimentally controlled case series and randomized controlled trials in intervention research. Evidence-based Commun. Assess. Interv. 13 , 107–135 (2019).

Best, W. et al. Understanding differing outcomes from semantic and phonological interventions with children with word-finding difficulties: a group and case series study. Cortex 134 , 145–161 (2021).

OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence 2. CEBM https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (2011).

Holler, D. E., Behrmann, M. & Snow, J. C. Real-world size coding of solid objects, but not 2-D or 3-D images, in visual agnosia patients with bilateral ventral lesions. Cortex 119 , 555–568 (2019).

Duchaine, B. C., Yovel, G., Butterworth, E. J. & Nakayama, K. Prosopagnosia as an impairment to face-specific mechanisms: elimination of the alternative hypotheses in a developmental case. Cogn. Neuropsychol. 23 , 714–747 (2006).

Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17 , 34–48 (2007).

Pishnamazi, M. et al. Attentional bias towards and away from fearful faces is modulated by developmental amygdala damage. Cortex 81 , 24–34 (2016).

Rapp, B., Fischer-Baum, S. & Miozzo, M. Modality and morphology: what we write may not be what we say. Psychol. Sci. 26 , 892–902 (2015).

Yong, K. X. X., Warren, J. D., Warrington, E. K. & Crutch, S. J. Intact reading in patients with profound early visual dysfunction. Cortex 49 , 2294–2306 (2013).

Rockland, K. S. & Van Hoesen, G. W. Direct temporal–occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4 , 300–313 (1994).

Haynes, J.-D., Driver, J. & Rees, G. Visibility reflects dynamic changes of effective connectivity between V1 and fusiform cortex. Neuron 46 , 811–821 (2005).

Tanaka, K. Mechanisms of visual object recognition: monkey and human studies. Curr. Opin. Neurobiol. 7 , 523–529 (1997).

Fischer-Baum, S., McCloskey, M. & Rapp, B. Representation of letter position in spelling: evidence from acquired dysgraphia. Cognition 115 , 466–490 (2010).

Houghton, G. The problem of serial order: a neural network model of sequence learning and recall. In Current Research In Natural Language Generation (eds Dale, R., Mellish, C. & Zock, M.) 287–319 (Academic Press, 1990).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. From “some butter” to “a butter”: an investigation of mass and count representation and processing. Cogn. Neuropsychol. 31 , 313–349 (2014).

Fieder, N., Nickels, L., Biedermann, B. & Best, W. How ‘some garlic’ becomes ‘a garlic’ or ‘some onion’: mass and count processing in aphasia. Neuropsychologia 75 , 626–645 (2015).

Schröder, A., Burchert, F. & Stadie, N. Training-induced improvement of noncanonical sentence production does not generalize to comprehension: evidence for modality-specific processes. Cogn. Neuropsychol. 32 , 195–220 (2015).

Stadie, N. et al. Unambiguous generalization effects after treatment of non-canonical sentence production in German agrammatism. Brain Lang. 104 , 211–229 (2008).

Schapiro, A. C., Gregory, E., Landau, B., McCloskey, M. & Turk-Browne, N. B. The necessity of the medial temporal lobe for statistical learning. J. Cogn. Neurosci. 26 , 1736–1747 (2014).

Schapiro, A. C., Kustner, L. V. & Turk-Browne, N. B. Shaping of object representations in the human medial temporal lobe based on temporal regularities. Curr. Biol. 22 , 1622–1627 (2012).

Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acaquisition of semantic memory? J. Cogn. Neurosci. 13 , 357–369 (2001).

Snyder, J. J. & Chatterjee, A. Spatial-temporal anisometries following right parietal damage. Neuropsychologia 42 , 1703–1708 (2004).

Ashkenazi, S., Henik, A., Ifergane, G. & Shelef, I. Basic numerical processing in left intraparietal sulcus (IPS) acalculia. Cortex 44 , 439–448 (2008).

Lebrun, M.-A., Moreau, P., McNally-Gagnon, A., Mignault Goulet, G. & Peretz, I. Congenital amusia in childhood: a case study. Cortex 48 , 683–688 (2012).

Vannuscorps, G., Andres, M. & Pillon, A. When does action comprehension need motor involvement? Evidence from upper limb aplasia. Cogn. Neuropsychol. 30 , 253–283 (2013).

Jeannerod, M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14 , S103–S109 (2001).

Blakemore, S.-J. & Decety, J. From the perception of action to the understanding of intention. Nat. Rev. Neurosci. 2 , 561–567 (2001).

Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27 , 169–192 (2004).

Forde, E. M. E., Humphreys, G. W. & Remoundou, M. Disordered knowledge of action order in action disorganisation syndrome. Neurocase 10 , 19–28 (2004).

Mazzi, C. & Savazzi, S. The glamor of old-style single-case studies in the neuroimaging era: insights from a patient with hemianopia. Front. Psychol. 10 , 965 (2019).

Coltheart, M. What has functional neuroimaging told us about the mind (so far)? (Position Paper Presented to the European Cognitive Neuropsychology Workshop, Bressanone, 2005). Cortex 42 , 323–331 (2006).

Page, M. P. A. What can’t functional neuroimaging tell the cognitive psychologist? Cortex 42 , 428–443 (2006).

Blank, I. A., Kiran, S. & Fedorenko, E. Can neuroimaging help aphasia researchers? Addressing generalizability, variability, and interpretability. Cogn. Neuropsychol. 34 , 377–393 (2017).

Niv, Y. The primacy of behavioral research for understanding the brain. Behav. Neurosci. 135 , 601–609 (2021).

Crawford, J. R. & Howell, D. C. Comparing an individual’s test score against norms derived from small samples. Clin. Neuropsychol. 12 , 482–486 (1998).

Crawford, J. R., Garthwaite, P. H. & Ryan, K. Comparing a single case to a control sample: testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex 47 , 1166–1178 (2011).

McIntosh, R. D. & Rittmo, J. Ö. Power calculations in single-case neuropsychology: a practical primer. Cortex 135 , 146–158 (2021).

Patterson, K. & Plaut, D. C. “Shallow draughts intoxicate the brain”: lessons from cognitive science for cognitive neuropsychology. Top. Cogn. Sci. 1 , 39–58 (2009).

Lambon Ralph, M. A., Patterson, K. & Plaut, D. C. Finite case series or infinite single-case studies? Comments on “Case series investigations in cognitive neuropsychology” by Schwartz and Dell (2010). Cogn. Neuropsychol. 28 , 466–474 (2011).

Horien, C., Shen, X., Scheinost, D. & Constable, R. T. The individual functional connectome is unique and stable over months to years. NeuroImage 189 , 676–687 (2019).

Epelbaum, S. et al. Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept. Cortex 44 , 962–974 (2008).

Fischer-Baum, S. & Campana, G. Neuroplasticity and the logic of cognitive neuropsychology. Cogn. Neuropsychol. 34 , 403–411 (2017).

Paul, S., Baca, E. & Fischer-Baum, S. Cerebellar contributions to orthographic working memory: a single case cognitive neuropsychological investigation. Neuropsychologia 171 , 108242 (2022).

Feinstein, J. S., Adolphs, R., Damasio, A. & Tranel, D. The human amygdala and the induction and experience of fear. Curr. Biol. 21 , 34–38 (2011).

Crawford, J., Garthwaite, P. & Gray, C. Wanted: fully operational definitions of dissociations in single-case studies. Cortex 39 , 357–370 (2003).

McIntosh, R. D. Simple dissociations for a higher-powered neuropsychology. Cortex 103 , 256–265 (2018).

McIntosh, R. D. & Brooks, J. L. Current tests and trends in single-case neuropsychology. Cortex 47 , 1151–1159 (2011).

Best, W., Schröder, A. & Herbert, R. An investigation of a relative impairment in naming non-living items: theoretical and methodological implications. J. Neurolinguistics 19 , 96–123 (2006).

Franklin, S., Howard, D. & Patterson, K. Abstract word anomia. Cogn. Neuropsychol. 12 , 549–566 (1995).

Coltheart, M., Patterson, K. E. & Marshall, J. C. Deep Dyslexia (Routledge, 1980).

Nickels, L., Kohnen, S. & Biedermann, B. An untapped resource: treatment as a tool for revealing the nature of cognitive processes. Cogn. Neuropsychol. 27 , 539–562 (2010).

Download references

Acknowledgements

The authors thank all of those pioneers of and advocates for single case study research who have mentored, inspired and encouraged us over the years, and the many other colleagues with whom we have discussed these issues.

Author information

Authors and affiliations.

School of Psychological Sciences & Macquarie University Centre for Reading, Macquarie University, Sydney, New South Wales, Australia

Lyndsey Nickels

NHMRC Centre of Research Excellence in Aphasia Recovery and Rehabilitation, Australia

Psychological Sciences, Rice University, Houston, TX, USA

Simon Fischer-Baum

Psychology and Language Sciences, University College London, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

L.N. led and was primarily responsible for the structuring and writing of the manuscript. All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Lyndsey Nickels .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Psychology thanks Yanchao Bi, Rob McIntosh, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Nickels, L., Fischer-Baum, S. & Best, W. Single case studies are a powerful tool for developing, testing and extending theories. Nat Rev Psychol 1 , 733–747 (2022). https://doi.org/10.1038/s44159-022-00127-y

Download citation

Accepted : 13 October 2022

Published : 22 November 2022

Issue Date : December 2022

DOI : https://doi.org/10.1038/s44159-022-00127-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

in single case research the main goal is to determine a

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case Study? | Definition, Examples & Methods

What Is a Case Study? | Definition, Examples & Methods

Published on May 8, 2019 by Shona McCombes . Revised on November 20, 2023.

A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research.

A case study research design usually involves qualitative methods , but quantitative methods are sometimes also used. Case studies are good for describing , comparing, evaluating and understanding different aspects of a research problem .

Table of contents

When to do a case study, step 1: select a case, step 2: build a theoretical framework, step 3: collect your data, step 4: describe and analyze the case, other interesting articles.

A case study is an appropriate research design when you want to gain concrete, contextual, in-depth knowledge about a specific real-world subject. It allows you to explore the key characteristics, meanings, and implications of the case.

Case studies are often a good choice in a thesis or dissertation . They keep your project focused and manageable when you don’t have the time or resources to do large-scale research.

You might use just one complex case study where you explore a single subject in depth, or conduct multiple case studies to compare and illuminate different aspects of your research problem.

Case study examples
Research question Case study
What are the ecological effects of wolf reintroduction? Case study of wolf reintroduction in Yellowstone National Park
How do populist politicians use narratives about history to gain support? Case studies of Hungarian prime minister Viktor Orbán and US president Donald Trump
How can teachers implement active learning strategies in mixed-level classrooms? Case study of a local school that promotes active learning
What are the main advantages and disadvantages of wind farms for rural communities? Case studies of three rural wind farm development projects in different parts of the country
How are viral marketing strategies changing the relationship between companies and consumers? Case study of the iPhone X marketing campaign
How do experiences of work in the gig economy differ by gender, race and age? Case studies of Deliveroo and Uber drivers in London

Prevent plagiarism. Run a free check.

Once you have developed your problem statement and research questions , you should be ready to choose the specific case that you want to focus on. A good case study should have the potential to:

  • Provide new or unexpected insights into the subject
  • Challenge or complicate existing assumptions and theories
  • Propose practical courses of action to resolve a problem
  • Open up new directions for future research

TipIf your research is more practical in nature and aims to simultaneously investigate an issue as you solve it, consider conducting action research instead.

Unlike quantitative or experimental research , a strong case study does not require a random or representative sample. In fact, case studies often deliberately focus on unusual, neglected, or outlying cases which may shed new light on the research problem.

Example of an outlying case studyIn the 1960s the town of Roseto, Pennsylvania was discovered to have extremely low rates of heart disease compared to the US average. It became an important case study for understanding previously neglected causes of heart disease.

However, you can also choose a more common or representative case to exemplify a particular category, experience or phenomenon.

Example of a representative case studyIn the 1920s, two sociologists used Muncie, Indiana as a case study of a typical American city that supposedly exemplified the changing culture of the US at the time.

While case studies focus more on concrete details than general theories, they should usually have some connection with theory in the field. This way the case study is not just an isolated description, but is integrated into existing knowledge about the topic. It might aim to:

  • Exemplify a theory by showing how it explains the case under investigation
  • Expand on a theory by uncovering new concepts and ideas that need to be incorporated
  • Challenge a theory by exploring an outlier case that doesn’t fit with established assumptions

To ensure that your analysis of the case has a solid academic grounding, you should conduct a literature review of sources related to the topic and develop a theoretical framework . This means identifying key concepts and theories to guide your analysis and interpretation.

There are many different research methods you can use to collect data on your subject. Case studies tend to focus on qualitative data using methods such as interviews , observations , and analysis of primary and secondary sources (e.g., newspaper articles, photographs, official records). Sometimes a case study will also collect quantitative data.

Example of a mixed methods case studyFor a case study of a wind farm development in a rural area, you could collect quantitative data on employment rates and business revenue, collect qualitative data on local people’s perceptions and experiences, and analyze local and national media coverage of the development.

The aim is to gain as thorough an understanding as possible of the case and its context.

In writing up the case study, you need to bring together all the relevant aspects to give as complete a picture as possible of the subject.

How you report your findings depends on the type of research you are doing. Some case studies are structured like a standard scientific paper or thesis , with separate sections or chapters for the methods , results and discussion .

Others are written in a more narrative style, aiming to explore the case from various angles and analyze its meanings and implications (for example, by using textual analysis or discourse analysis ).

In all cases, though, make sure to give contextual details about the case, connect it back to the literature and theory, and discuss how it fits into wider patterns or debates.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Case Study? | Definition, Examples & Methods. Scribbr. Retrieved July 4, 2024, from https://www.scribbr.com/methodology/case-study/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, primary vs. secondary sources | difference & examples, what is a theoretical framework | guide to organizing, what is action research | definition & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

in single case research the main goal is to determine a

The Ultimate Guide to Qualitative Research - Part 1: The Basics

in single case research the main goal is to determine a

  • Introduction and overview
  • What is qualitative research?
  • What is qualitative data?
  • Examples of qualitative data
  • Qualitative vs. quantitative research
  • Mixed methods
  • Qualitative research preparation
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews

Research question

  • Conceptual framework
  • Conceptual vs. theoretical framework

Data collection

  • Qualitative research methods
  • Focus groups
  • Observational research

What is a case study?

Applications for case study research, what is a good case study, process of case study design, benefits and limitations of case studies.

  • Ethnographical research
  • Ethical considerations
  • Confidentiality and privacy
  • Power dynamics
  • Reflexivity

Case studies

Case studies are essential to qualitative research , offering a lens through which researchers can investigate complex phenomena within their real-life contexts. This chapter explores the concept, purpose, applications, examples, and types of case studies and provides guidance on how to conduct case study research effectively.

in single case research the main goal is to determine a

Whereas quantitative methods look at phenomena at scale, case study research looks at a concept or phenomenon in considerable detail. While analyzing a single case can help understand one perspective regarding the object of research inquiry, analyzing multiple cases can help obtain a more holistic sense of the topic or issue. Let's provide a basic definition of a case study, then explore its characteristics and role in the qualitative research process.

Definition of a case study

A case study in qualitative research is a strategy of inquiry that involves an in-depth investigation of a phenomenon within its real-world context. It provides researchers with the opportunity to acquire an in-depth understanding of intricate details that might not be as apparent or accessible through other methods of research. The specific case or cases being studied can be a single person, group, or organization – demarcating what constitutes a relevant case worth studying depends on the researcher and their research question .

Among qualitative research methods , a case study relies on multiple sources of evidence, such as documents, artifacts, interviews , or observations , to present a complete and nuanced understanding of the phenomenon under investigation. The objective is to illuminate the readers' understanding of the phenomenon beyond its abstract statistical or theoretical explanations.

Characteristics of case studies

Case studies typically possess a number of distinct characteristics that set them apart from other research methods. These characteristics include a focus on holistic description and explanation, flexibility in the design and data collection methods, reliance on multiple sources of evidence, and emphasis on the context in which the phenomenon occurs.

Furthermore, case studies can often involve a longitudinal examination of the case, meaning they study the case over a period of time. These characteristics allow case studies to yield comprehensive, in-depth, and richly contextualized insights about the phenomenon of interest.

The role of case studies in research

Case studies hold a unique position in the broader landscape of research methods aimed at theory development. They are instrumental when the primary research interest is to gain an intensive, detailed understanding of a phenomenon in its real-life context.

In addition, case studies can serve different purposes within research - they can be used for exploratory, descriptive, or explanatory purposes, depending on the research question and objectives. This flexibility and depth make case studies a valuable tool in the toolkit of qualitative researchers.

Remember, a well-conducted case study can offer a rich, insightful contribution to both academic and practical knowledge through theory development or theory verification, thus enhancing our understanding of complex phenomena in their real-world contexts.

What is the purpose of a case study?

Case study research aims for a more comprehensive understanding of phenomena, requiring various research methods to gather information for qualitative analysis . Ultimately, a case study can allow the researcher to gain insight into a particular object of inquiry and develop a theoretical framework relevant to the research inquiry.

Why use case studies in qualitative research?

Using case studies as a research strategy depends mainly on the nature of the research question and the researcher's access to the data.

Conducting case study research provides a level of detail and contextual richness that other research methods might not offer. They are beneficial when there's a need to understand complex social phenomena within their natural contexts.

The explanatory, exploratory, and descriptive roles of case studies

Case studies can take on various roles depending on the research objectives. They can be exploratory when the research aims to discover new phenomena or define new research questions; they are descriptive when the objective is to depict a phenomenon within its context in a detailed manner; and they can be explanatory if the goal is to understand specific relationships within the studied context. Thus, the versatility of case studies allows researchers to approach their topic from different angles, offering multiple ways to uncover and interpret the data .

The impact of case studies on knowledge development

Case studies play a significant role in knowledge development across various disciplines. Analysis of cases provides an avenue for researchers to explore phenomena within their context based on the collected data.

in single case research the main goal is to determine a

This can result in the production of rich, practical insights that can be instrumental in both theory-building and practice. Case studies allow researchers to delve into the intricacies and complexities of real-life situations, uncovering insights that might otherwise remain hidden.

Types of case studies

In qualitative research , a case study is not a one-size-fits-all approach. Depending on the nature of the research question and the specific objectives of the study, researchers might choose to use different types of case studies. These types differ in their focus, methodology, and the level of detail they provide about the phenomenon under investigation.

Understanding these types is crucial for selecting the most appropriate approach for your research project and effectively achieving your research goals. Let's briefly look at the main types of case studies.

Exploratory case studies

Exploratory case studies are typically conducted to develop a theory or framework around an understudied phenomenon. They can also serve as a precursor to a larger-scale research project. Exploratory case studies are useful when a researcher wants to identify the key issues or questions which can spur more extensive study or be used to develop propositions for further research. These case studies are characterized by flexibility, allowing researchers to explore various aspects of a phenomenon as they emerge, which can also form the foundation for subsequent studies.

Descriptive case studies

Descriptive case studies aim to provide a complete and accurate representation of a phenomenon or event within its context. These case studies are often based on an established theoretical framework, which guides how data is collected and analyzed. The researcher is concerned with describing the phenomenon in detail, as it occurs naturally, without trying to influence or manipulate it.

Explanatory case studies

Explanatory case studies are focused on explanation - they seek to clarify how or why certain phenomena occur. Often used in complex, real-life situations, they can be particularly valuable in clarifying causal relationships among concepts and understanding the interplay between different factors within a specific context.

in single case research the main goal is to determine a

Intrinsic, instrumental, and collective case studies

These three categories of case studies focus on the nature and purpose of the study. An intrinsic case study is conducted when a researcher has an inherent interest in the case itself. Instrumental case studies are employed when the case is used to provide insight into a particular issue or phenomenon. A collective case study, on the other hand, involves studying multiple cases simultaneously to investigate some general phenomena.

Each type of case study serves a different purpose and has its own strengths and challenges. The selection of the type should be guided by the research question and objectives, as well as the context and constraints of the research.

The flexibility, depth, and contextual richness offered by case studies make this approach an excellent research method for various fields of study. They enable researchers to investigate real-world phenomena within their specific contexts, capturing nuances that other research methods might miss. Across numerous fields, case studies provide valuable insights into complex issues.

Critical information systems research

Case studies provide a detailed understanding of the role and impact of information systems in different contexts. They offer a platform to explore how information systems are designed, implemented, and used and how they interact with various social, economic, and political factors. Case studies in this field often focus on examining the intricate relationship between technology, organizational processes, and user behavior, helping to uncover insights that can inform better system design and implementation.

Health research

Health research is another field where case studies are highly valuable. They offer a way to explore patient experiences, healthcare delivery processes, and the impact of various interventions in a real-world context.

in single case research the main goal is to determine a

Case studies can provide a deep understanding of a patient's journey, giving insights into the intricacies of disease progression, treatment effects, and the psychosocial aspects of health and illness.

Asthma research studies

Specifically within medical research, studies on asthma often employ case studies to explore the individual and environmental factors that influence asthma development, management, and outcomes. A case study can provide rich, detailed data about individual patients' experiences, from the triggers and symptoms they experience to the effectiveness of various management strategies. This can be crucial for developing patient-centered asthma care approaches.

Other fields

Apart from the fields mentioned, case studies are also extensively used in business and management research, education research, and political sciences, among many others. They provide an opportunity to delve into the intricacies of real-world situations, allowing for a comprehensive understanding of various phenomena.

Case studies, with their depth and contextual focus, offer unique insights across these varied fields. They allow researchers to illuminate the complexities of real-life situations, contributing to both theory and practice.

in single case research the main goal is to determine a

Whatever field you're in, ATLAS.ti puts your data to work for you

Download a free trial of ATLAS.ti to turn your data into insights.

Understanding the key elements of case study design is crucial for conducting rigorous and impactful case study research. A well-structured design guides the researcher through the process, ensuring that the study is methodologically sound and its findings are reliable and valid. The main elements of case study design include the research question , propositions, units of analysis, and the logic linking the data to the propositions.

The research question is the foundation of any research study. A good research question guides the direction of the study and informs the selection of the case, the methods of collecting data, and the analysis techniques. A well-formulated research question in case study research is typically clear, focused, and complex enough to merit further detailed examination of the relevant case(s).

Propositions

Propositions, though not necessary in every case study, provide a direction by stating what we might expect to find in the data collected. They guide how data is collected and analyzed by helping researchers focus on specific aspects of the case. They are particularly important in explanatory case studies, which seek to understand the relationships among concepts within the studied phenomenon.

Units of analysis

The unit of analysis refers to the case, or the main entity or entities that are being analyzed in the study. In case study research, the unit of analysis can be an individual, a group, an organization, a decision, an event, or even a time period. It's crucial to clearly define the unit of analysis, as it shapes the qualitative data analysis process by allowing the researcher to analyze a particular case and synthesize analysis across multiple case studies to draw conclusions.

Argumentation

This refers to the inferential model that allows researchers to draw conclusions from the data. The researcher needs to ensure that there is a clear link between the data, the propositions (if any), and the conclusions drawn. This argumentation is what enables the researcher to make valid and credible inferences about the phenomenon under study.

Understanding and carefully considering these elements in the design phase of a case study can significantly enhance the quality of the research. It can help ensure that the study is methodologically sound and its findings contribute meaningful insights about the case.

Ready to jumpstart your research with ATLAS.ti?

Conceptualize your research project with our intuitive data analysis interface. Download a free trial today.

Conducting a case study involves several steps, from defining the research question and selecting the case to collecting and analyzing data . This section outlines these key stages, providing a practical guide on how to conduct case study research.

Defining the research question

The first step in case study research is defining a clear, focused research question. This question should guide the entire research process, from case selection to analysis. It's crucial to ensure that the research question is suitable for a case study approach. Typically, such questions are exploratory or descriptive in nature and focus on understanding a phenomenon within its real-life context.

Selecting and defining the case

The selection of the case should be based on the research question and the objectives of the study. It involves choosing a unique example or a set of examples that provide rich, in-depth data about the phenomenon under investigation. After selecting the case, it's crucial to define it clearly, setting the boundaries of the case, including the time period and the specific context.

Previous research can help guide the case study design. When considering a case study, an example of a case could be taken from previous case study research and used to define cases in a new research inquiry. Considering recently published examples can help understand how to select and define cases effectively.

Developing a detailed case study protocol

A case study protocol outlines the procedures and general rules to be followed during the case study. This includes the data collection methods to be used, the sources of data, and the procedures for analysis. Having a detailed case study protocol ensures consistency and reliability in the study.

The protocol should also consider how to work with the people involved in the research context to grant the research team access to collecting data. As mentioned in previous sections of this guide, establishing rapport is an essential component of qualitative research as it shapes the overall potential for collecting and analyzing data.

Collecting data

Gathering data in case study research often involves multiple sources of evidence, including documents, archival records, interviews, observations, and physical artifacts. This allows for a comprehensive understanding of the case. The process for gathering data should be systematic and carefully documented to ensure the reliability and validity of the study.

Analyzing and interpreting data

The next step is analyzing the data. This involves organizing the data , categorizing it into themes or patterns , and interpreting these patterns to answer the research question. The analysis might also involve comparing the findings with prior research or theoretical propositions.

Writing the case study report

The final step is writing the case study report . This should provide a detailed description of the case, the data, the analysis process, and the findings. The report should be clear, organized, and carefully written to ensure that the reader can understand the case and the conclusions drawn from it.

Each of these steps is crucial in ensuring that the case study research is rigorous, reliable, and provides valuable insights about the case.

The type, depth, and quality of data in your study can significantly influence the validity and utility of the study. In case study research, data is usually collected from multiple sources to provide a comprehensive and nuanced understanding of the case. This section will outline the various methods of collecting data used in case study research and discuss considerations for ensuring the quality of the data.

Interviews are a common method of gathering data in case study research. They can provide rich, in-depth data about the perspectives, experiences, and interpretations of the individuals involved in the case. Interviews can be structured , semi-structured , or unstructured , depending on the research question and the degree of flexibility needed.

Observations

Observations involve the researcher observing the case in its natural setting, providing first-hand information about the case and its context. Observations can provide data that might not be revealed in interviews or documents, such as non-verbal cues or contextual information.

Documents and artifacts

Documents and archival records provide a valuable source of data in case study research. They can include reports, letters, memos, meeting minutes, email correspondence, and various public and private documents related to the case.

in single case research the main goal is to determine a

These records can provide historical context, corroborate evidence from other sources, and offer insights into the case that might not be apparent from interviews or observations.

Physical artifacts refer to any physical evidence related to the case, such as tools, products, or physical environments. These artifacts can provide tangible insights into the case, complementing the data gathered from other sources.

Ensuring the quality of data collection

Determining the quality of data in case study research requires careful planning and execution. It's crucial to ensure that the data is reliable, accurate, and relevant to the research question. This involves selecting appropriate methods of collecting data, properly training interviewers or observers, and systematically recording and storing the data. It also includes considering ethical issues related to collecting and handling data, such as obtaining informed consent and ensuring the privacy and confidentiality of the participants.

Data analysis

Analyzing case study research involves making sense of the rich, detailed data to answer the research question. This process can be challenging due to the volume and complexity of case study data. However, a systematic and rigorous approach to analysis can ensure that the findings are credible and meaningful. This section outlines the main steps and considerations in analyzing data in case study research.

Organizing the data

The first step in the analysis is organizing the data. This involves sorting the data into manageable sections, often according to the data source or the theme. This step can also involve transcribing interviews, digitizing physical artifacts, or organizing observational data.

Categorizing and coding the data

Once the data is organized, the next step is to categorize or code the data. This involves identifying common themes, patterns, or concepts in the data and assigning codes to relevant data segments. Coding can be done manually or with the help of software tools, and in either case, qualitative analysis software can greatly facilitate the entire coding process. Coding helps to reduce the data to a set of themes or categories that can be more easily analyzed.

Identifying patterns and themes

After coding the data, the researcher looks for patterns or themes in the coded data. This involves comparing and contrasting the codes and looking for relationships or patterns among them. The identified patterns and themes should help answer the research question.

Interpreting the data

Once patterns and themes have been identified, the next step is to interpret these findings. This involves explaining what the patterns or themes mean in the context of the research question and the case. This interpretation should be grounded in the data, but it can also involve drawing on theoretical concepts or prior research.

Verification of the data

The last step in the analysis is verification. This involves checking the accuracy and consistency of the analysis process and confirming that the findings are supported by the data. This can involve re-checking the original data, checking the consistency of codes, or seeking feedback from research participants or peers.

Like any research method , case study research has its strengths and limitations. Researchers must be aware of these, as they can influence the design, conduct, and interpretation of the study.

Understanding the strengths and limitations of case study research can also guide researchers in deciding whether this approach is suitable for their research question . This section outlines some of the key strengths and limitations of case study research.

Benefits include the following:

  • Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena.
  • Flexibility: Case study research is flexible in terms of design , data collection , and analysis . A sufficient degree of flexibility allows the researcher to adapt the study according to the case and the emerging findings.
  • Real-world context: Case study research involves studying the case in its real-world context, which can provide valuable insights into the interplay between the case and its context.
  • Multiple sources of evidence: Case study research often involves collecting data from multiple sources , which can enhance the robustness and validity of the findings.

On the other hand, researchers should consider the following limitations:

  • Generalizability: A common criticism of case study research is that its findings might not be generalizable to other cases due to the specificity and uniqueness of each case.
  • Time and resource intensive: Case study research can be time and resource intensive due to the depth of the investigation and the amount of collected data.
  • Complexity of analysis: The rich, detailed data generated in case study research can make analyzing the data challenging.
  • Subjectivity: Given the nature of case study research, there may be a higher degree of subjectivity in interpreting the data , so researchers need to reflect on this and transparently convey to audiences how the research was conducted.

Being aware of these strengths and limitations can help researchers design and conduct case study research effectively and interpret and report the findings appropriately.

in single case research the main goal is to determine a

Ready to analyze your data with ATLAS.ti?

See how our intuitive software can draw key insights from your data with a free trial today.

  • Privacy Policy

Research Method

Home » Case Study – Methods, Examples and Guide

Case Study – Methods, Examples and Guide

Table of Contents

Case Study Research

A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation.

It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied. Case studies typically involve multiple sources of data, including interviews, observations, documents, and artifacts, which are analyzed using various techniques, such as content analysis, thematic analysis, and grounded theory. The findings of a case study are often used to develop theories, inform policy or practice, or generate new research questions.

Types of Case Study

Types and Methods of Case Study are as follows:

Single-Case Study

A single-case study is an in-depth analysis of a single case. This type of case study is useful when the researcher wants to understand a specific phenomenon in detail.

For Example , A researcher might conduct a single-case study on a particular individual to understand their experiences with a particular health condition or a specific organization to explore their management practices. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a single-case study are often used to generate new research questions, develop theories, or inform policy or practice.

Multiple-Case Study

A multiple-case study involves the analysis of several cases that are similar in nature. This type of case study is useful when the researcher wants to identify similarities and differences between the cases.

For Example, a researcher might conduct a multiple-case study on several companies to explore the factors that contribute to their success or failure. The researcher collects data from each case, compares and contrasts the findings, and uses various techniques to analyze the data, such as comparative analysis or pattern-matching. The findings of a multiple-case study can be used to develop theories, inform policy or practice, or generate new research questions.

Exploratory Case Study

An exploratory case study is used to explore a new or understudied phenomenon. This type of case study is useful when the researcher wants to generate hypotheses or theories about the phenomenon.

For Example, a researcher might conduct an exploratory case study on a new technology to understand its potential impact on society. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as grounded theory or content analysis. The findings of an exploratory case study can be used to generate new research questions, develop theories, or inform policy or practice.

Descriptive Case Study

A descriptive case study is used to describe a particular phenomenon in detail. This type of case study is useful when the researcher wants to provide a comprehensive account of the phenomenon.

For Example, a researcher might conduct a descriptive case study on a particular community to understand its social and economic characteristics. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of a descriptive case study can be used to inform policy or practice or generate new research questions.

Instrumental Case Study

An instrumental case study is used to understand a particular phenomenon that is instrumental in achieving a particular goal. This type of case study is useful when the researcher wants to understand the role of the phenomenon in achieving the goal.

For Example, a researcher might conduct an instrumental case study on a particular policy to understand its impact on achieving a particular goal, such as reducing poverty. The researcher collects data from multiple sources, such as interviews, observations, and documents, and uses various techniques to analyze the data, such as content analysis or thematic analysis. The findings of an instrumental case study can be used to inform policy or practice or generate new research questions.

Case Study Data Collection Methods

Here are some common data collection methods for case studies:

Interviews involve asking questions to individuals who have knowledge or experience relevant to the case study. Interviews can be structured (where the same questions are asked to all participants) or unstructured (where the interviewer follows up on the responses with further questions). Interviews can be conducted in person, over the phone, or through video conferencing.

Observations

Observations involve watching and recording the behavior and activities of individuals or groups relevant to the case study. Observations can be participant (where the researcher actively participates in the activities) or non-participant (where the researcher observes from a distance). Observations can be recorded using notes, audio or video recordings, or photographs.

Documents can be used as a source of information for case studies. Documents can include reports, memos, emails, letters, and other written materials related to the case study. Documents can be collected from the case study participants or from public sources.

Surveys involve asking a set of questions to a sample of individuals relevant to the case study. Surveys can be administered in person, over the phone, through mail or email, or online. Surveys can be used to gather information on attitudes, opinions, or behaviors related to the case study.

Artifacts are physical objects relevant to the case study. Artifacts can include tools, equipment, products, or other objects that provide insights into the case study phenomenon.

How to conduct Case Study Research

Conducting a case study research involves several steps that need to be followed to ensure the quality and rigor of the study. Here are the steps to conduct case study research:

  • Define the research questions: The first step in conducting a case study research is to define the research questions. The research questions should be specific, measurable, and relevant to the case study phenomenon under investigation.
  • Select the case: The next step is to select the case or cases to be studied. The case should be relevant to the research questions and should provide rich and diverse data that can be used to answer the research questions.
  • Collect data: Data can be collected using various methods, such as interviews, observations, documents, surveys, and artifacts. The data collection method should be selected based on the research questions and the nature of the case study phenomenon.
  • Analyze the data: The data collected from the case study should be analyzed using various techniques, such as content analysis, thematic analysis, or grounded theory. The analysis should be guided by the research questions and should aim to provide insights and conclusions relevant to the research questions.
  • Draw conclusions: The conclusions drawn from the case study should be based on the data analysis and should be relevant to the research questions. The conclusions should be supported by evidence and should be clearly stated.
  • Validate the findings: The findings of the case study should be validated by reviewing the data and the analysis with participants or other experts in the field. This helps to ensure the validity and reliability of the findings.
  • Write the report: The final step is to write the report of the case study research. The report should provide a clear description of the case study phenomenon, the research questions, the data collection methods, the data analysis, the findings, and the conclusions. The report should be written in a clear and concise manner and should follow the guidelines for academic writing.

Examples of Case Study

Here are some examples of case study research:

  • The Hawthorne Studies : Conducted between 1924 and 1932, the Hawthorne Studies were a series of case studies conducted by Elton Mayo and his colleagues to examine the impact of work environment on employee productivity. The studies were conducted at the Hawthorne Works plant of the Western Electric Company in Chicago and included interviews, observations, and experiments.
  • The Stanford Prison Experiment: Conducted in 1971, the Stanford Prison Experiment was a case study conducted by Philip Zimbardo to examine the psychological effects of power and authority. The study involved simulating a prison environment and assigning participants to the role of guards or prisoners. The study was controversial due to the ethical issues it raised.
  • The Challenger Disaster: The Challenger Disaster was a case study conducted to examine the causes of the Space Shuttle Challenger explosion in 1986. The study included interviews, observations, and analysis of data to identify the technical, organizational, and cultural factors that contributed to the disaster.
  • The Enron Scandal: The Enron Scandal was a case study conducted to examine the causes of the Enron Corporation’s bankruptcy in 2001. The study included interviews, analysis of financial data, and review of documents to identify the accounting practices, corporate culture, and ethical issues that led to the company’s downfall.
  • The Fukushima Nuclear Disaster : The Fukushima Nuclear Disaster was a case study conducted to examine the causes of the nuclear accident that occurred at the Fukushima Daiichi Nuclear Power Plant in Japan in 2011. The study included interviews, analysis of data, and review of documents to identify the technical, organizational, and cultural factors that contributed to the disaster.

Application of Case Study

Case studies have a wide range of applications across various fields and industries. Here are some examples:

Business and Management

Case studies are widely used in business and management to examine real-life situations and develop problem-solving skills. Case studies can help students and professionals to develop a deep understanding of business concepts, theories, and best practices.

Case studies are used in healthcare to examine patient care, treatment options, and outcomes. Case studies can help healthcare professionals to develop critical thinking skills, diagnose complex medical conditions, and develop effective treatment plans.

Case studies are used in education to examine teaching and learning practices. Case studies can help educators to develop effective teaching strategies, evaluate student progress, and identify areas for improvement.

Social Sciences

Case studies are widely used in social sciences to examine human behavior, social phenomena, and cultural practices. Case studies can help researchers to develop theories, test hypotheses, and gain insights into complex social issues.

Law and Ethics

Case studies are used in law and ethics to examine legal and ethical dilemmas. Case studies can help lawyers, policymakers, and ethical professionals to develop critical thinking skills, analyze complex cases, and make informed decisions.

Purpose of Case Study

The purpose of a case study is to provide a detailed analysis of a specific phenomenon, issue, or problem in its real-life context. A case study is a qualitative research method that involves the in-depth exploration and analysis of a particular case, which can be an individual, group, organization, event, or community.

The primary purpose of a case study is to generate a comprehensive and nuanced understanding of the case, including its history, context, and dynamics. Case studies can help researchers to identify and examine the underlying factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and detailed understanding of the case, which can inform future research, practice, or policy.

Case studies can also serve other purposes, including:

  • Illustrating a theory or concept: Case studies can be used to illustrate and explain theoretical concepts and frameworks, providing concrete examples of how they can be applied in real-life situations.
  • Developing hypotheses: Case studies can help to generate hypotheses about the causal relationships between different factors and outcomes, which can be tested through further research.
  • Providing insight into complex issues: Case studies can provide insights into complex and multifaceted issues, which may be difficult to understand through other research methods.
  • Informing practice or policy: Case studies can be used to inform practice or policy by identifying best practices, lessons learned, or areas for improvement.

Advantages of Case Study Research

There are several advantages of case study research, including:

  • In-depth exploration: Case study research allows for a detailed exploration and analysis of a specific phenomenon, issue, or problem in its real-life context. This can provide a comprehensive understanding of the case and its dynamics, which may not be possible through other research methods.
  • Rich data: Case study research can generate rich and detailed data, including qualitative data such as interviews, observations, and documents. This can provide a nuanced understanding of the case and its complexity.
  • Holistic perspective: Case study research allows for a holistic perspective of the case, taking into account the various factors, processes, and mechanisms that contribute to the case and its outcomes. This can help to develop a more accurate and comprehensive understanding of the case.
  • Theory development: Case study research can help to develop and refine theories and concepts by providing empirical evidence and concrete examples of how they can be applied in real-life situations.
  • Practical application: Case study research can inform practice or policy by identifying best practices, lessons learned, or areas for improvement.
  • Contextualization: Case study research takes into account the specific context in which the case is situated, which can help to understand how the case is influenced by the social, cultural, and historical factors of its environment.

Limitations of Case Study Research

There are several limitations of case study research, including:

  • Limited generalizability : Case studies are typically focused on a single case or a small number of cases, which limits the generalizability of the findings. The unique characteristics of the case may not be applicable to other contexts or populations, which may limit the external validity of the research.
  • Biased sampling: Case studies may rely on purposive or convenience sampling, which can introduce bias into the sample selection process. This may limit the representativeness of the sample and the generalizability of the findings.
  • Subjectivity: Case studies rely on the interpretation of the researcher, which can introduce subjectivity into the analysis. The researcher’s own biases, assumptions, and perspectives may influence the findings, which may limit the objectivity of the research.
  • Limited control: Case studies are typically conducted in naturalistic settings, which limits the control that the researcher has over the environment and the variables being studied. This may limit the ability to establish causal relationships between variables.
  • Time-consuming: Case studies can be time-consuming to conduct, as they typically involve a detailed exploration and analysis of a specific case. This may limit the feasibility of conducting multiple case studies or conducting case studies in a timely manner.
  • Resource-intensive: Case studies may require significant resources, including time, funding, and expertise. This may limit the ability of researchers to conduct case studies in resource-constrained settings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Experimental Research Design

Experimental Design – Types, Methods, Guide

One-to-One Interview in Research

One-to-One Interview – Methods and Guide

Phenomenology

Phenomenology – Methods, Examples and Guide

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Exploratory Research

Exploratory Research – Types, Methods and...

Triangulation

Triangulation in Research – Types, Methods and...

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • HHS Author Manuscripts
  • PMC10016625

Logo of nihpa

The Family of Single-Case Experimental Designs

Leonard h. epstein.

1 Jacobs School of Medicine and Biomedical Sciences, Division of Behavioral Medicine, Department of Pediatrics, University at Buffalo, Buffalo, New York, United States of America,

Jesse Dallery

2 Department of Psychology, University of Florida, Gainesville, Florida, United States of America

Single-case experimental designs (SCEDs) represent a family of research designs that use experimental methods to study the effects of treatments on outcomes. The fundamental unit of analysis is the single case—which can be an individual, clinic, or community—ideally with replications of effects within and/or between cases. These designs are flexible and cost-effective and can be used for treatment development, translational research, personalized interventions, and the study of rare diseases and disorders. This article provides a broad overview of the family of single-case experimental designs with corresponding examples, including reversal designs, multiple baseline designs, combined multiple baseline/reversal designs, and integration of single-case designs to identify optimal treatments for individuals into larger randomized controlled trials (RCTs). Personalized N-of-1 trials can be considered a subcategory of SCEDs that overlaps with reversal designs. Relevant issues for each type of design—including comparisons of treatments, design issues such as randomization and blinding, standards for designs, and statistical approaches to complement visual inspection of single-case experimental designs—are also discussed.

1. Introduction

Single-case experimental designs (SCEDs) represent a family of experimental designs to examine the relationship between one or more treatments or levels of treatment and changes in biological or behavioral outcomes. These designs originated in early experimental psychology research ( Boring, 1929 ; Ebbinghaus, 1913 ; Pavlov, 1927 ), and were later expanded and formalized in the fields of basic and applied behavior analysis ( Morgan & Morgan, 2001 ; Sidman, 1960 ). SCEDs have been extended to a number of fields, including medicine ( Lillie et al., 2011 ; Schork, 2015 ), public health ( Biglan et al., 2000 ; Duan et al., 2013 ), education ( Horner et al., 2005 ), counseling psychology ( Lundervold & Belwood, 2000 ), clinical psychology ( Vlaeyen et al., 2020 ), health behavior ( McDonald et al., 2017 ), and neuroscience ( Soto, 2020 ).

SCEDs provide a framework to determine whether changes in a target behavior(s) or symptom are in fact a function of the intervention. The fundamentals of an SCED involve repeated measurement, replication of conditions (e.g., baseline and intervention conditions), and the analysis of effects with respect to each individual serving as his or her own control. This process can be useful for identifying the optimal treatment for an individual ( Dallery & Raiff, 2014 ; Davidson et al., 2021 ), treating rare diseases ( Abrahamyan et al., 2016 ), and implementing early phase translational research ( Czajkowski et al., 2015 ). SCEDs can be referred to as ‘personalized (N-of-1) trials’ when used this way, but they also have broad applicability to a range of scientific questions. Results from SCEDs can be aggregated using meta-analytic techniques to establish generalizable methods and treatment guidelines ( Shadish, 2014 ; Vannest et al., 2018 ). Figure 1 presents the main family of SCEDs, and shows how personalized (N-of-1) trials fit into these designs ( Vohra et al., 2016 ). The figure also distinguishes between experimental and nonexperimental single-case designs. In the current article, we provide an overview of SCEDs and thus a context for the articles in this special issue focused on personalized (N-of-1) trials. Our focus is to provide the fundamentals of these designs, and more detailed treatments of data analysis ( Moeyaert & Fingerhut, 2022 ; Schork, 2022 ) conduct and reporting standards ( Kravitz & Duan, 2022 ; Porcino & Vohra, 2022 ), and other methodological considerations are provided in this special issue. Our hope is that this article will inspire a diverse array of students, engineers, scientists, and practitioners to further explore the utility, rigor, and flexibility of these designs.

An external file that holds a picture, illustration, etc.
Object name is nihms-1842588-f0001.jpg

A = Baseline, B and C refer to different treatments.

The most common approach to evaluating the effectiveness of interventions on outcomes is using randomized controlled trials (RCTs). RCTs provide an idea of the average effect of an intervention on outcomes. People do not all change at the same rate or in the same way, however; variability in both how people change and the effect of the intervention is inevitable ( Fisher et al., 2018 ; Normand, 2016 ; Roustit et al., 2018 ). These sources of variability are conflated in a typical RCT, leading to heterogeneity of treatment effects (HTE). Research on HTE has shown variability in outcomes in RCTs, and in some studies very few people actually exhibit the benefits of that treatment ( Williams, 2010 ). One approach in RCTs is to assess moderators of treatment response to identify individual differences that may predict response to a treatment. This approach may not limit variability in response, and substantial reduction in variability of treatment for subgroups in comparison to the group as a whole is far from assured. Even if variability is reduced, the average effect for that subgroup may not be representative of individual members of the subgroup.

SCEDs can identify the optimal treatment for an individual person rather than the average person in a group ( Dallery & Raiff, 2014 ; Davidson et al., 2021 ; Hekler et al., 2020 ). SCEDs are multiphase experimental designs in which a great deal of data is collected on a single person, said person serves as his or her own control ( Kazdin, 2011 , 2021 ), and the order of presentation of conditions can be randomized to enhance experimental control. That is, a person’s outcomes in one phase are compared to outcomes in another phase. In a typical study, replications are achieved within and/or across several individuals; this allows for strong inferences about causation between behavior and the treatment (or levels thereof). Achieving replications is synonymous with achieving experimental control.

We provide an overview of three experimental designs that can be adapted for personalized medicine: reversal, multiple baseline, and combined reversal and multiple baseline designs, and we discuss how SCEDs can be integrated into RCTs. These designs focus on demonstrating experimental control of the relationship between treatment and outcome. Several general principles common to all of the designs are noteworthy ( Lobo et al., 2017 ). First, in many studies, treatment effects are compared with control conditions with a no- intervention baseline as the initial condition. To reduce threats to internal validity of the study, the order of assignment of interventions can be randomized ( Kratochwill & Levin, 2010 ) and, when possible, the intervention and data collection can be blinded. The demonstration of experimental control across conditions or people needs to be replicated several times (three replications is the minimum) to ensure confidence of the relationship between treatment and outcome ( Kratochwill et al., 2010 ; Kratochwill & Levin, 2015 ). Demonstrating stability of data within a phase or, otherwise, no trend in the direction of treatment effects prior to starting treatment is particularly important. Stability refers to the degree of variability in the data path over time (e.g., data points must fall within a 15% range of the median for a condition). Thus, phase length needs to be flexible for the sake of determining stability and trend within a phase, but a minimum of 5 data points per phase has been recommended ( Kratochwill et al., 2013 ). The focus of the intervention’s effects is on clinically rather than statistically significant effects with the target effect prespecified and considered in interpretation of the relevance of the effect for clinical practice ( Epstein et al., 2021 ). In addition, multiple dependent outcomes can be simultaneously measured ( Epstein et al., 2021 ). SCEDs can be used to test whether a variable mediates the effect of a treatment on symptoms or behavior ( Miočević et al., 2020 ; Riley & Gaynor, 2014 ). Visual inspection of graphical data is typically used to determine treatment effects, and statistical methods are commonly used to assist in interpretation of graphical data ( Epstein et al., 2021 ). Furthermore, a growing number of statistical approaches can summarize treatment effects and provide effect sizes ( Kazdin, 2021 ; Moeyaert & Fingerhut, this issue; Pustejovsky, 2019 ; Shadish et al., 2014 ). Data across many SCED trials can be aggregated to assess the generality of the treatment effects to help address for whom and under what conditions an intervention is effective ( Branch & Pennypacker, 2013 ; Shadish, 2014 ; Van den Noortgate & Onghena, 2003 ).

2. Reversal Designs

A reversal design collects behavioral or biological outcome data in at least two phases: a baseline or no treatment phase (labeled as ‘A’) and the experimental or treatment phase (labeled as ‘B’). The design is called a reversal design because there must be reversals or replications of phases for each individual; for example, in an ABA design, the baseline phase is replicated ( Kazdin, 2011 ). Ideally, three replications of treatment effects are used to demonstrate experimental control ( Kratochwill et al., 2010 ; Kratochwill & Levin, 1992 ). Figure 2 shows hypothetical results from an A1B1A2B2 design. The graph shows three replications of treatment effects (A1 versus B1, B1 versus A2, A2 versus B2) across four participants. Each phase was carried out until stability was evident from visual inspection of the data as well as absence of trends in the direction of the desired effect. The replication across participants increases the confidence in the effectiveness of the intervention. Extension of this design is possible by comparing multiple interventions, as well. The order of the treatments should be randomized, especially when the goal is to combine SCEDs across participants.

An external file that holds a picture, illustration, etc.
Object name is nihms-1842588-f0002.jpg

A1 = First Baseline, B1 First Treatment, A2 = Return to Baseline, B2 = Return to Treatment. P1–P4 represent different hypothetical participants.

Reversal designs can be more dynamic and compare several treatments. A common approach in personalized medicine would be to compare two or more doses of or different components of the same treatment ( Ward-Horner & Sturmey, 2010 ). For example, two drug doses could be compared using an A1B1C1B2C2 design, where A represents placebo and B and C represent the different drug doses ( Guyatt et al., 1990 ). In the case of drug studies, the drug/placebo administration can be double blinded. A more complex design could be A1B1A2C1A3C2A4B2, which would yield multiple replications of the comparison between drug and placebo. Based on the kinetics of the drug and the need for a washout period, the design could also be A1B1C1B2C2. This would provide three demonstration of treatment effects: B1 to C1, C1 to B2, and B2 to C2. Other permutations could be planned strategically to identify the optimal dose for each individual.

Advantages of SCED reversal designs are their ability to experimentally show that a particular treatment was functionally related to a particular change in an outcome variable for that person . This is the core principle of personalized medicine: an optimal treatment for an individual can be identified ( Dallery & Raiff, 2014 ; Davidson et al., 2021 ; Guyatt et al., 1990 ; Hekler et al., 2020 ; Lillie et al., 2011 ). These designs can work well for studying the effect of interventions on rare diseases in which collecting enough participants with similar characteristics for an RCT would be unlikely. An additional strength is the opportunity for the clinical researcher who also delivers clinical care to translate basic science findings or new findings from RCTs to their patients, who can potentially benefit ( Dallery & Raiff, 2014 ; Hayes, 1981 ). Research suggests that the trickledown of new developments and hypotheses to their support in RCTs can take more than 15 years; many important advancements in the medical and behavior sciences are likely not to be implemented rapidly enough ( Riley et al., 2013 ). The ability to test new intervention developments using scientific principles could speed up their translation into practice.

Limitations to SCED designs, however, are worth noting. Firstly, in line with the expectation that the outcome returns to baseline levels, reversals may require removal of the treatment. If the effect is not quickly reversible, then the designs are not relevant. A washout period may be placed in-between phases if the effect is not immediately reversible; for example, a drug washout period could be planned based on the half-life of drug. Secondly, the intervention should have a relatively immediate effect on the outcome. If many weeks to months are needed for some interventions to show effects, a reversal design may not be optimal unless the investigator is willing to plan a lengthy study. Thirdly, the design depends on comparing stable data over conditions. If achieving stability due to uncontrolled sources of biological or environmental variation is not possible, a reversal design may not be appropriate to evaluate a treatment, though it may be useful to identify the sources of variability ( Sidman, 1960 ). Finally, for a reversal to a baseline, a no-treatment phase may be inappropriate in investigating treatment effects for a very ill patient.

3. Multiple Baseline Designs

An alternative to a reversal design is the multiple baseline design, which does not require reversal of conditions to establish experimental control. There are three types of multiple baseline designs: multiple baseline across people, behaviors, and settings. The most popular is the multiple baseline across people, in which baselines are established for three or more people for the same outcome ( Cushing et al., 2011 ; Meredith et al., 2011 ). Treatment is implemented after different durations of baseline across individuals. The order of treatment implementation across people can be randomized ( Wen et al., 2019 ). Figure 3 shows an example across three individuals. In this hypothetical example, baseline data for each person are relatively stable and not decreasing, and reductions in the dependent variable are only observed after introduction of the intervention. Inclusion of one control person, who remains in baseline throughout the study and provides a control for extended monitoring, is also possible. Another variation is to collect baseline data intermittently in a ‘probe’ design, which can minimize burden associated with simultaneous and repeated measurement of outcomes ( Byiers et al., 2012 ; Horner & Baer, 1978 ). If the outcomes do not change during baseline conditions and the changes only occur across participants after the treatment has been implemented—and this sequence is replicated across several people—change in the outcome may be safely attributed to the treatment. The length of the baselines still must be long enough to show stability and no trend toward improvement until the treatment is implemented.

An external file that holds a picture, illustration, etc.
Object name is nihms-1842588-f0003.jpg

P1–P3 represent different hypothetical participants.

The two other multiple baseline designs focus on individual people: the multiple baseline across settings and the multiple baseline across behaviors ( Boles et al., 2008 ; Lane-Brown & Tate, 2010 ). An example of a multiple baseline across settings would be a dietary intervention implemented across meals. An intervention that targets a reduction in consumption of high–glycemic index foods, or foods with added sugar across meals, could be developed with the order of meals randomized. For example, someone may be randomized to reduce sugar-added or high–glycemic index foods for breakfast without any implementation at lunch or dinner. Implementation of the diet at lunch and then dinner would occur after different durations of baselines in these settings. An example of multiple baseline across behaviors might be to use feedback to develop a comprehensive exercise program that involves stretching, aerobic exercise, and resistance training. Feedback could target improvement in one of these randomly selected behaviors, implemented in a staggered manner.

The main limitation to a multiple baseline design is that some people (or behaviors) may be kept in baseline or control conditions for extended periods before treatment is implemented. Of course, failure to receive an effective treatment is common in RCTs for people who are randomized to control conditions, but unlike control groups in RCTs, all participants eventually receive treatment.

Finally, while the emphasis in personalized medicine is the identification of an optimal treatment plan for an individual person, situations in which multiple baselines across people prove relevant for precision medicine may arise. For example, identification of a small group of people with common characteristics—perhaps with a rare disease and for which a multiple-baseline-across-people design could be used to test an intervention more effectively than a series of personalized designs—is possible. In a similar vein, differential response to a common treatment in a multiple-baseline-across-people design can help to identify individual differences that can compromise the response to a treatment.

4. Integrating Multiple Baseline and Reversal Designs

While reversal designs can be used to compare effects of interventions, multiple baseline designs provide experimental control for testing one intervention but do not compare different interventions. One way to take advantage of the strengths of both designs is to combine them. For example, the effects of a first treatment could be studied using a multiple-baseline format and, after experimental control has been established, return to baseline prior to the commencement of a different treatment, which may be introduced in a different order. These comparisons can be made for several different interventions with the combination of both designs to demonstrate experimental control and compare effects of the interventions.

Figure 4 shows a hypothetical example of a combined approach to identify the best drug to decrease blood pressure. Baseline blood pressures are established for three people under placebo conditions before new drug X is introduced across participants in a staggered fashion to establish relative changes in blood pressure. All return to placebo after blood pressures reach stability, drug Y is introduced in a staggered sequence, participants are returned to placebo, and the most effective intervention for each individual (drug X or Y) is reintroduced to replicate the most important result: the most effective medication. This across-subjects design establishes experimental control for two different new drug interventions across three people while also establishing experimental control for five comparisons within subjects (placebo—drug X, drug Y—placebo, placebo—drug Y, drug Y—placebo, placebo—more effective drug). Though this combined design strengthens confidence beyond either reversal or multiple baseline designs, in many situations, experimental control demonstrated using a reversal design is sufficient.

An external file that holds a picture, illustration, etc.
Object name is nihms-1842588-f0004.jpg

BL = Baseline. Drug X and Drug Y represent hypothetical drugs to lower blood pressure, and Best Drug represents a reversal to the most effective drug as identified for each hypothetical participant, labeled P1–P3.

5. Other Varieties of Single-Case Experimental Designs

Other less commonly used designs within the family of SCEDs may be useful for personalized medicine. One of the most relevant may be the alternating treatment design ( Barlow & Hayes, 1979 ; Manolov et al., 2021 ), in which people are exposed to baseline and one or more treatments for very brief periods without the concern about stability before changing conditions. While the treatment period may be short, many more replications of treatments—and ineffective treatments—can be identified quickly. This type of design may be relevant for drugs that have rapid effects with a short half-life and behavioral interventions that have rapid effects ( Coyle & Robertson, 1998 )—for example, the effects of biofeedback on heart rate ( Weems, 1998 ). Another design is the changing criterion design, in which experimental control is demonstrated when the outcome meets certain preselected criteria that can be systematically increased or decreased over time ( Hartmann & Hall, 1976 ). The design is especially useful when learning a new skill or when outcomes change slowly over time ( Singh & Leung, 1988 )—for example, gradually increasing the range of foods chosen in a previously highly selective eater ( Russo et al., 2019 ).

6. Integrating Single-Case Experimental Designs Into Randomized Controlled Trials

SCEDs can be integrated into RCTs to compare the efficacy of treatments chosen for someone based on SCEDs versus a standardized or usual care treatment ( Epstein et al., 2021 ; Schork & Goetz, 2017 ). Such innovative designs may capture the best in SCEDs and randomized controlled designs. Kravitz et al. (2018) used an RCT in which one group ( n = 108) experienced a series of reversal AB conditions, or a personalized (N-of-1) trial. The specific conditions were chosen for each patient from among eight categories of treatments to reduce chronic musculoskeletal pain (e.g., acetaminophen, any nonsteroidal anti-inflammatory drug, acetaminophen/oxycodone, tramadol). The other group ( n = 107) received usual care. The study also incorporated mobile technology to record pain-related data daily (see Dallery et al., 2013 , for a discussion of technology and SCEDs). The results suggested that the N-of-1 approach was feasible and acceptable, but it did not yield statistically significant superior results in pain measures compared to the usual care group. However, as noted by Vohra and Punja (2019) , the results do not indicate a flaw in the methodological approach: finding that two treatments do not differ in superiority is a finding worth knowing.

Another example of a situation where an integrated approach may be useful is selecting a diet for weight control. Many diets for weight control that vary in their macronutrient intake—such as low carb, higher fat versus low fat, and higher carb—have their proponents and favorable biological mechanisms. However, direct comparisons of these diets basically show that they achieve similar weight control with large variability in outcome. Thus, while the average person on a low-fat diet does about the same as the average person on a lowcarb diet, some people on the low-carb diet do very well, while some fail. Some of the people who fail on the low-fat diet would undoubtedly do well on the low-carb diet, and some who fail on the low-fat diet would do well on the low-carb diet. Further, some would fail on both diets due to general problems in adherence.

Personalized medicine suggests that diets should be individualized to achieve the best results. SCEDs would be one way to show ‘proof of concept’ that a particular diet is better than a standard healthy diet. First, people would be randomized to experimental (including SCEDs) or control (not basing diet on SCEDs). Subject selection criteria would proceed as in any RCT. For the first 3 months, people in the experimental group would engage in individual reversal designs in which 2-week intervals of low-carb and low-fat diets would be interspersed with their usual eating, and weight loss, diet adherence, food preferences, and the reinforcing value of foods in the diet would be measured to assess biological, behavioral, and subjective changes.

Participants in the control group would experience a similar exposure to the different types of diets, but the diet to which they are assigned would be randomly chosen rather than chosen using SCED methods. In this way, they would have similar exposure to diets during the first 3 months of the study, but this experience would not impact group assignment. As with any RCT, the study would proceed with regular measures (e.g., 6, 12, 24 months) and the hypothesis that those assigned to a diet that results in better initial weight loss, and that they like and are motivated to continue, would do better than those receiving a randomly selected diet. The study could also be designed with three groups: a single-case design experimental group similar to the approach in the hypothetical study above and two control groups, one low-fat and one low-carb.

An alternative design would be to have everyone experience SCEDs for the first 3 months and then be randomized to either the optimal treatment identified during the first 3 months or an intervention randomly chosen among the interventions to be studied. This design has the advantage of randomization being after 3 months of study so that dropouts and non-adherers within the first 3 months would not be randomized in an intent-to-treat format.

The goal of either hypothesized study, or any study that attempts to incorporate SCEDs into RCTs, is that matching participants to treatments will provide superior results in comparison to providing the same treatment to everyone in a group. Two hypotheses can be generated in these types of designs: first, that the mean changes will differ between groups, and second, that the variability will differ between groups with less variability in outcome for people who have treatment selected after a single-case trial than people who have a treatment randomly selected. A reduction in variability plus mean differences in outcome should increase the effect size for people treated using individualized designs, increase power, and allow for a smaller sample size to ensure confidence about the differences observed between groups.

7. Limitations of Single-Case Experimental Designs

Single-case experimental designs have their common limitations. If a measure changes with repeated testing without intervention, it may not be useful for an SCED unless steps can be taken to mitigate such reactivity, such as more unobtrusive monitoring ( Kazdin, 2021 ). Given that the effects of interventions are evaluated over time, systematic environmental changes or maturation could influence the relationship between a treatment and outcome and thereby obscure the effect of a treatment. However, the design logic of reversal and multiple baseline designs largely control for such influences. Since SCEDs rely on repeated measures and a detailed study of the relationship between treatment and outcome, studies that use dependent measures that cannot be sampled frequently are not candidates for SCEDs. Likewise, the failure to identify a temporal relationship between the introduction of treatment and initiation of change in the outcome can make attribution of changes to the intervention challenging. A confounding variable’s association with introduction or removal of the intervention, which may cause inappropriate decisions about the effects of the intervention, is always possible. Dropout or uncontrolled events that occur to individuals can introduce confounding variables to the SCED. These problems are not unique to SCEDs and also occur with RCTs.

8. Single-Case Experimental Designs in Early Stage Translational Research

The emphasis of a research program may be on translating basic science findings to clinical interventions. The goal may be to collect early phase translational research as a step toward a fully powered RCT—( Epstein et al., 2021 ). The fact that a large amount of basic science does not get translated into clinical interventions is well known ( Butler, 2008 ; Seyhan, 2019 ); this served in part as the stimulus for the National Institutes of Health (NIH) to develop a network of clinical and translational science institutes in medical schools and universities throughout the United States. A common approach to early phase translational research is to implement a small, underpowered RCT to secure a ‘signal’ of a treatment effect and an effect size. This is a problematic approach to pilot research, and it is not advocated by the NIH as an approach to early phase translational research ( National Center for Complementary and Integrative Health, 2020 ). The number of participants needed for a fully powered RCT may be substantially different from the number projected from a small-sample RCT. These small, underpowered, early phase translational studies may provide too large an estimate of an effect size, leading to an underpowered RCT. Likewise, a small-sample RCT can lead to a small effect size that can, in turn, lead to a failure to implement a potentially effective intervention ( Kraemer et al., 2006 ). Therefore, SCEDs—especially reversal and multiple baseline designs—are evidently ideally suited to early phase translational research. This use complements the utility of SCEDs for identifying the optimal treatment for an individual or small group of individuals.

9. Conclusion

Single-case experimental designs provide flexible, rigorous, and cost-effective approaches that can be used in personalized medicine to identify the optimal treatment for an individual patient. SCEDs represent a broad array of designs, and personalized (N-of-1) designs are a prominent example, particularly in medicine. These designs can be incorporated into RCTs, and they can be integrated using meta-analysis techniques. SCEDs should become a standard part of the toolbox for clinical researchers to improve clinical care for their patients, and they can lead to the next generation of interventions that show maximal effects for individual cases as well as for early phase translational research to clinical practice.

Acknowledgments

We thank Lesleigh Stinson and Andrea Villegas for preparing the figures.

Disclosure Statement

Preparation of this special issue was supported by grants R01LM012836 from the National Library of Medicine of the National Institutes of Health and P30AG063786 from the National Institute on Aging of the National Institutes of Health. Funding to authors of this article was supported by grants U01 HL131552 from the National Heart, Lung, and Blood Institute, UH3 DK109543 from the National Institute of Diabetes, Digestive and Kidney Diseases, and RO1HD080292 and RO1HD088131 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication. The views expressed in this paper are those of the authors and do not represent the views of the National Institutes of Health, the U.S. Department of Health and Human Services, or any other government entity.

  • Abrahamyan L, Feldman BM, Tomlinson G, Faughnan ME, Johnson SR, Diamond IR, & Gupta S (2016). Alternative designs for clinical trials in rare diseases . American Journal of Medical Genetics, Part C: Seminars in Medical Genetics , 172 ( 4 ), 313–331. 10.1002/ajmg.c.31533 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barlow DH, & Hayes SC (1979). Alternating treatments design: One strategy for comparing the effects of two treatments in a single subject . Journal of Applied Behavior Analysis , 12 ( 2 ), 199–210. 10.1901/jaba.1979.12-199 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Biglan A, Ary D, & Wagenaar AC (2000). The value of interrupted time-series experiments for community intervention research . Prevention Science , 1 ( 1 ), 31–49. 10.1023/a:1010024016308 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Boles RE, Roberts MC, & Vernberg EM (2008). Treating non-retentive encopresis with rewarded scheduled toilet visits . Behavior Analysis in Practice , 1 ( 2 ), 68–72. 10.1007/bf03391730 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Boring EG (1929). A history of experimental psychology . Appleton-Century-Crofts. [ Google Scholar ]
  • Branch MN, & Pennypacker HS (2013). Generality and generalization of research findings. In Madden GJ, Dube WV, Hackenberg TD, Hanley GP, & Lattal KA (Eds.), APA handbook of behavior analysis, Vol. 1. Methods and principles (pp. 151–175). American Psychological Association. 10.1037/13937-007 [ CrossRef ] [ Google Scholar ]
  • Butler D (2008). Translational research: Crossing the valley of death . Nature , 453 ( 7197 ), 840–842. 10.1038/453840a [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Byiers BJ, Reichle J, & Symons FJ (2012). Single-subject experimental design for evidence-based practice . American Journal of Speech-Language Pathology , 21 ( 4 ), 397–414. 10.1044/1058-0360(2012/11-0036) [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Coyle JA, & Robertson VJ (1998). Comparison of two passive mobilizing techniques following Colles’ fracture: A multi-element design . Manual Therapy , 3 ( 1 ), 34–41. 10.1054/math.1998.0314 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Cushing CC, Jensen CD, & Steele RG (2011). An evaluation of a personal electronic device to enhance self-monitoring adherence in a pediatric weight management program using a multiple baseline design . Journal of Pediatric Psychology , 36 ( 3 ), 301–307. 10.1093/jpepsy/jsq074 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Czajkowski SM, Powell LH, Adler N, Naar-king S, Reynolds KD, Hunter CM, Laraia B, Olster DH, Perna FM, Peterson JC, Epel E, Boyington JE, Charlson ME, Related O, Czajkowski SM, Powell LH, Adler N, Reynolds KD, Hunter CM, … Boyington JE (2015). From ideas to efficacy: The ORBIT model for developing behavioral treatments for chronic diseases . Health Psychology , 34 ( 10 ), 971–982. 10.1037/hea0000161 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dallery J, Cassidy RN, & Raiff BR (2013). Single-case experimental designs to evaluate novel technology-based health interventions . Journal of Medical Internet Research , 15 ( 2 ), Article e22. 10.2196/jmir.2227 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Dallery J, & Raiff BR (2014). Optimizing behavioral health interventions with single-case designs: From development to dissemination . Translational Behavioral Medicine , 4 ( 3 ), 290–303. 10.1007/s13142-014-0258-z [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Davidson KW, Silverstein M, Cheung K, Paluch RA, & Epstein LH (2021). Experimental designs to optimize treatments for individuals . JAMA Pediatrics , 175 ( 4 ), 404–409. 10.1001/jamapediatrics.2020.5801 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Duan N, Kravitz RL, & Schmid CH (2013). Single-patient (n-of-1) trials: A pragmatic clinical decision methodology for patient-centered comparative effectiveness research . Journal of Clinical Epidemiology , 66 ( 8 Suppl ), S21–S28. 10.1016/j.jclinepi.2013.04.006 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ebbinghaus H (1913). Memory; A contribution to experimental psychology . Teachers College, Columbia University. [ Google Scholar ]
  • Epstein LH, Bickel WK, Czajkowski SM, Paluch RA, Moeyaert M, & Davidson KW (2021). Single case designs for early phase behavioral translational research in health psychology . Health Psychology , 40 ( 12 ), 858–874. 10.1037/hea0001055 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Fisher AJ, Medaglia JD, & Jeronimus BF (2018). Lack of group-to-individual generalizability is a threat to human subjects research . Proceedings of the National Academy of Sciences of the United States of America , 115 ( 27 ), E6106–E6115. 10.1073/pnas.1711978115 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guyatt GH, Heyting A, Jaeschke R, Keller J, Adachi JD, & Roberts RS (1990). N of 1 randomized trials for investigating new drugs . Controlled Clinical Trials , 11 ( 2 ), 88–100. 10.1016/0197-2456(90)90003-k [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hartmann D, & Hall RV (1976). The changing criterion design . Journal of Applied Behavior Analysis , 9 ( 4 ), 527–532. 10.1901/jaba.1976.9-527 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hayes SC (1981). Single case experimental design and empirical clinical practice . Journal of Consulting and Clinical Psychology , 49 ( 2 ), 193–211. 10.1037/0022-006X.49.2.193 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hekler E, Tiro JA, Hunter CM, & Nebeker C (2020). Precision health: The role of the social and behavioral sciences in advancing the vision . Annals of Behavioral Medicine , 54 ( 11 ), 805–826. 10.1093/abm/kaaa018 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Horner RD, & Baer DM (1978). Multiple-probe technique: A variation on the multiple baseline1 . Journal of Applied Behavior Analysis , 11 ( 1 ), 189–196. 10.1901/jaba.1978.11-189 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Horner RH, Carr EG, Halle J, McGee G, Odom S, & Wolery M (2005). The use of single-subject research to identify evidence-based practice in special education . Exceptional Children , 71 ( 2 ), 165–179. https://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2004-22378-004&site=ehost-live [ Google Scholar ]
  • Kazdin AE (2011). Single-case research designs: Methods for clinical and applied settings. In Single-case research designs: Methods for clinical and applied settings (2nd ed.). Oxford University Press. https://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2010-18971-000&site=ehost-live [ Google Scholar ]
  • Kazdin AE (2021). Single-case experimental designs: Characteristics, changes, and challenges . Journal of the Experimental Analysis of Behavior , 115 ( 1 ), 56–85. 10.1002/jeab.638 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kraemer HC, Mintz J, Noda A, Tinklenberg J, & Yesavage JA (2006). Caution regarding the use of pilot studies to guide power calculations for study proposals . In Archives of General Psychiatry , 63 ( 5 ), 484–489. 10.1001/archpsyc.63.5.484 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR, Hitchcock J, Horner RH, Levin JR, Odom SL, Rindskopf DM, & Shadish WR (2010). Single-case designs technical documentation . What Works Clearinghouse. [ Google Scholar ]
  • Kratochwill TR & Levin JR (1992). Single-case research design and analysis: New directions for psychology and education . Lawrence Erlbaum. [ Google Scholar ]
  • Kratochwill TR, & Levin JR (2010). Enhancing the scientific credibility of single-case intervention research: Randomization to the rescue . Psychological Methods , 15 ( 2 ), 124–144. 10.1037/a0017736 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR, & Levin JR (2015). Single-case research design and analysis: New directions for psychology and education . Routledge. 10.4324/9781315725994 [ CrossRef ] [ Google Scholar ]
  • Kratochwill TR, Hitchcock JH, Horner RH, Levin JR, Odom SL, Rindskopf DM, & Shadish WR (2013). Single-case intervention research design standards . Remedial and Special Education , 34 ( 1 ), 26–38. 10.1177/0741932512452794 [ CrossRef ] [ Google Scholar ]
  • Kravitz R, & Duan N (2022). Conduct and implementation of personalized trials in research and practice . Harvard Data Science Review , ( Special Issue 3 ). 10.1162/99608f92.901255e7 [ CrossRef ] [ Google Scholar ]
  • Kravitz RL, Schmid CH, Marois M, Wilsey B, Ward D, Hays RD, Duan N, Wang Y, MacDonald S, Jerant A, Servadio JL, Haddad D, & Sim I (2018). Effect of mobile device-supported single-patient multi-crossover trials on treatment of chronic musculoskeletal pain: A randomized clinical trial . JAMA Internal Medicine , 178 ( 10 ), 1368–1377. 10.1001/jamainternmed.2018.3981 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lane-Brown A, & Tate R (2010). Evaluation of an intervention for apathy after traumatic brain injury: A multiple-baseline, single-case experimental design . Journal of Head Trauma Rehabilitation , 25 ( 6 ), 459–469. 10.1097/HTR.0b013e3181d98e1d [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lillie EO, Patay B, Diamant J, Issell B, Topol EJ, & Schork NJ (2011). The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Personalized Medicine , 8 ( 2 ), 161–173. 10.2217/pme.11.7 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lobo MA, Moeyaert M, Cunha AB, & Babik I (2017). Single-case design, analysis, and quality assessment for intervention research . Journal of Neurologic Physical Therapy , 41 ( 3 ), 187–197. 10.1097/NPT.0000000000000187 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lundervold DA, & Belwood MF (2000). The best kept secret in counseling: Single-case (N = 1) experimental designs . Journal of Counseling and Development , 78 ( 1 ), 92–102. 10.1002/j.1556-6676.2000.tb02565.x [ CrossRef ] [ Google Scholar ]
  • Manolov R, Tanious R, & Onghena P (2021). Quantitative techniques and graphical representations for interpreting results from alternating treatment design . Perspectives on Behavior Science . Advance online publication. 10.1007/s40614-021-00289-9 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • McDonald S, Quinn F, Vieira R, O’Brien N, White M, Johnston DW, & Sniehotta FF (2017). The state of the art and future opportunities for using longitudinal n-of-1 methods in health behaviour research: A systematic literature overview . Health Psychology Review , 11 ( 4 ), 307–323. 10.1080/17437199.2017.1316672 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Meredith SE, Grabinski MJ, & Dallery J (2011). Internet-based group contingency management to promote abstinence from cigarette smoking: A feasibility study . Drug and Alcohol Dependence , 118 ( 1 ), 23–30. 10.1016/j.drugalcdep.2011.02.012 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Miočević M, Klaassen F, Geuke G, Moeyaert M, & Maric M (2020). Using Bayesian methods to test mediators of intervention outcomes in single-case experimental designs . Evidence-Based Communication Assessment and Intervention , 14 ( 1–2 ), 52–68. 10.1080/17489539.2020.1732029 [ CrossRef ] [ Google Scholar ]
  • Moeyaert M, & Fingerhut J (2022). Quantitative synthesis of personalized trials studies: Meta-analysis of aggregated data versus individual patient data . Harvard Data Science Review , ( Special Issue 3 ). 10.1162/99608f92.3574f1dc [ CrossRef ] [ Google Scholar ]
  • Morgan DL, & Morgan RK (2001). Single-participant research design: Bringing science to managed care . American Psychologist , 56 ( 2 ), 119–127. 10.1037/0003-066X.56.2.119 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • National Center for Complementary and Integrative Health. (2020, May 18). Pilot studies: Common uses and misuses . National Institutes of Health. https://www.nccih.nih.gov/grants/pilot-studies-common-uses-andmisuses [ Google Scholar ]
  • Normand MP (2016). Less is more: Psychologists can learn more by studying fewer people . In Frontiers in Psychology , 7 ( 94 ). 10.3389/fpsyg.2016.00934 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Pavlov IP (1927). Conditioned reflexes . Clarendon Press. [ Google Scholar ]
  • Porcino A, & Vohra S (2022). N-of-1 trials, their reporting guidelines, and the advancement of open science principles . Harvard Data Science Review , ( Special Issue 3 ). 10.1162/99608f92.a65a257a [ CrossRef ] [ Google Scholar ]
  • Pustejovsky JE (2019). Procedural sensitivities of effect sizes for single-case designs with directly observed behavioral outcome measures . Psychological Methods , 24 ( 2 ), 217–235. 10.1037/met0000179 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Riley AR, & Gaynor ST (2014). Identifying mechanisms of change: Utilizing single-participant methodology to better understand behavior therapy for child depression . Behavior Modification , 38 ( 5 ), 636–664. 10.1177/0145445514530756 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Riley WT, Glasgow RE, Etheredge L, & Abernethy AP (2013). Rapid, responsive, relevant (R3) research: A call for a rapid learning health research enterprise . Clinical and Translational Medicine , 2 ( 1 ), Article e10. 10.1186/2001-1326-2-10 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Roustit M, Giai J, Gaget O, Khouri C, Mouhib M, Lotito A, Blaise S, Seinturier C, Subtil F, Paris A, Cracowski C, Imbert B, Carpentier P, Vohra S, & Cracowski JL (2018). On-demand sildenafil as a treatment for raynaud phenomenon: A series of n -of-1 trials . Annals of Internal Medicine , 169 ( 10 ), 694–703. 10.7326/M18-0517 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Russo SR, Croner J, Smith S, Chirinos M, & Weiss MJ (2019). A further refinement of procedures addressing food selectivity . Behavioral Interventions , 34 ( 4 ), 495–503. 10.1002/bin.1686 [ CrossRef ] [ Google Scholar ]
  • Schork NJ (2015). Personalized medicine: Time for one-person trials . Nature , 520 ( 7549 ), 609–611. 10.1038/520609a [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Schork N (2022). Accommodating serial correlation and sequential design elements in personalized studies and aggregated personalized studies . Harvard Data Science Review , ( Special Issue 3 ). 10.1162/99608f92.f1eef6f4 [ CrossRef ] [ Google Scholar ]
  • Schork NJ, & Goetz LH (2017). Single-subject studies in translational nutrition research . Annual Review of Nutrition , 37 , 395–422. 10.1146/annurev-nutr-071816-064717 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Seyhan AA (2019). Lost in translation: The valley of death across preclinical and clinical divide – Identification of problems and overcoming obstacles . Translational Medicine Communications , 4 ( 1 ), Article 18. 10.1186/s41231-019-0050-7 [ CrossRef ] [ Google Scholar ]
  • Shadish WR (2014). Analysis and meta-analysis of single-case designs: An introduction . Journal of School Psychology , 52 ( 2 ), 109–122. 10.1016/j.jsp.2013.11.009 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Shadish WR, Hedges LV, & Pustejovsky JE (2014). Analysis and meta-analysis of single-case designs with a standardized mean difference statistic: A primer and applications . Journal of School Psychology , 52 ( 2 ), 123–147. 10.1016/j.jsp.2013.11.005 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Sidman M (1960). Tactics of scientific research . Basic Books. [ Google Scholar ]
  • Singh NN, & Leung JP (1988). Smoking cessation through cigarette-fading, self-recording, and contracting: Treatment, maintenance and long-term followup . Addictive Behaviors , 13 ( 1 ), 101–105. 10.1016/0306-4603(88)90033-0 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Soto PL (2020). Single-case experimental designs for behavioral neuroscience . Journal of the Experimental Analysis of Behavior , 114 ( 3 ), 447–467. 10.1002/jeab.633 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Van den Noortgate W, & Onghena P (2003). Hierarchical linear models for the quantitative integration of effect sizes in single-case research . Behavior Research Methods, Instruments, & Computers , 35 ( 1 ), 1–10. 10.3758/bf03195492 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vannest KJ, Peltier C, & Haas A (2018). Results reporting in single case experiments and single case meta-analysis . Research in Developmental Disabilities , 79 , 10–18. 10.1016/j.ridd.2018.04.029 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vlaeyen JWS, Wicksell RK, Simons LE, Gentili C, De TK, Tate RL, Vohra S, Punja S, Linton SJ, Sniehotta FF, & Onghena P (2020). From boulder to stockholm in 70 years: Single case experimental designs in clinical research . Psychological Record , 70 ( 4 ), 659–670. 10.1007/s40732-020-00402-5 [ CrossRef ] [ Google Scholar ]
  • Vohra S, Punja S (2019). A case for n-of-1 trials . JAMA Internal Medicine , 179 ( 3 ), 452. 10.1001/jamainternmed.2018.7166 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Vohra S, Shamseer L, Sampson M, Bukutu C, Schmid CH, Tate R, Nikles J, Zucker DR, Kravitz R, Guyatt G, Altman DG, Moher D, & CENT Group (2016). CONSORT extension for reporting N-of-1 trials (CENT) 2015 Statement . Journal of Clinical Epidemiology , 76 , 9–17. 10.1016/j.jclinepi.2015.05.004 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Ward-Horner J, & Sturmey P (2010). Component analyses using single-subject experimental designs: A review . Journal of Applied Behavior Analysis , 43 ( 4 ), 685–704. 10.1901/jaba.2010.43-685 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Weems CF (1998). The evaluation of heart rate biofeedback using a multi-element design . Journal of Behavior Therapy and Experimental Psychiatry , 29 ( 2 ), 157–162. 10.1016/S0005-7916(98)00005-6 [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Wen X, Eiden RD, Justicia-Linde FE, Wang Y, Higgins ST, Thor N, Haghdel A, Peters AR, & Epstein LH (2019). A multicomponent behavioral intervention for smoking cessation during pregnancy: A nonconcurrent multiple-baseline design . Translational Behavioral Medicine , 9 ( 2 ), 308–318. 10.1093/tbm/iby027 [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Williams BA (2010). Perils of evidence-based medicine . Perspectives in Biology and Medicine , 53 ( 1 ), 106–120. 10.1353/pbm.0.0132 [ PubMed ] [ CrossRef ] [ Google Scholar ]

Generality of Findings From Single-Case Designs: It’s Not All About the “ N ”

  • Technical and Tutorials
  • Published: 16 February 2021
  • Volume 14 , pages 991–995, ( 2021 )

Cite this article

in single case research the main goal is to determine a

  • Seth G. Walker 1 &
  • James E. Carr   ORCID: orcid.org/0000-0002-6445-2992 1  

1011 Accesses

16 Citations

32 Altmetric

Explore all metrics

There is a common misconception in applied research that generalizations from a study to a specific client can only be made with a large sample size. In single-case design research, however, generalizations are made from a line of replication studies rather than from a single large- N study. In this brief tutorial, we summarize how generalizations are made from single-case design research, and provide a model elevator speech to assist behavior analysts in talking about single-case design research with others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

in single case research the main goal is to determine a

Similar content being viewed by others

in single case research the main goal is to determine a

Advancing the Application and Use of Single-Case Research Designs: Reflections on Articles from the Special Issue

Using single-case designs in practical settings: is within-subject replication always necessary.

in single case research the main goal is to determine a

Single-Case Designs

We should note that generality also has another meaning in applied behavior analysis. Baer, Wolf, and Risley ( 1968 ) use generality to refer to the durability and breadth of the effects of a particular intervention implementation.

Birnbrauer ( 1981 ) proposed a different way of thinking about generality, in which its basis is the functional difference between the behavior’s controlling variables during baseline and intervention, rather than participant or setting characteristics. Birnbrauer stated, “We should look for similarities in baseline conditions, the functional relations that appear to be operative during those pretreatment conditions, and the functional changes that implementation of treatment entailed for previous subjects” (p. 126). We do not disagree with this approach to generality. However, it can only be applied when experimental articles include such information; most do not. In addition, the larger scientific community still discusses generality in terms of differences between participants, settings, and other variables across studies. Thus, this is the framework we use in the current article.

A line of research generally produces a large N , but it is the various systematic replication conditions that ultimately enhance generalization and not the large N itself.

Baer, D. M., Wolf, M. M., & Risley, T. R. (1968). Some current dimensions of applied behavior analysis. Journal of Applied Behavior Analysis, 1 (1), 91–97. https://doi.org/10.1901/jaba.1968.1-91 .

Article   PubMed   PubMed Central   Google Scholar  

Bailey, J. S., & Burch, M. R. (2010). 25 essential skills & strategies for the professional behavior analyst . Routledge.

Bailey, J. S., & Burch, M. R. (2018). Research methods in applied behavior analysis (2nd ed.). Routledge.

Barlow, D. H., Nock, M. K., & Hersen, M. (2009). Single case experimental designs: Strategies for studying behavior change (3rd ed.) Pearson.

Google Scholar  

Birnbrauer, J. S. (1981). External validity and experimental investigation of individual behaviour. Analysis and Intervention in Developmental Disabilities, 1 (2), 117–132. https://doi.org/10.1016/0270-4684(81)90026-4 .

Article   Google Scholar  

Branch, M. N., & Pennypacker, H. S. (2013). Generality and generalization of research findings. In G. J. Madden (Ed.), Handbook of behavior analysis (Vol. 1, pp. 151–175). American Psychological Association.

Carr, E. G., & Durand, V. M. (1985). Reducing behavior problems through functional communication training. Journal of Applied Behavior Analysis, 18 (2), 111–126. https://doi.org/10.1901/jaba.1985.18-111 .

Fisher, W. W., Luczynski, K. C., Blowers, A. P., Vosters, M. E., Pisman, M. D., Craig, A. R., Hood, S. A., Machado, M. A., Lesser, A. D., & Piazza, C. C. (2020). A randomized clinical trial of a virtual-training program for teaching applied-behavior-analysis skills to parents of children with autism spectrum disorder. Journal of Applied Behavior Analysis, 53 (4), 1856–1875. https://doi.org/10.1002/jaba.778 .

Gerow, S., Hagan-Burke, S., Rispoli, M., Gregori, E., Mason, R., & Ninci, J. (2018). A systematic review of parent-implemented functional communication training for children with ASD. Behavior Modification, 42 (3), 335–363. https://doi.org/10.1177/0145445517740872 .

Hagopian, L. P. (2020). The consecutive controlled case series: Design, data-analytics, and reporting methods supporting the study of generality. Journal of Applied Behavior Analysis, 53 (2), 596–619. https://doi.org/10.1002/jaba.691 .

Heiman, G. W. (1995). Research methods in psychology . Houghton Mifflin.

Hernández, V., Fernand, J. K., Vollmer, T. R., & Slocum, S. K. (2018). Retrospective analysis of changes in response topographies of escape-maintained aggressive behavior during functional analyses. Journal of Applied Behavior Analysis, 51 (3), 521–527. https://doi.org/10.1002/jaba.464 .

Article   PubMed   Google Scholar  

Johnston, J. M., Pennypacker, H. S., & Green, G. (2020). Strategies and tactics of behavioral research and practice (4th ed.). Routledge.

Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings (2nd ed.). Oxford University Press.

Ledford, J. R., & Gast, D. L. (Eds.). (2018). Single case research methodology: Applications in special education and behavioral sciences (3rd ed.). Routledge. 

Lipschultz, J. L., Wilder, D. A., Ertel, H., & Enderli, A. (2018). The effects of high-p and low-p instruction similarity on compliance among young children. Journal of Applied Behavior Analysis, 51 (4), 866–878. https://doi.org/10.1002/jaba.482 .

Mancil, G. R. (2006). Functional communication training: A review of the literature related to children with autism. Education and Training in Developmental Disabilities, 41 (3), 213–224.

Meany-Daboul, M. G., Roscoe, E. M., Bourret, J. C., & Ahearn, W. H. (2007). A comparison of momentary time sampling and partial-interval recording for evaluating functional relations. Journal of Applied Behavior Analysis, 40 (3), 501–514. https://doi.org/10.1901/jaba.2007.40-501 .

Mirenda, P. (1997). Supporting individuals with challenging behavior through functional communication training and AAC: Research review. Augmentative and Alternative Communication, 13 (4), 207–225. https://doi.org/10.1080/07434619712331278048 .

Moore, K., Delaney, J. A., & Dixon, M. R. (2007). Using indices of happiness to examine the influence of environmental enhancements for nursing home residents with Alzheimer’s disease. Journal of Applied Behavior Analysis, 40 (3), 541–544. https://doi.org/10.1901/jaba.2007.40-541 .

Purswell, K. E., & Ray, D. C. (2014). Research with small samples: Considerations for single case and randomized small group experimental designs. Counseling Outcome Research and Evaluation, 5 (2), 116–126. https://doi.org/10.1177/2150137814552474 .

Sidman, M. (1960). Tactics of scientific research . Basic Books.

Spata, A. (2003). Research methods: Science and diversity . Wiley.

Download references

Acknowledgement

We thank April Kisamore for her assistance during the early stage of this project.

Author information

Authors and affiliations.

Behavior Analyst Certification Board, 7950 Shaffer Parkway, Littleton, CO, 80127, USA

Seth G. Walker & James E. Carr

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to James E. Carr .

Ethics declarations

Ethical approval.

This is a discussion article; no ethical approval was required.

Informed consent

Informed consent was not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Walker, S.G., Carr, J.E. Generality of Findings From Single-Case Designs: It’s Not All About the “ N ”. Behav Analysis Practice 14 , 991–995 (2021). https://doi.org/10.1007/s40617-020-00547-3

Download citation

Accepted : 21 December 2020

Published : 16 February 2021

Issue Date : December 2021

DOI : https://doi.org/10.1007/s40617-020-00547-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Dissemination
  • External validity
  • Replication
  • Single-case design
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. An overview of the single-case study approach

    in single case research the main goal is to determine a

  2. PPT

    in single case research the main goal is to determine a

  3. Single case study research

    in single case research the main goal is to determine a

  4. Mixed Methods Single Case Research: State of the Art and Future

    in single case research the main goal is to determine a

  5. what is a case study in research methodology

    in single case research the main goal is to determine a

  6. -3: Research goals of single case study and multiple case study

    in single case research the main goal is to determine a

VIDEO

  1. Series 3: Conducting Single-Case Research Design in the Classroom Setting: Its Power and Effect

  2. Charting in Single Case Research

  3. Charting in Single Case Research

  4. Week 6-Single Case Research

  5. Single Subject Research: Visual Analysis of Trend

  6. 8 Single Case Research Design Books

COMMENTS

  1. Case Study Method: A Step-by-Step Guide for Business Researchers

    Although case studies have been discussed extensively in the literature, little has been written about the specific steps one may use to conduct case study research effectively (Gagnon, 2010; Hancock & Algozzine, 2016).Baskarada (2014) also emphasized the need to have a succinct guideline that can be practically followed as it is actually tough to execute a case study well in practice.

  2. Quiz 14 Flashcards

    The goal of single-case research is to ____. determine cause-and-effect relationships between variables. In a multiple-baseline design using two participants, what should a researcher do to ensure that any change in behavior is due to the treatment and not an outside factor?

  3. Single case studies are a powerful tool for developing ...

    The majority of methods in psychology rely on averaging group data to draw conclusions. In this Perspective, Nickels et al. argue that single case methodology is a valuable tool for developing and ...

  4. What Is a Case Study?

    Case studies are good for describing, comparing, evaluating and understanding different aspects of a research problem. Table of contents. When to do a case study. Step 1: Select a case. Step 2: Build a theoretical framework. Step 3: Collect your data. Step 4: Describe and analyze the case.

  5. What is a Case Study?

    Rich, detailed data: One of the main strengths of case study research is that it can generate rich, detailed data about the case. This can provide a deep understanding of the case and its context, which can be valuable in exploring complex phenomena. Flexibility: Case study research is flexible in terms of design, data collection, and analysis ...

  6. Single-Case Designs

    Single-case designs (also called single-case experimental designs) are system of research design strategies that can provide strong evidence of intervention effectiveness by using repeated measurement to establish each participant (or case) as his or her own control. The flexibility of the designs, and the focus on the individual as the unit of ...

  7. Case Study Methodology of Qualitative Research: Key Attributes and

    A case study is one of the most commonly used methodologies of social research. This article attempts to look into the various dimensions of a case study research strategy, the different epistemological strands which determine the particular case study type and approach adopted in the field, discusses the factors which can enhance the effectiveness of a case study research, and the debate ...

  8. Single Case Research Design

    • Understand that single-case research lacks a standard methodology. • Argue why single-case research is a subsidiary design that should be used if no other, more specic research design ts. Single case research in a nutshell • Purpose: In-depth analysis of a small sample in its environmental context.

  9. Case Study

    A case study is a research method that involves an in-depth examination and analysis of a particular phenomenon or case, such as an individual, organization, community, event, or situation. It is a qualitative research approach that aims to provide a detailed and comprehensive understanding of the case being studied.

  10. Doing Case Study Research: A Practical Guide for Begining Researchers

    A case study is a method of in-depth, comprehensive description and study of an object that does not limit itself to a certain period or location. To understand the context and significance of the ...

  11. Single Case Research Design

    A single case research design is not the same as researching a "case". Everything can be considered a "case" in most languages and certainly in English: a product, a patient, a business, an industry, a country, a currency, an ethnicity, a social group etc. Researching such a "case" does not make your research design a case study.

  12. Single-Case Experimental Designs: A Systematic Review of Published

    The single-case experiment has a storied history in psychology dating back to the field's founders: Fechner (1889), Watson (1925), and Skinner (1938).It has been used to inform and develop theory, examine interpersonal processes, study the behavior of organisms, establish the effectiveness of psychological interventions, and address a host of other research questions (for a review, see ...

  13. Advancing the Application and Use of Single-Case Research Designs

    The application of single-case research methods is entering a new phase of scientific relevance. Researchers in an increasing array of disciplines are finding single-case methods useful for the questions they are asking and the clinical needs in their fields (Kratochwill et al., 2010; Maggin et al., 2017; Maggin & Odom, 2014; Riley-Tillman, Burns, & Kilgus, 2020).

  14. Chapter 14: Single-Case experimental research designs

    The goal of single-case research, as with other experimental designs, is to identify ..... cause-and-effect relationships between variables. to establish a cause-and-effect relationship between two variables an experiment must demonstrate that... changes in one variable are directly responsible for causing changes in a second variable.

  15. Planning Qualitative Research: Design and Decision Making for New

    Both single- and multiple-case designs are acceptable and common (Merriam & Tisdell, 2015; Stake, 1995; Yin, 2017). When choosing a single case over a multiple-case design, five rationales might apply; the single case may be (i) critical, (ii) unusual, (iii) common, (iv) revelatory, or (v) longitudinal . Multiple cases are typically used for ...

  16. Single-Case Design, Analysis, and Quality Assessment for Intervention

    Single-case studies can provide a viable alternative to large group studies such as randomized clinical trials. Single case studies involve repeated measures, and manipulation of and independent variable. They can be designed to have strong internal validity for assessing causal relationships between interventions and outcomes, and external ...

  17. Single-Case Designs

    The goal of a single-case study is usually to determine whether a particular intervention is more effective in changing behavior as compared ... Experimental research in behavior analysis relies heavily on the use of single cases to determine the relationships between interventions and behavior change, and SCDs continue to be utilized by ...

  18. Single Case Research Methodology: Chapter 1 Flashcards

    Study with Quizlet and memorize flashcards containing terms like Goal of science, The process by which we advance knowledge, Applied Research and more. ... Single Case Research Methodology: Chapter 1. Flashcards; Learn; Test; ... DV is measured to determine the effect the IV has on the DV.

  19. Single-Case Designs

    Single-Case Evaluation Designs. Single-case evaluation methodology is a mainstay of ABA research (Kazdin, 2011) and the basis of many sports related studies ( Luiselli, 2011; Martin et al., 2004). The publications we reviewed in this chapter are testimony to the variety of single-case designs available to researchers.

  20. The Family of Single-Case Experimental Designs

    Abstract. Single-case experimental designs (SCEDs) represent a family of research designs that use experimental methods to study the effects of treatments on outcomes. The fundamental unit of analysis is the single case—which can be an individual, clinic, or community—ideally with replications of effects within and/or between cases.

  21. A systematic review of applied single-case research ...

    Single-case experimental designs (SCEDs) have become a popular research methodology in educational science, psychology, and beyond. The growing popularity has been accompanied by the development of specific guidelines for the conduct and analysis of SCEDs. In this paper, we examine recent practices in the conduct and analysis of SCEDs by systematically reviewing applied SCEDs published over a ...

  22. chapter 14 end of the chapter questions Flashcards

    Study with Quizlet and memorize flashcards containing terms like what is the goal of a single case experimental research design, How are results evaluated in a single case experimental research design ?, what elements are required for a single case experimental research design to qualify as an experiment ? and more.

  23. PDF Generality of Findings From Single-Case Designs: It's Not ...

    The main goal of science is to generate knowledge that leads to a better understanding of the world. With the methods that are currently available to scientists, strong conclusions are best made by using controlled experiments, after which logic is used to determine the extent to which research findings are