• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Are Heuristics?

These mental shortcuts can help people make decisions more efficiently

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what problem solving strategies are essentially mental shortcuts

Steven Gans, MD is board-certified in psychiatry and is an active supervisor, teacher, and mentor at Massachusetts General Hospital.

what problem solving strategies are essentially mental shortcuts

Verywell / Cindy Chung 

  • History and Origins
  • Heuristics vs. Algorithms
  • Heuristics and Bias

How to Make Better Decisions

Heuristics are mental shortcuts that allow people to solve problems and make judgments quickly and efficiently. These rule-of-thumb strategies shorten decision-making time and allow people to function without constantly stopping to think about their next course of action.

However, there are both benefits and drawbacks of heuristics. While heuristics are helpful in many situations, they can also lead to  cognitive biases . Becoming aware of this might help you make better and more accurate decisions.

Press Play for Advice On Making Decisions

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares a simple way to make a tough decision. Click below to listen now.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

The History and Origins of Heuristics

Nobel-prize winning economist and cognitive psychologist Herbert Simon originally introduced the concept of heuristics in psychology in the 1950s. He suggested that while people strive to make rational choices, human judgment is subject to cognitive limitations. Purely rational decisions would involve weighing all the potential costs and possible benefits of every alternative.

But people are limited by the amount of time they have to make a choice as well as the amount of information they have at their disposal. Other factors such as overall intelligence and accuracy of perceptions also influence the decision-making process.

During the 1970s, psychologists Amos Tversky and Daniel Kahneman presented their research on cognitive biases. They proposed that these biases influence how people think and the judgments people make.

As a result of these limitations, we are forced to rely on mental shortcuts to help us make sense of the world. Simon's research demonstrated that humans were limited in their ability to make rational decisions, but it was Tversky and Kahneman's work that introduced the study of heuristics and the specific ways of thinking that people rely on to simplify the decision-making process.

How Heuristics Are Used

Heuristics play important roles in both  problem-solving  and  decision-making , as we often turn to these mental shortcuts when we need a quick solution.

Here are a few different theories from psychologists about why we rely on heuristics.

  • Attribute substitution : People substitute simpler but related questions in place of more complex and difficult questions.
  • Effort reduction : People use heuristics as a type of cognitive laziness to reduce the mental effort required to make choices and decisions.
  • Fast and frugal : People use heuristics because they can be fast and correct in certain contexts. Some theories argue that heuristics are actually more accurate than they are biased.

In order to cope with the tremendous amount of information we encounter and to speed up the decision-making process, our brains rely on these mental strategies to simplify things so we don't have to spend endless amounts of time analyzing every detail.

You probably make hundreds or even thousands of decisions every day. What should you have for breakfast? What should you wear today? Should you drive or take the bus? Fortunately, heuristics allow you to make such decisions with relative ease and without a great deal of agonizing.

There are many heuristics examples in everyday life. When trying to decide if you should drive or ride the bus to work, for instance, you might remember that there is road construction along the bus route. You realize that this might slow the bus and cause you to be late for work. So you leave earlier and drive to work on an alternate route.

Heuristics allow you to think through the possible outcomes quickly and arrive at a solution.

Are Heuristics Good or Bad?

Heuristics aren't inherently good or bad, but there are pros and cons to using them to make decisions. While they can help us figure out a solution to a problem faster, they can also lead to inaccurate judgments about other people or situations.

Types of Heuristics

There are many different kinds of heuristics. While each type plays a role in decision-making, they occur during different contexts. Understanding the types can help you better understand which one you are using and when.

Availability

The availability heuristic  involves making decisions based upon how easy it is to bring something to mind. When you are trying to make a decision, you might quickly remember a number of relevant examples. Since these are more readily available in your memory, you will likely judge these outcomes as being more common or frequently occurring.

For example, if you are thinking of flying and suddenly think of a number of recent airline accidents, you might feel like air travel is too dangerous and decide to travel by car instead. Because those examples of air disasters came to mind so easily, the availability heuristic leads you to think that plane crashes are more common than they really are.

Familiarity

The familiarity heuristic refers to how people tend to have more favorable opinions of things, people, or places they've experienced before as opposed to new ones. In fact, given two options, people may choose something they're more familiar with even if the new option provides more benefits.

Representativeness

The representativeness heuristic  involves making a decision by comparing the present situation to the most representative mental prototype. When you are trying to decide if someone is trustworthy, you might compare aspects of the individual to other mental examples you hold.

A soft-spoken older woman might remind you of your grandmother, so you might immediately assume that she is kind, gentle, and trustworthy. However, this is an example of a heuristic bias, as you can't know someone trustworthy based on their age alone.

The affect heuristic involves making choices that are influenced by the emotions that an individual is experiencing at that moment. For example, research has shown that people are more likely to see decisions as having benefits and lower risks when they are in a positive mood. Negative emotions, on the other hand, lead people to focus on the potential downsides of a decision rather than the possible benefits.

The anchoring bias involves the tendency to be overly influenced by the first bit of information we hear or learn. This can make it more difficult to consider other factors and lead to poor choices. For example, anchoring bias can influence how much you are willing to pay for something, causing you to jump at the first offer without shopping around for a better deal.

Scarcity is a principle in heuristics in which we view things that are scarce or less available to us as inherently more valuable. The scarcity heuristic is one often used by marketers to influence people to buy certain products. This is why you'll often see signs that advertise "limited time only" or that tell you to "get yours while supplies last."

Trial and Error

Trial and error is another type of heuristic in which people use a number of different strategies to solve something until they find what works. Examples of this type of heuristic are evident in everyday life. People use trial and error when they're playing video games, finding the fastest driving route to work, and learning to ride a bike (or learning any new skill).

Difference Between Heuristics and Algorithms

Though the terms are often confused, heuristics and algorithms are two distinct terms in psychology.

Algorithms are step-by-step instructions that lead to predictable, reliable outcomes; whereas heuristics are mental shortcuts that are basically best guesses. Algorithms always lead to accurate outcomes, whereas, heuristics do not.

Examples of algorithms include instructions for how to put together a piece of furniture or a recipe for cooking a certain dish. Health professionals also create algorithms or processes to follow in order to determine what type of treatment to use on a patient.

How Heuristics Can Lead to Bias

While heuristics can help us solve problems and speed up our decision-making process, they can introduce errors. As in the examples above, heuristics can lead to inaccurate judgments about how commonly things occur and about how representative certain things may be.

Just because something has worked in the past does not mean that it will work again, and relying on a heuristic can make it difficult to see alternative solutions or come up with new ideas.

Heuristics can also contribute to stereotypes and  prejudice . Because people use mental shortcuts to classify and categorize people, they often overlook more relevant information and create stereotyped categorizations that are not in tune with reality.

While heuristics can be a useful tool, there are ways you can improve your decision-making and avoid cognitive bias at the same time.

We are more likely to make an error in judgment if we are trying to make a decision quickly or are under pressure to do so. Whenever possible, take a few deep breaths . Do something to distract yourself from the decision at hand. When you return to it, you may find you have a fresh perspective, or notice something you didn't before.

Identify the Goal

We tend to focus automatically on what works for us and make decisions that serve our best interest. But take a moment to know what you're trying to achieve. Are there other people who will be affected by this decision? What's best for them? Is there a common goal that can be achieved that will serve all parties?

Process Your Emotions

Fast decision-making is often influenced by emotions from past experiences that bubble to the surface. Is your decision based on facts or emotions? While emotions can be helpful, they may affect decisions in a negative way if they prevent us from seeing the full picture.

Recognize All-or-Nothing Thinking

When making a decision, it's a common tendency to believe you have to pick a single, well-defined path, and there's no going back. In reality, this often isn't the case.

Sometimes there are compromises involving two choices, or a third or fourth option that we didn't even think of at first. Try to recognize the nuances and possibilities of all choices involved, instead of using all-or-nothing thinking .

Rachlin H. Rational thought and rational behavior: A review of bounded rationality: The adaptive toolbox . J Exp Anal Behav . 2003;79(3):409–412. doi:10.1901/jeab.2003.79-409

Shah AK, Oppenheimer DM. Heuristics made easy: An effort-reduction framework . Psychol Bull. 2008;134(2):207-22. doi:10.1037/0033-2909.134.2.207

Marewski JN, Gigerenzer G. Heuristic decision making in medicine .  Dialogues Clin Neurosci . 2012;14(1):77–89. PMID: 22577307

Schwikert SR, Curran T. Familiarity and recollection in heuristic decision making .  J Exp Psychol Gen . 2014;143(6):2341-2365. doi:10.1037/xge0000024

Finucane M, Alhakami A, Slovic P, Johnson S. The affect heuristic in judgments of risks and benefits . J Behav Decis Mak . 2000; 13(1):1-17. doi:10.1002/(SICI)1099-0771(200001/03)13:1<1::AID-BDM333>3.0.CO;2-S

Cheung TT, Kroese FM, Fennis BM, De Ridder DT. Put a limit on it: The protective effects of scarcity heuristics when self-control is low . Health Psychol Open . 2015;2(2):2055102915615046. doi:10.1177/2055102915615046

Mohr H, Zwosta K, Markovic D, Bitzer S, Wolfensteller U, Ruge H. Deterministic response strategies in a trial-and-error learning task . Inman C, ed. PLoS Comput Biol. 2018;14(11):e1006621. doi:10.1371/journal.pcbi.1006621

Lang JM, Ford JD, Fitzgerald MM.  An algorithm for determining use of trauma-focused cognitive-behavioral therapy .  Psychotherapy   (Chic) . 2010;47(4):554-69. doi:10.1037/a0021184

Bigler RS, Clark C. The inherence heuristic: A key theoretical addition to understanding social stereotyping and prejudice. Behav Brain Sci . 2014;37(5):483-4. doi:10.1017/S0140525X1300366X

del Campo C, Pauser S, Steiner E, et al.  Decision making styles and the use of heuristics in decision making .  J Bus Econ.  2016;86:389–412. doi:10.1007/s11573-016-0811-y

Marewski JN, Gigerenzer G. Heuristic decision making in medicine .  Dialogues Clin Neurosci . 2012;14(1):77-89. doi:10.31887/DCNS.2012.14.1/jmarewski

Zheng Y, Yang Z, Jin C, Qi Y, Liu X. The influence of emotion on fairness-related decision making: A critical review of theories and evidence .  Front Psychol . 2017;8:1592. doi:10.3389/fpsyg.2017.01592

Bazerman MH. Judgment and decision making. In: Biswas-Diener R, Diener E, eds.,  Noba Textbook Series: Psychology.  DEF Publishers.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Heuristics: The Psychology of Mental Shortcuts

  • Archaeology
  • Ph.D., Materials Science and Engineering, Northwestern University
  • B.A., Chemistry, Johns Hopkins University
  • B.A., Cognitive Science, Johns Hopkins University

Heuristics (also called “mental shortcuts” or “rules of thumb") are efficient mental processes that help humans solve problems and learn new concepts. These processes make problems less complex by ignoring some of the information that’s coming into the brain, either consciously or unconsciously. Today, heuristics have become an influential concept in the areas of judgment and decision-making.

Key Takeaways: Heuristics

  • Heuristics are efficient mental processes (or "mental shortcuts") that help humans solve problems or learn a new concept.
  • In the 1970s, researchers Amos Tversky and Daniel Kahneman identified three key heuristics: representativeness, anchoring and adjustment, and availability.
  • The work of Tversky and Kahneman led to the development of the heuristics and biases research program.

History and Origins

Gestalt psychologists postulated that humans solve problems and perceive objects based on heuristics. In the early 20th century, the psychologist Max Wertheimer identified laws by which humans group objects together into patterns (e.g. a cluster of dots in the shape of a rectangle).

The heuristics most commonly studied today are those that deal with decision-making. In the 1950s, economist and political scientist Herbert Simon published his A Behavioral Model of Rational Choice , which focused on the concept of on bounded rationality : the idea that people must make decisions with limited time, mental resources, and information.

In 1974, psychologists Amos Tversky and Daniel Kahneman pinpointed specific mental processes used to simplify decision-making. They showed that humans rely on a limited set of heuristics when making decisions with information about which they are uncertain—for example, when deciding whether to exchange money for a trip overseas now or a week from today. Tversky and Kahneman also showed that, although heuristics are useful, they can lead to errors in thinking that are both predictable and unpredictable.

In the 1990s, research on heuristics, as exemplified by the work of Gerd Gigerenzer’s research group, focused on how factors in the environment impact thinking–particularly, that the strategies the mind uses are influenced by the environment–rather than the idea that the mind uses mental shortcuts to save time and effort.

Significant Psychological Heuristics

Tversky and Kahneman’s 1974 work, Judgment under Uncertainty: Heuristics and Biases , introduced three key characteristics: representativeness, anchoring and adjustment, and availability. 

The  representativeness  heuristic allows people to judge the likelihood that an object belongs in a general category or class based on how similar the object is to members of that category.

To explain the representativeness heuristic, Tversky and Kahneman provided the example of an individual named Steve, who is “very shy and withdrawn, invariably helpful, but with little interest in people or reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail.” What is the probability that Steve works in a specific occupation (e.g. librarian or doctor)? The researchers concluded that, when asked to judge this probability, individuals would make their judgment based on how similar Steve seemed to the stereotype of the given occupation.

The anchoring and adjustment heuristic allows people to estimate a number by starting at an initial value (the “anchor”) and adjusting that value up or down. However, different initial values lead to different estimates, which are in turn influenced by the initial value.

To demonstrate the anchoring and adjustment heuristic, Tversky and Kahneman asked participants to estimate the percentage of African countries in the UN. They found that, if participants were given an initial estimate as part of the question (for example, is the real percentage higher or lower than 65%?), their answers were rather close to the initial value, thus seeming to be "anchored" to the first value they heard.

The availability heuristic allows people to assess how often an event occurs or how likely it will occur, based on how easily that event can be brought to mind. For example, someone might estimate the percentage of middle-aged people at risk of a heart attack by thinking of the people they know who have had heart attacks.

Tversky and Kahneman's findings led to the development of the heuristics and biases research program. Subsequent works by researchers have introduced a number of other heuristics.

The Usefulness of Heuristics

There are several theories for the usefulness of heuristics. The  accuracy-effort trade-off   theory  states that humans and animals use heuristics because processing every piece of information that comes into the brain takes time and effort. With heuristics, the brain can make faster and more efficient decisions, albeit at the cost of accuracy. 

Some suggest that this theory works because not every decision is worth spending the time necessary to reach the best possible conclusion, and thus people use mental shortcuts to save time and energy. Another interpretation of this theory is that the brain simply does not have the capacity to process everything, and so we  must  use mental shortcuts.

Another explanation for the usefulness of heuristics is the  ecological rationality theory. This theory states that some heuristics are best used in specific environments, such as uncertainty and redundancy. Thus, heuristics are particularly relevant and useful in specific situations, rather than at all times.

  • Gigerenzer, G., and Gaissmeier, W. “Heuristic decision making.” Annual Review of Psychology , vol. 62, 2011, pp. 451-482.
  • Hertwig, R., and Pachur, T. “Heuristics, history of.” In International Encyclopedia of the Social & Behavioral Sciences, 2 Edition nd , Elsevier, 2007.
  • “Heuristics representativeness.” Cognitive Consonance.
  • Simon. H. A. “A behavioral model of rational choice.” The Quarterly Journal of Economics , vol. 69, no. 1, 1955, pp. 99-118.
  • Tversky, A., and Kahneman, D. “Judgment under uncertainty: Heuristics and biases.” Science , vol. 185, no. 4157, pp. 1124-1131.
  • What Is Cognitive Bias? Definition and Examples
  • What Is Behavioral Economics?
  • What Is a Schema in Psychology? Definition and Examples
  • Heuristics in Rhetoric and Composition
  • Understanding the Triarchic Theory of Intelligence
  • Introduction to Evolutionary Psychology
  • Status Quo Bias: What It Means and How It Affects Your Behavior
  • Psychodynamic Theory: Approaches and Proponents
  • What Is the Elaboration Likelihood Model in Psychology?
  • What Is Self-Concept in Psychology?
  • Criminology Definition and History
  • Dream Interpretation According to Psychology
  • What Is a Flow State in Psychology?
  • Understanding Social Identity Theory and Its Impact on Behavior
  • What Is a Human's Psychological Makeup for Ergonomics?
  • Jobs for Psychology Majors

Explore Psychology

8 Effective Problem-Solving Strategies

Categories Cognition

If you need to solve a problem, there are a number of different problem-solving strategies that can help you come up with an accurate decision. Sometimes the best choice is to use a step-by-step approach that leads to the right solution, but other problems may require a trial-and-error approach. 

Some helpful problem-solving strategies include: Brainstorming Step-by-step algorithms Trial-and-error Working backward Heuristics Insight Writing it down Getting some sleep

Table of Contents

Why Use Problem-Solving Strategies

While you can always make a wild guess or pick at random, that certainly isn’t the most accurate way to come up with a solution. Using a more structured approach allows you to:

  • Understand the nature of the problem
  • Determine how you will solve it
  • Research different options
  • Take steps to solve the problem and resolve the issue

There are many tools and strategies that can be used to solve problems, and some problems may require more than one of these methods in order to come up with a solution.

Problem-Solving Strategies

The problem-solving strategy that works best depends on the nature of the problem and how much time you have available to make a choice. Here are eight different techniques that can help you solve whatever type of problem you might face.

Brainstorming

Coming up with a lot of potential solutions can be beneficial, particularly early on in the process. You might brainstorm on your own, or enlist the help of others to get input that you might not have otherwise considered.

Step-by-Step

Also known as an algorithm, this approach involves following a predetermined formula that is guaranteed to produce the correct result. While this can be useful in some situations—such as solving a math problem—it is not always practical in every situation.

On the plus side, algorithms can be very accurate and reliable. Unfortunately, they can also be time-consuming.

And in some situations, you cannot follow this approach because you simply don’t have access to all of the information you would need to do so.

Trial-and-Error

This problem-solving strategy involves trying a number of different solutions in order to figure out which one works best. This requires testing steps or more options to solve the problem or pick the right solution. 

For example, if you are trying to perfect a recipe, you might have to experiment with varying amounts of a certain ingredient before you figure out which one you prefer.

On the plus side, trial-and-error can be a great problem-solving strategy in situations that require an individualized solution. However, this approach can be very time-consuming and costly.

Working Backward

This problem-solving strategy involves looking at the end result and working your way back through the chain of events. It can be a useful tool when you are trying to figure out what might have led to a particular outcome.

It can also be a beneficial way to play out how you will complete a task. For example, if you know you need to have a project done by a certain date, working backward can help you figure out the steps you’ll need to complete in order to successfully finish the project.

Heuristics are mental shortcuts that allow you to come up with solutions quite quickly. They are often based on past experiences that are then applied to other situations. They are, essentially, a handy rule of thumb.

For example, imagine a student is trying to pick classes for the next term. While they aren’t sure which classes they’ll enjoy the most, they know that they tend to prefer subjects that involve a lot of creativity. They utilize this heuristic to pick classes that involve art and creative writing.

The benefit of a heuristic is that it is a fast way to make fairly accurate decisions. The trade-off is that you give up some accuracy in order to gain speed and efficiency.

Sometimes, the solution to a problem seems to come out of nowhere. You might suddenly envision a solution after struggling with the problem for a while. Or you might abruptly recognize the correct solution that you hadn’t seen before. 

No matter the source, insight-based problem-solving relies on following your gut instincts. While this may not be as objective or accurate as some other problem-solving strategies, it can be a great way to come up with creative, novel solutions.

Write It Down

Sometimes putting the problem and possible solutions down in paper can be a useful way to visualize solutions. Jot down whatever might help you envision your options. Draw a picture, create a mind map, or just write some notes to clarify your thoughts.

Get Some Sleep

If you’re facing a big problem or trying to make an important decision, try getting a good night’s sleep before making a choice. Sleep plays an essential role in memory consolidation, so getting some rest may help you access the information or insight you need to make the best choice.

Other Considerations

Even with an arsenal of problem-solving strategies at your disposal, coming up with solutions isn’t always easy. Certain challenges can make the process more difficult. A few issues that might emerge include:

  • Mental set : When people form a mental set, they only rely on things that have worked in the last. Sometimes this can be useful, but in other cases, it can severely hinder the problem-solving process.
  • Cognitive biases : Unconscious cognitive biases can make it difficult to see situations clearly and objectively. As a result, you may not consider all of your options or ignore relevant information.
  • Misinformation : Poorly sourced clues and irrelevant details can add more complications. Being able to sort out what’s relevant and what’s not is essential for solving problems accurately.
  • Functional fixedness : Functional fixedness happens when people only think of customary solutions to problems. It can hinder out-of-the-box thinking and prevents insightful, creative solutions.

Important Problem-Solving Skills

Becoming a good problem solver can be useful in a variety of domains, from school to work to interpersonal relationships. Important problem-solving skills encompass being able to identify problems, coming up with effective solutions, and then implementing these solutions.

According to a 2023 survey by the National Association of Colleges and Employers, 61.4% of employers look for problem-solving skills on applicant resumes.

Some essential problem-solving skills include:

  • Research skills
  • Analytical abilities
  • Decision-making skills
  • Critical thinking
  • Communication
  • Time management 
  • Emotional intelligence

Solving a problem is complex and requires the ability to recognize the issue, collect and analyze relevant data, and make decisions about the best course of action. It can also involve asking others for input, communicating goals, and providing direction to others.

How to Become a Better Problem-Solver

If you’re ready to strengthen your problem-solving abilities, here are some steps you can take:

Identify the Problem

Before you can practice your problem-solving skills, you need to be able to recognize that there is a problem. When you spot a potential issue, ask questions about when it started and what caused it.

Do Your Research

Instead of jumping right in to finding solutions, do research to make sure you fully understand the problem and have all the background information you need. This helps ensure you don’t miss important details.

Hone Your Skills

Consider signing up for a class or workshop focused on problem-solving skill development. There are also books that focus on different methods and approaches.

The best way to strengthen problem-solving strategies is to give yourself plenty of opportunities to practice. Look for new challenges that allow you to think critically, analytically, and creatively.

Final Thoughts

If you have a problem to solve, there are plenty of strategies that can help you make the right choice. The key is to pick the right one, but also stay flexible and willing to shift gears.

In many cases, you might find that you need more than one strategy to make the choices that are right for your life.

Brunet, J. F., McNeil, J., Doucet, É., & Forest, G. (2020). The association between REM sleep and decision-making: Supporting evidences. Physiology & Behavior , 225, 113109. https://doi.org/10.1016/j.physbeh.2020.113109

Chrysikou, E. G, Motyka, K., Nigro, C., Yang, S. I. , & Thompson-Schill, S. L. (2016). Functional fixedness in creative thinking tasks depends on stimulus modality. Psychol Aesthet Creat Arts , 10(4):425‐435. https://doi.org/10.1037/aca0000050

Sarathy, V. (2018). Real world problem-solving. Front Hum Neurosci , 12:261. https://doi.org/10.3389/fnhum.2018.00261

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

what problem solving strategies are essentially mental shortcuts

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

what problem solving strategies are essentially mental shortcuts

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size
  • Media Center

Why do we take mental shortcuts?

What are heuristics.

Heuristics are mental shortcuts that can facilitate problem-solving and probability judgments. These strategies are generalizations, or rules-of-thumb, that reduce cognitive load. They can be effective for making immediate judgments, however, they often result in irrational or inaccurate conclusions.

Heuristics

Where this bias occurs

Debias your organization.

Most of us work & live in environments that aren’t optimized for solid decision-making. We work with organizations of all kinds to identify sources of cognitive bias & develop tailored solutions.

We use heuristics in all sorts of situations. One type of heuristic, the availability heuristic , often happens when we’re attempting to judge the frequency with which a certain event occurs. Say, for example, someone asked you whether more tornadoes occur in Kansas or Nebraska. Most of us can easily call to mind an example of a tornado in Kansas: the tornado that whisked Dorothy Gale off to Oz in Frank L. Baum’s The Wizard of Oz . Although it’s fictional, this example comes to us easily. On the other hand, most people have a lot of trouble calling to mind an example of a tornado in Nebraska. This leads us to believe that tornadoes are more common in Kansas than in Nebraska. However, the states actually report similar levels. 1

Individual effects

what problem solving strategies are essentially mental shortcuts

The thing about heuristics is that they aren’t always wrong. As generalizations, there are many situations where they can yield accurate predictions or result in good decision-making. However, even if the outcome is favorable, it was not achieved through logical means. When we use heuristics, we risk ignoring important information and overvaluing what is less relevant. There’s no guarantee that using  heuristics will work out and, even if it does, we’ll be making the decision for the wrong reason. Instead of basing it on reason, our behavior is resulting from a mental shortcut with no real rationale to support it.

Systemic effects

Heuristics become more concerning when applied to politics, academia, and economics. We may all resort to heuristics from time to time, something that is true even of members of important institutions who are tasked with making large, influential decisions. It is necessary for these figures to have a comprehensive understanding of the biases and heuristics that can affect our behavior, so as to promote accuracy on their part.

How it affects product

Heuristics can be useful in product design. Specifically, because heuristics are intuitive to us, they can be applied to create a more user-friendly experience and one that is more valuable to the customer. For example, color psychology is a phenomenon explaining how our experiences with different colors and color families can prime certain emotions or behaviors. Taking advantage of the representativeness heuristic, one could choose to use passive colors (blue or green) or more active colors (red, yellow, orange) depending on the goals of the application or product. 18 For example, if a developer is trying to evoke a feeling of calm for their app that provides guided meditations, they may choose to make the primary colors of the program light blues and greens. Colors like red and orange are more emotionally energizing and may be useful in settings like gyms or crossfit programs. 

By integrating heuristics into products we can enhance the user experience. If an application, device, or item includes features that make it feel intuitive, easy to navigate and familiar, customers will be more inclined to continue to use it and recommend it to others. Appealing to those mental shortcuts we can minimize the chances of user error or frustration with a product that is overly complicated.

Heuristics and AI

Artificial intelligence and machine learning tools already use the power of heuristics to inform its output. In a nutshell, simple AI tools operate based on a set of built in rules and sometimes heuristics! These are encoded within the system thus aiding in decision-making and the presentation of learning material. Heuristic algorithms can be used to solve advanced computational problems, providing efficient and approximate solutions.  Like in humans, the use of heuristics can result in error, and thus must be used with caution. However, machine learning tools and AI can be useful in supporting human decision-making, especially when clouded by emotion, bias or irrationality due to our own susceptibility to heuristics. 

Why it happens

In their paper “Judgment Under Uncertainty: Heuristics and Biases” 2 , Daniel Kahneman and Amos Tversky identified three different kinds of heuristics: availability, representativeness, as well as anchoring and adjustment. Each type of heuristic is used for the purpose of reducing the mental effort needed to make a decision, but they occur in different contexts.

Availability heuristic

The availability heuristic, as defined by Kahneman and Tversky, is the mental shortcut used for making frequency or probability judgments based on “the ease with which instances or occurrences can be brought to mind”. 3 This was touched upon in the previous example, judging the frequency with which tornadoes occur in Kansas relative to Nebraska. 3

The availability heuristic occurs because certain memories come to mind more easily than others. In Kahneman and Tversky’s example participants were asked if more words in the English language start with the letter K or have K as the third letter  Interestingly, most participants responded with the former when in actuality, it is the latter that is true. The idea being that it is much more difficult to think of words that have K as the third letter than it is to think of words that start with K. 4 In this case,  words that begin with K are more readily available to us than words with the K as the third letter.

Representativeness heuristic

Individuals tend to classify events into categories, which, as illustrated by Kahneman and Tversky, can result in our use of the representativeness heuristic. When we use this heuristic, we categorize events or objects based on how they relate to instances we are already familiar with.  Essentially, we have built our own categories, which we use to make predictions about novel situations or people. 5 For example, if someone we meet in one of our university lectures looks and acts like what we believe to be a stereotypical medical student, we may judge the probability that they are studying medicine as highly likely, even without any hard evidence to support that assumption.

The representativeness heuristic is associated with prototype theory. 6 This prominent theory in cognitive science, the prototype theory explains object and identity recognition. It suggests that we categorize different objects and identities in our memory. For example, we may have a category for chairs, a category for fish, a category for books, and so on. Prototype theory posits that we develop prototypical examples for these categories by averaging every example of a given category we encounter. As such, our prototype of a chair should be the most average example of a chair possible, based on our experience with that object. This process aids in object identification because we compare every object we encounter against the prototypes stored in our memory. The more the object resembles the prototype, the more confident we are that it belongs in that category. 

Prototype theory may give rise to the representativeness heuristic as it is in situations when a particular object or event is viewed as similar to the prototype stored in our memory, which leads us to classify the object or event into the category represented by that prototype. To go back to the previous example, if your peer closely resembles your prototypical example of a med student, you may place them into that category based on the prototype theory of object and identity recognition. This, however, causes you to commit the representativeness heuristic.

Anchoring and adjustment heuristic

Another heuristic put forth by Kahneman and Tversky in their initial paper is the anchoring and adjustment heuristic. 7 This heuristic describes how, when estimating a certain value, we tend to give an initial value, then adjust it by increasing or decreasing our estimation. However, we often get stuck on that initial value – which is referred to as anchoring – this results in us making insufficient adjustments. Thus, the adjusted value is biased in favor of the initial value we have anchored to.

In an example of the anchoring and adjustment heuristic, Kahneman and Tversky gave participants questions such as “estimate the number of African countries in the United Nations (UN).” A wheel labeled with numbers from 0-100 was spun, and participants were asked to say whether or not the number the wheel landed on was higher or lower than their answer to the question. Then, participants were asked to estimate the number of African countries in the UN, independent from the number they had spun. Regardless, Kahneman and Tversky found that participants tended to anchor onto the random number obtained by spinning the wheel. The results showed that  when the number obtained by spinning the wheel was 10, the median estimate given by participants was 25, while, when the number obtained from the wheel was 65, participants’ median estimate was 45.8.

A 2006 study by Epley and Gilovich, “The Anchoring and Adjustment Heuristic: Why the Adjustments are Insufficient” 9 investigated the causes of this heuristic. They illustrated that anchoring often occurs because the new information that we anchor to is more accessible than other information Furthermore, they provided empirical evidence to demonstrate that our adjustments tend to be insufficient because they require significant mental effort, which we are not always motivated to dedicate to the task. They also found that providing incentives for accuracy led participants to make more sufficient adjustments. So, this particular heuristic generally occurs when there is no real incentive to provide an accurate response.

Quick and easy

Though different in their explanations, these three types of heuristics allow us to respond automatically without much effortful thought. They provide an immediate response and do not use up much of our mental energy, which allows us to dedicate mental resources to other matters that may be more pressing. In that way, heuristics are efficient, which is a big reason why we continue to use them. That being said, we should be mindful of how much we rely on them because there is no guarantee of their accuracy.

Why it is important

As illustrated by Tversky and Kahneman, using heuristics can cause us to engage in various cognitive biases and commit certain fallacies. 10 As a result, we may make poor decisions, as well as inaccurate judgments and predictions. Awareness of heuristics can aid us in avoiding them, which will ultimately lead us to engage in more adaptive behaviors.

How to avoid it

what problem solving strategies are essentially mental shortcuts

Heuristics arise from automatic System 1 thinking. It is a common misconception that errors in judgment can be avoided by relying exclusively on System 2 thinking. However, as pointed out by Kahneman, neither System 2 nor System 1 are infallible. 11   While System 1 can result in relying on heuristics leading to certain biases, System 2 can give rise to other biases, such as the confirmation bias . 12 In truth, Systems 1 and 2 complement each other, and using them together can lead to more rational decision-making. That is, we shouldn’t make judgments automatically, without a second thought, but we shouldn’t overthink things to the point where we’re looking for specific evidence to support our stance. Thus, heuristics can be avoided by making judgments more effortfully, but in doing so, we should attempt not to overanalyze the situation.

How it all started

The first three heuristics – availability, representativeness, as well as anchoring and adjustment – were identified by Tverksy and Kahneman in their 1974 paper, “Judgment Under Uncertainty: Heuristics and Biases”. 13 In addition to presenting these heuristics and their relevant experiments, they listed the respective biases each can lead to.

For instance, upon defining the availability heuristic, they demonstrated how it may lead to illusory correlation , which is the erroneous belief that two events frequently co-occur. Kahneman and Tversky made the connection by illustrating how the availability heuristic can cause us to over- or under-estimate the frequency with which certain events occur. This may result in drawing correlations between variables when in reality there are none.  

Referring to our tendency to overestimate our accuracy making probability judgments, Kahneman and Tversky also discussed how the illusion of validity is facilitated by the representativeness heuristic. The more representative an object or event is, the more confident we feel in predicting certain outcomes. The illusion of validity, as it works with the representativeness heuristic, can be demonstrated by our assumptions of others based on past experiences. If you have only ever had good experiences with people from Canada, you will be inclined to judge most Canadians as pleasant. In reality, your small sample size cannot account for the whole population. Representativeness is not the only factor in determining the probability of an outcome or event, meaning we should not be as confident in our predictive abilities.

Example 1 – Advertising

Those in the field of advertising should have a working understanding of heuristics as consumers often rely on these shortcuts when making decisions about purchases. One heuristic that frequently comes into play in the realm of advertising is the scarcity heuristic . When assessing the value of something, we often fall back on this heuristic, leading us to believe that the rarity or exclusiveness of an object contributes to its value.

A 2011 study by Praveen Aggarwal, Sung Yul Jun, and Jong Ho Huh evaluated the impact of “scarcity messages” on consumer behavior. They found that both “limited quantity” and “limited time” advertisements influence consumers’ intentions to purchase, but “limited quantity” messages are more effective. This explains why people get so excited over the one-day-only Black Friday sales, and why the countdowns of units available on home shopping television frequently lead to impulse buys. 14

Knowledge of the scarcity heuristic can help businesses thrive, as “limited quantity” messages make potential consumers competitive and increase their intentions to purchase. 15 This marketing technique can be a useful tool for bolstering sales and bringing attention to your business.

Example 2 – Stereotypes

One of the downfalls of heuristics is that they have the potential to lead to stereotyping, which is often harmful. Kahneman and Tversky illustrated how the representativeness heuristic might result in the propagation of stereotypes. The researchers presented participants with a personality sketch of a fictional man named Steve followed by a list of possible occupations. Participants were tasked with ranking the likelihood of each occupation being Steve’s. Since the personality sketch described Steve as shy, helpful, introverted, and organized, participants tended to indicate that it was probable that he was a  librarian. 16 In this particular case the stereotype is less harmful than many others, however it accurately illustrates the link between heuristics and stereotypes.

Published in 1989, Patricia Devine’s paper “Stereotypes and Prejudice: Their Automatic and Controlled Components” illustrates how, even among people who are low in prejudice, rejecting stereotypes requires a certain level of motivation and cognitive capacity. 17 We typically use heuristics in order to avoid exerting too much mental energy, specifically when we are not sufficiently motivated to dedicate mental resources to the task at hand. Thus, when we lack the mental capacity to make a judgment or decision effortfully, we may rely upon automatic heuristic responses and, in doing so, risk propagating stereotypes.

Stereotypes are an example of how heuristics can go wrong. Broad generalizations do not always apply, and their continued use can have serious consequences. This underscores the importance of effortful judgment and decision-making, as opposed to automatic.

Heuristics are mental shortcuts that allow us to make quick judgment calls based on generalizations or rules of thumb.

Heuristics, in general, occur because they are efficient ways of responding when we are faced with problems or decisions. They come about automatically, allowing us to allocate our mental energy elsewhere. Specific heuristics occur in different contexts; the availability heuristic happens because we remember certain memories better than others, the representativeness heuristic can be explained by prototype theory, and the anchoring and adjustment heuristic occurs due to lack of incentive to put in the effort required for sufficient adjustment.

The scarcity heuristic, which refers to how we value items more when they are limited, can be used to the advantage of businesses looking to increase sales. Research has shown that advertising objects as “limited quantity” increases consumers' competitiveness and their intentions to buy the item.

While heuristics can be useful, we should exert caution, as they are generalizations that may lead us to propagate stereotypes ranging from inaccurate to harmful.

Putting more effort into decision-making instead of making decisions automatically can help us avoid heuristics. Doing so requires more mental resources, but it will lead to more rational choices.

Related TDL articles

What are heuristics.

This interview with The Decision Lab’s Managing Director Sekoul Krastev delves into the history of heuristics, their applications in the real world, and their consequences, both positive and negative.

10 Decision-Making Errors that Hold Us Back at Work

In this article, Dr. Melina Moleskis examines the common decision-making errors that occur in the workplace. Everything from taking in feedback provided by customers to cracking the problems of on-the-fly decision-making, Dr. Moleskis delivers workable solutions that anyone can implement. 

  • Gilovich, T., Keltner, D., Chen. S, and Nisbett, R. (2015).  Social Psychology  (4th edition). W.W. Norton and Co. Inc.
  • Tversky, A. and Kahneman, D. (1974). Judgment Under Uncertainty: Heuristics and Biases.  Science . 185(4157), 1124-1131.
  • Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects.  Annual Review of Psychology ,  32 (1), 89–115. https://doi.org/10.1146/annurev.ps.32.020181.000513
  • Epley, N., & Gilovich, T. (2006). The anchoring-and-adjustment heuristic.  Psychological Science -Cambridge- ,  17 (4), 311–318.
  • System 1 and System 2 Thinking.  The Marketing Society.  https://www.marketingsociety.com/think-piece/system-1-and-system-2-thinking
  • Aggarwal, P., Jun, S. Y., & Huh, J. H. (2011). Scarcity messages.  Journal of Advertising ,  40 (3), 19–30.
  • Devine, P. G. (1989). Stereotypes and prejudice: their automatic and controlled components.  Journal of Personality and Social Psychology ,  56 (1), 5–18. https://doi.org/10.1037/0022-3514.56.1.5
  • Kuo, L., Chang, T., &amp; Lai, C.-C. (2022). Research on product design modeling image and color psychological test. Displays, 71, 102108. https://doi.org/10.1016/j.displa.2021.102108

About the Authors

Dan Pilat's portrait

Dan is a Co-Founder and Managing Director at The Decision Lab. He is a bestselling author of Intention - a book he wrote with Wiley on the mindful application of behavioral science in organizations. Dan has a background in organizational decision making, with a BComm in Decision & Information Systems from McGill University. He has worked on enterprise-level behavioral architecture at TD Securities and BMO Capital Markets, where he advised management on the implementation of systems processing billions of dollars per week. Driven by an appetite for the latest in technology, Dan created a course on business intelligence and lectured at McGill University, and has applied behavioral science to topics such as augmented and virtual reality.

Sekoul Krastev's portrait

Dr. Sekoul Krastev

Sekoul is a Co-Founder and Managing Director at The Decision Lab. He is a bestselling author of Intention - a book he wrote with Wiley on the mindful application of behavioral science in organizations. A decision scientist with a PhD in Decision Neuroscience from McGill University, Sekoul's work has been featured in peer-reviewed journals and has been presented at conferences around the world. Sekoul previously advised management on innovation and engagement strategy at The Boston Consulting Group as well as on online media strategy at Google. He has a deep interest in the applications of behavioral science to new technology and has published on these topics in places such as the Huffington Post and Strategy & Business.

Hindsight Bias

Why do unpredictable events only seem predictable after they occur, hot hand fallacy, why do we expect previous success to lead to future success, hyperbolic discounting, why do we value immediate rewards more than long-term rewards.

Notes illustration

Eager to learn about how behavioral science can help your organization?

Get new behavioral science insights in your inbox every month..

  • Product overview
  • All features
  • App integrations

CAPABILITIES

  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • asana-intelligence icon Asana Intelligence
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Campaign management
  • Creative production
  • Content calendars
  • Marketing strategic planning
  • Resource planning
  • Project intake
  • Product launches
  • Employee onboarding
  • View all uses arrow-right icon
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Work management resources Discover best practices, watch webinars, get insights
  • What's new Learn about the latest and greatest from Asana
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Support Need help? Contact the Asana support team
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.

Featured Reads

what problem solving strategies are essentially mental shortcuts

  • Business strategy |
  • What are heuristics and how do they hel ...

What are heuristics and how do they help us make decisions?

Alicia Raeburn contributor headshot

Heuristics are simple rules of thumb that our brains use to make decisions. When you choose a work outfit that looks professional instead of sweatpants, you’re making a decision based on past information. That's not intuition; it’s heuristics. Instead of weighing all the information available to make a data-backed choice, heuristics enable us to move quickly into action—mostly without us even realizing it. In this article, you’ll learn what heuristics are, their common types, and how we use them in different scenarios.

Green means go. Most of us accept this as common knowledge, but it’s actually an example of a micro-decision—in this case, your brain is deciding to go when you see the color green.

You make countless of these subconscious decisions every day. Many things that you might think just come naturally to you are actually caused by heuristics—mental shortcuts that allow you to quickly process information and take action. Heuristics help you make smaller, almost unnoticeable decisions using past information, without much rational input from your brain.

Heuristics are helpful for getting things done more quickly, but they can also lead to biases and irrational choices if you’re not aware of them. Luckily, you can use heuristics to your advantage once you recognize them, and make better decisions in the workplace.

What is a heuristic?

Heuristics are mental shortcuts that your brain uses to make decisions. When we make rational choices, our brains weigh all the information, pros and cons, and any relevant data. But it’s not possible to do this for every single decision we make on a day-to-day basis. For the smaller ones, your brain uses heuristics to infer information and take almost-immediate action.

Decision-making tools for agile businesses

In this ebook, learn how to equip employees to make better decisions—so your business can pivot, adapt, and tackle challenges more effectively than your competition.

Make good choices, fast: How decision-making processes can help businesses stay agile ebook banner image

How heuristics work

For example, if you’re making a larger decision about whether to accept a new job or stay with your current one, your brain will process this information slowly. For decisions like this, you collect data by referencing sources—chatting with mentors, reading company reviews, and comparing salaries. Then, you use that information to make your decision. Meanwhile, your brain is also using heuristics to help you speed along that track. In this example, you might use something called the “availability heuristic” to reference things you’ve recently seen about the new job. The availability heuristic makes it more likely that you’ll remember a news story about the company’s higher stock prices. Without realizing it, this can make you think the new job will be more lucrative.

On the flip side, you can recognize that the new job has had some great press recently, but that might be just a great PR team at work. Instead of “buying in” to what the availability heuristic is trying to tell you—that positive news means it’s the right job—you can acknowledge that this is a bias at work. In this case, comparing compensation and work-life balance between the two companies is a much more effective way to choose which job is right for you.

History of heuristics

The term "heuristics," originating from the Greek word meaning “to discover,” has ancient roots, but much of today's understanding comes from twentieth-century social scientists. Herbert Simon's research into "bounded rationality" highlighted the use of heuristics in decision-making, particularly under constraints like limited time and information.

Daniel Kahneman was one of the first researchers to study heuristics in his behavioral economics work in the 1970’s, along with fellow psychologist Amos Tversky. They theorized that many of the decisions and judgments we make aren’t rational—meaning we don’t move through a series of decision-making steps to come to a solution. Instead, the human brain uses mental shortcuts to form seemingly irrational, “fast and frugal” decisions—quick choices that don’t require a lot of mental energy.

Kahneman’s work showed that heuristics lead to systematic errors (or biases), which act as the driving force for our decisions. He was able to apply this research to economic theory, leading to the formation of behavioral economics and a Nobel Prize for Kahneman in 2002.

In the years since, the study of heuristics has grown in popularity with economists and in cognitive psychology. Gerd Gigerenzer’s research , for example, challenges the idea that heuristics lead to errors or flawed thinking. He argues that heuristics are actually indicators that human beings are able to make decisions more effectively without following the traditional rules of logic. His research seems to indicate that heuristics lead us to the right answer most of the time.

Types of heuristics

Heuristics are everywhere, whether we notice them or not. There are hundreds of heuristics at play in the human brain, and they interact with one another constantly. To understand how these heuristics can help you, start by learning some of the more common types of heuristics.

Recognition heuristic

The recognition heuristic uses what we already know (or recognize) as a criterion for decisions. The concept is simple: When faced with two choices, you’re more likely to choose the item you recognize versus the one you don’t.

This is the very base-level concept behind branding your business, and we see it in all well-known companies. Businesses develop a brand messaging strategy in the hopes that when you’re faced with buying their product or buying someone else's, you recognize their product, have a positive association with it, and choose that one. For example, if you’re going to grab a soda and there are two different cans in the fridge, one a Coca-Cola, and the other a soda you’ve never heard of, you are more likely to choose the Coca-Cola simply because you know the name.

Familiarity heuristic

The familiarity heuristic is a mental shortcut where individuals prefer options or information that is familiar to them. This heuristic is based on the notion that familiar items are seen as safer or superior. It differs from the recognition heuristic, which relies solely on whether an item is recognized. The familiarity heuristic involves a deeper sense of comfort and understanding, as opposed to just recognizing something.

An example of this heuristic is seen in investment decisions. Investors might favor well-known companies over lesser-known ones, influenced more by brand familiarity than by an objective assessment of the investment's potential. This tendency showcases how the familiarity heuristic can lead to suboptimal choices, as it prioritizes comfort and recognition over a thorough evaluation of all available options.

Availability heuristic

The availability heuristic is a cognitive bias where people judge the frequency or likelihood of events based on how easily similar instances come to mind. This mental shortcut depends on the most immediate examples that pop into one's mind when considering a topic or decision. The ease of recalling these instances often leads to a distorted perception of their actual frequency, as recent, dramatic, or emotionally charged memories tend to be more memorable.

A notable example of the availability heuristic is the public's reaction to shark attacks. When the media reports on shark attacks, these incidents become highly memorable due to their dramatic nature, leading people to overestimate the risk of such events. This heightened perception is despite statistical evidence showing the rarity of shark attacks. The result is an exaggerated fear and a skewed perception of the actual danger of swimming in the ocean.

Representativeness heuristic

The representativeness heuristic is when we try to assign an object to a specific category or idea based on past experiences. Oftentimes, this comes up when we meet people—our first impression. We expect certain things (such as clothing and credentials) to indicate that a person behaves or lives a certain way.

Without proper awareness, this heuristic can lead to discrimination in the workplace. For example, representativeness heuristics might lead us to believe that a job candidate from an Ivy League school is more qualified than one from a state university, even if their qualifications show us otherwise. This is because we expect Ivy League graduates to act a certain way, such as by being more hard-working or intelligent. Of course, in our rational brains, we know this isn’t the case. That’s why it’s important to be aware of this heuristic, so you can use logical thinking to combat potential biases.

Anchoring and adjustment heuristic

Used in finance for economic forecasting, anchoring and adjustment is when you start with an initial piece of information (the anchor) and continue adjusting until you reach an acceptable decision. The challenge is that sometimes the anchor ends up not being a good enough value to begin with. In other words, you choose the anchor based on unknown biases and then make further decisions based on this faulty assumption.

Anchoring and adjustment are often used in pricing, especially with SaaS companies. For example, a displayed, three-tiered pricing model shows you how much you get for each price point. The layout is designed to make it look like you won’t get much for the lower price, and you don’t necessarily need the highest price, so you choose the mid-level option (the original target). The anchors are the low price (suggesting there’s not much value here) and the high price (which shows that you’re getting a "discount" if you choose another option). Thanks to those two anchors, you feel like you’re getting a lot of value, no matter what you spend.

Affect heuristic

You know the advice; think with your heart. That’s the affect heuristic in action, where you make a decision based on what you’re feeling. Emotions are important ways to understand the world around us, but using them to make decisions is irrational and can impact your work.

For example, let’s say you’re about to ask your boss for a promotion. As a product marketer, you’ve made a huge impact on the company by helping to build a community of enthusiastic, loyal customers. But the day before you have your performance review , you find out that a small project you led for a new product feature failed. You decide to skip the conversation asking for a raise and instead double down on how you can improve.

In this example, you’re using the affect heuristic to base your entire performance on the failure of one small project—even though the rest of your performance (building that profitable community) is much more impactful than a new product feature. If you weighed the options rationally, you would see that asking for a raise is still a logical choice. But instead, the fear of asking for a raise after a failure felt like too big a trade-off.

Satisficing

Satisficing is when you accept an available option that’s satisfactory (i.e., just fine) instead of trying to find the best possible solution. In other words, you’re settling. This creates a “bounded rationality,” where you’re constrained by the choices that are good-enough, instead of pushing past the limits to discover more. This isn’t always negative—for lower-impact scenarios, it might not make sense to invest time and energy into finding the optimal choice. But there are also times when this heuristic kicks in and you end up settling for less than what’s possible.

For example, let’s say you’re a project manager planning the budget for the next fiscal year. Instead of looking at previous spend and revenue, you satisfice and base the budget off projections, assuming that will be good enough. But without factoring in historical data, your budget isn’t going to be as equipped to manage hiccups or unexpected changes. In this case, you can mitigate satisficing with a logically-based data review that, while longer, will produce a more accurate and thoughtful budget plan.

Trial and error heuristic

The trial and error heuristic is a problem-solving method where solutions are found through repeated experimentation. It's used when a clear path to the solution isn't known, relying on iterative learning from failures and adjustments.

For example, a chef might experiment with various ingredient combinations and techniques to perfect a new recipe. Each attempt informs the next, demonstrating how trial and error facilitates discovery in situations without formal guidelines.

Pros and cons of heuristics

Heuristics are effective at helping you get more done quickly, but they also have downsides. Psychologists don’t necessarily agree on whether heuristics and biases are positive or negative. But the argument seems to boil down to these two pros and cons:

Heuristics pros:

Simple heuristics reduce cognitive load, allowing you to accomplish more in less time with fast and frugal decisions. For example, the satisficing heuristic helps you find a "good enough" choice. So if you’re making a complex decision between whether to cut costs or invest in employee well-being , you can use satisficing to find a solution that’s a compromise. The result might not be perfect, but it allows you to take action and get started—you can always adjust later on.

Heuristics cons:

Heuristics create biases. While these cognitive biases enable us to make rapid-fire decisions, they can also lead to rigid, unhelpful beliefs. For example, confirmation bias makes it more likely that you’ll seek out other opinions that agree with your own. This makes it harder to keep an open mind, hear from the other side, and ultimately change your mind—which doesn’t help you build the flexibility and adaptability so important for succeeding in the workplace.

Heuristics and psychology

Heuristics play a pivotal role in psychology, especially in understanding how people make decisions within their cognitive limitations. These mental shortcuts allow for quicker decisions, often necessary in a fast-paced world, but they can sometimes lead to errors in judgment.

The study of heuristics bridges various aspects of psychology, from cognitive processes to behavioral outcomes, and highlights the balance between efficient decision-making and the potential for bias.

Stereotypes and heuristic thinking

Stereotypes are a form of heuristic where individuals make assumptions based on group characteristics, a process analyzed in both English and American psychology.

While these generalizations can lead to rapid conclusions and rational decisions under certain circumstances, they can also oversimplify complex human behaviors and contribute to prejudiced attitudes. Understanding stereotypes as a heuristic offers insight into the cognitive limitations of the human mind and their impact on social perceptions and interactions.

How heuristics lead to bias

Because heuristics rely on shortcuts and stereotypes, they can often lead to bias. This is especially true in scenarios where cognitive limitations restrict the processing of all relevant information. So how do you combat bias? If you acknowledge your biases, you can usually undo them and maybe even use them to your advantage. There are ways you can hack heuristics, so that they work for you (not against you):

Be aware. Heuristics often operate like a knee-jerk reaction—they’re automatic. The more aware you are, the more you can identify and acknowledge the heuristic at play. From there, you can decide if it’s useful for the current situation, or if a logical decision-making process is best.

Flip the script. When you notice a negative bias, turn it around. For example, confirmation bias is when we look for things to be as we expect. So if we expect our boss to assign us more work than our colleagues, we might always experience our work tasks as unfair. Instead, turn this around by repeating that your boss has your team’s best interests at heart, and you know everyone is working hard. This will re-train your confirmation bias to look for all the ways that your boss is treating you just like everyone else.

Practice mindfulness. Mindfulness helps to build self-awareness, so you know when heuristics are impacting your decisions. For example, when we tap into the empathy gap heuristic, we’re unable to empathize with someone else or a specific situation. However, if we’re mindful, we can be aware of how we’re feeling before we engage. This helps us to see that the judgment stems from our own emotions and probably has nothing to do with the other person.

Examples of heuristics in business

This is all well and good in theory, but how do heuristic decision-making and thought processes show up in the real world? One reason researchers have invested so much time and energy into learning about heuristics is so that they can use them, like in these scenarios:

How heuristics are used in marketing

Effective marketing does so much for a business—it attracts new customers, makes a brand a household name, and converts interest into sales, to name a few. One way marketing teams are able to accomplish all this is by applying heuristics.

Let’s use ambiguity aversion as an example. Ambiguity aversion means you're less likely to choose an item you don’t know. Marketing teams combat this by working to become familiar to their customers. This could include the social media team engaging in a more empathetic or conversational way, or employing technology like chat-bots to show that there’s always someone available to help. Making the business feel more approachable helps the customer feel like they know the brand personally—which lessens ambiguity aversion.

How heuristics are used in business strategy

Have you ever noticed how your CEO seems to know things before they happen? Or that the CFO listens more than they speak? These are indications that they understand people in a deeper way, and are able to engage with their employees and predict outcomes because of it. C-suite level executives are often experts in behavioral science, even if they didn’t study it. They tend to get what makes people tick, and know how to communicate based on these biases. In short, they use heuristics for higher-level decision-making processes and execution. 

This includes business strategy . For example, a startup CEO might be aware of their representativeness bias towards investors—they always look for the person in the room with the  fancy suit or car. But after years in the field, they know logically that this isn’t always true—plenty of their investors have shown up in shorts and sandals. Now, because they’re aware of their bias, they can build it into their investment strategy. Instead of only attending expensive, luxury events, they also attend conferences with like-minded individuals and network among peers. This approach can lead them to a greater variety of investors and more potential opportunities.

Heuristics vs algorithms

Heuristics and algorithms are both used by the brain to reduce the mental effort of decision-making, but they operate a bit differently. Algorithms act as guidelines for specific scenarios. They have a structured process designed to solve that specific problem. Heuristics, on the other hand, are general rules of thumb that help the brain process information and may or may not reach a solution.

For example, let's say you’re cooking a well-loved family recipe. You know the steps inside and out, and you no longer need to reference the instructions. If you’re following a recipe step-by-step, you’re using an algorithm. If, however, you decide on a whim to sub in some of your fresh garden vegetables because you think it will taste better, you’re using a heuristic.

How to use heuristics to make better decisions

Heuristics can help us make decisions quickly and with less cognitive strain. While they can be efficient, they sometimes lead to errors in judgment. Understanding how to use heuristics effectively can improve decision-making, especially in complex or uncertain situations.

Take time to think

Rushing often leads to reliance on automatic heuristics, which might not always be suitable. To make better decisions, slow down your thinking process. Take a step back, breathe, and allow yourself a moment of distraction. This pause can provide a fresh perspective and help you notice details or angles you might have missed initially.

Clarify your objectives

When making a decision, it's important to understand the ultimate goal. Our automatic decision-making processes tend to favor immediate benefits, sometimes overlooking long-term impacts or the needs of others involved. Consider the broader implications of your decision. Who else is affected? Is there a common objective that benefits all parties? Such considerations can lead to more holistic and effective decisions.

Manage your emotional influences

Emotions significantly influence our decision-making, often without our awareness. Fast decisions are particularly prone to emotional biases. Acknowledge your feelings, but also separate them from the facts at hand. Are you making a decision based on solid information or emotional reactions? Distinguishing between the two can lead to more rational and balanced choices.

Beware of binary thinking

All-or-nothing thinking is a common heuristic trap, where we see decisions as black or white with no middle ground. However, real-life decisions often have multiple paths and possibilities. It's important to recognize this complexity. There might be compromises or alternative options that weren't initially considered. By acknowledging the spectrum of possibilities, you can make more nuanced and effective decisions.

Heuristic FAQs

What is heuristic thinking.

Heuristic thinking refers to a method of problem-solving, learning, or discovery that employs a practical approach—often termed a "rule of thumb"—to make decisions quickly. Heuristic thinking is a type of cognition that humans use subconsciously to make decisions and judgments with limited time.

What is a heuristic evaluation?

A heuristic evaluation is a usability inspection method used in the fields of user interface (UI) and user experience (UX) design. It involves evaluators examining the interface and judging its compliance with recognized usability principles, known as heuristics. These heuristics serve as guidelines to identify usability problems in a design, making the evaluation process more systematic and comprehensive.

What are computer heuristics?

Computer heuristics are algorithms used to solve complex problems or make decisions where an exhaustive search is impractical. In fields like artificial intelligence and cybersecurity, these heuristic methods allow for efficient problem-solving and decision-making, often based on trial and error or rule-of-thumb strategies.

What are heuristics in psychology?

In psychology, heuristics are quick mental rules for making decisions. They are important in social psychology for understanding how we think and decide. Figures like Kahneman and Tversky, particularly in their work "Judgment Under Uncertainty: Heuristics and Biases," have influenced the study of heuristics in psychology.

Learn heuristics, de-mystify your brain

Your brain doesn’t actually work in mysterious ways. In reality, researchers know why we do a lot of the things we do. Heuristics help us to understand the choices we make that don’t make much sense. Once you understand heuristics, you can also learn to use them to your advantage—both in business, and in life. 

Related resources

what problem solving strategies are essentially mental shortcuts

What is management by objectives (MBO)?

what problem solving strategies are essentially mental shortcuts

Write better AI prompts: A 4-sentence framework

what problem solving strategies are essentially mental shortcuts

How to find alignment on AI

what problem solving strategies are essentially mental shortcuts

What is content marketing? A complete guide

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

7.4: Problem Solving

  • Last updated
  • Save as PDF
  • Page ID 627

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (See Table \(\PageIndex{1}\) below). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at \(\text{4 PM}\) on Saturday in Philadelphia. Knowing that Interstate \(95\) tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by \(\text{3:30 PM}\), and it takes \(2.5\) hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

EVERYDAY CONNECTION: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a \(9\times 9\) grid. The simple sudoku below is a \(4\times 4\) grid. To solve the puzzle, fill in the empty boxes with a single digit: \(1\), \(2\), \(3\), or \(4\). Here are the rules: The numbers must total \(10\) in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below. Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Pitfalls to Problem Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of \(\$1,600\). The realtor shows you only very run-down houses for \(\$1,600\) and then shows you a very nice house for \(\$2,000\). Might you ask each person to pay more in rent to get the \(\$2,000\) home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the Table \(\PageIndex{2}\) below.

Were you able to determine how many marbles are needed to balance the scales in Figure \(\PageIndex{3}\)? You need nine.

Were you able to solve the problems in Figure \(\PageIndex{1}\) and Figure \(\PageIndex{2}\)? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1:  blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Figure \(\PageIndex{4}\): Solutions to the puzzles in Everyday Connection

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

Contributors

Rose M. Spielman with many significant contributors. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the creative commons license and may not be reproduced without the prior and express written consent of Rice University. For questions regarding this license, please contact  [email protected] .Textbook content produced by OpenStax College is licensed under a  Creative Commons Attribution License 4.0  license. Download for free at http://cnx.org/contents/[email protected] .

7.3 Problem Solving

Learning objectives.

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connection

Solving puzzles.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.8 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

Here is another popular type of puzzle ( Figure 7.9 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Take a look at the “Puzzling Scales” logic puzzle below ( Figure 7.10 ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

Pitfalls to Problem Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 7.3 .

Please visit this site to see a clever music video that a high school teacher made to explain these and other cognitive biases to his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in Figure 7.10 ? You need nine. Were you able to solve the problems in Figure 7.8 and Figure 7.9 ? Here are the answers ( Figure 7.11 ).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology/pages/1-introduction
  • Authors: Rose M. Spielman, Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett, Marion Perlmutter
  • Publisher/website: OpenStax
  • Book title: Psychology
  • Publication date: Dec 8, 2014
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology/pages/7-3-problem-solving

© Feb 9, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Logo for TRU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Problem-Solving: Heuristics and Algorithms

Learning objectives.

  • Describe the differences between heuristics and algorithms in information processing.

When faced with a problem to solve, should you go with intuition or with more measured, logical reasoning? Obviously, we use both of these approaches. Some of the decisions we make are rapid, emotional, and automatic. Daniel Kahneman (2011) calls this “fast” thinking. By definition, fast thinking saves time. For example, you may quickly decide to buy something because it is on sale; your fast brain has perceived a bargain, and you go for it quickly. On the other hand, “slow” thinking requires more effort; applying this in the same scenario might cause us not to buy the item because we have reasoned that we don’t really need it, that it is still too expensive, and so on. Using slow and fast thinking does not guarantee good decision-making if they are employed at the wrong time. Sometimes it is not clear which is called for, because many decisions have a level of uncertainty built into them. In this section, we will explore some of the applications of these tendencies to think fast or slow.

We will look further into our thought processes, more specifically, into some of the problem-solving strategies that we use. Heuristics are information-processing strategies that are useful in many cases but may lead to errors when misapplied. A heuristic is a principle with broad application, essentially an educated guess about something. We use heuristics all the time, for example, when deciding what groceries to buy from the supermarket, when looking for a library book, when choosing the best route to drive through town to avoid traffic congestion, and so on. Heuristics can be thought of as aids to decision making; they allow us to reach a solution without a lot of cognitive effort or time.

The benefit of heuristics in helping us reach decisions fairly easily is also the potential downfall: the solution provided by the use of heuristics is not necessarily the best one. Let’s consider some of the most frequently applied, and misapplied, heuristics in the table below.

In many cases, we base our judgments on information that seems to represent, or match, what we expect will happen, while ignoring other potentially more relevant statistical information. When we do so, we are using the representativeness heuristic . Consider, for instance, the data presented in the table below. Let’s say that you went to a hospital, and you checked the records of the babies that were born on that given day. Which pattern of births do you think you are most likely to find?

Most people think that list B is more likely, probably because list B looks more random, and matches — or is “representative of” — our ideas about randomness, but statisticians know that any pattern of four girls and four boys is mathematically equally likely. Whether a boy or girl is born first has no bearing on what sex will be born second; these are independent events, each with a 50:50 chance of being a boy or a girl. The problem is that we have a schema of what randomness should be like, which does not always match what is mathematically the case. Similarly, people who see a flipped coin come up “heads” five times in a row will frequently predict, and perhaps even wager money, that “tails” will be next. This behaviour is known as the gambler’s fallacy . Mathematically, the gambler’s fallacy is an error: the likelihood of any single coin flip being “tails” is always 50%, regardless of how many times it has come up “heads” in the past.

The representativeness heuristic may explain why we judge people on the basis of appearance. Suppose you meet your new next-door neighbour, who drives a loud motorcycle, has many tattoos, wears leather, and has long hair. Later, you try to guess their occupation. What comes to mind most readily? Are they a teacher? Insurance salesman? IT specialist? Librarian? Drug dealer? The representativeness heuristic will lead you to compare your neighbour to the prototypes you have for these occupations and choose the one that they seem to represent the best. Thus, your judgment is affected by how much your neibour seems to resemble each of these groups. Sometimes these judgments are accurate, but they often fail because they do not account for base rates , which is the actual frequency with which these groups exist. In this case, the group with the lowest base rate is probably drug dealer.

Our judgments can also be influenced by how easy it is to retrieve a memory. The tendency to make judgments of the frequency or likelihood that an event occurs on the basis of the ease with which it can be retrieved from memory is known as the availability heuristic (MacLeod & Campbell, 1992; Tversky & Kahneman, 1973). Imagine, for instance, that I asked you to indicate whether there are more words in the English language that begin with the letter “R” or that have the letter “R” as the third letter. You would probably answer this question by trying to think of words that have each of the characteristics, thinking of all the words you know that begin with “R” and all that have “R” in the third position. Because it is much easier to retrieve words by their first letter than by their third, we may incorrectly guess that there are more words that begin with “R,” even though there are in fact more words that have “R” as the third letter.

The availability heuristic may explain why we tend to overestimate the likelihood of crimes or disasters; those that are reported widely in the news are more readily imaginable, and therefore, we tend to overestimate how often they occur. Things that we find easy to imagine, or to remember from watching the news, are estimated to occur frequently. Anything that gets a lot of news coverage is easy to imagine. Availability bias does not just affect our thinking. It can change behaviour. For example, homicides are usually widely reported in the news, leading people to make inaccurate assumptions about the frequency of murder. In Canada, the murder rate has dropped steadily since the 1970s (Statistics Canada, 2018), but this information tends not to be reported, leading people to overestimate the probability of being affected by violent crime. In another example, doctors who recently treated patients suffering from a particular condition were more likely to diagnose the condition in subsequent patients because they overestimated the prevalence of the condition (Poses & Anthony, 1991).

The anchoring and adjustment heuristic is another example of how fast thinking can lead to a decision that might not be optimal. Anchoring and adjustment is easily seen when we are faced with buying something that does not have a fixed price. For example, if you are interested in a used car, and the asking price is $10,000, what price do you think you might offer? Using $10,000 as an anchor, you are likely to adjust your offer from there, and perhaps offer $9000 or $9500. Never mind that $10,000 may not be a reasonable anchoring price. Anchoring and adjustment does not just happen when we’re buying something. It can also be used in any situation that calls for judgment under uncertainty, such as sentencing decisions in criminal cases (Bennett, 2014), and it applies to groups as well as individuals (Rutledge, 1993).

In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your previous baking experience and guessing at the number and amount of ingredients, baking time, and so on — or using an algorithm. The latter would require a recipe which would provide step-by-step instructions; the recipe is the algorithm. Unless you are an extremely accomplished baker, the algorithm should provide you with a better cake than using heuristics would. While heuristics offer a solution that might be correct, a correctly applied algorithm is guaranteed to provide a correct solution. Of course, not all problems can be solved by algorithms.

As with heuristics, the use of algorithmic processing interacts with behaviour and emotion. Understanding what strategy might provide the best solution requires knowledge and experience. As we will see in the next section, we are prone to a number of cognitive biases that persist despite knowledge and experience.

Key Takeaways

  • We use a variety of shortcuts in our information processing, such as the representativeness, availability, and anchoring and adjustment heuristics. These help us to make fast judgments but may lead to errors.
  • Algorithms are problem-solving strategies that are based on rules rather than guesses. Algorithms, if applied correctly, are far less likely to result in errors or incorrect solutions than heuristics. Algorithms are based on logic.

Bennett, M. W. (2014). Confronting cognitive ‘anchoring effect’ and ‘blind spot’ biases in federal sentencing: A modest solution for reforming and fundamental flaw. Journal of Criminal Law and Criminology , 104 (3), 489-534.

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.

MacLeod, C., & Campbell, L. (1992). Memory accessibility and probability judgments: An experimental evaluation of the availability heuristic.  Journal of Personality and Social Psychology, 63 (6), 890–902.

Poses, R. M., & Anthony, M. (1991). Availability, wishful thinking, and physicians’ diagnostic judgments for patients with suspected bacteremia.  Medical Decision Making,  11 , 159-68.

Rutledge, R. W. (1993). The effects of group decisions and group-shifts on use of the anchoring and adjustment heuristic. Social Behavior and Personality, 21 (3), 215-226.

Statistics Canada. (2018). Ho micide in Canada, 2017 . Retrieved from https://www150.statcan.gc.ca/n1/en/daily-quotidien/181121/dq181121a-eng.pdf

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability.  Cognitive Psychology, 5 , 207–232.

Psychology - 1st Canadian Edition Copyright © 2020 by Sally Walters is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

7. Thinking and Intelligence

Problem solving, learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

PROBLEM-SOLVING STRATEGIES

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( [link] ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link] ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

Here is another popular type of puzzle ( [link] ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

Take a look at the “Puzzling Scales” logic puzzle below ( [link] ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

PITFALLS TO PROBLEM SOLVING

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in [link] .

Please visit this site to see a clever music video that a high school teacher made to explain these and other cognitive biases to his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in [link] ? You need nine. Were you able to solve the problems in [link] and [link] ? Here are the answers ( [link] ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1:  blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

Self Check Questions

Critical thinking questions.

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question

3. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

1. Functional fixedness occurs when you cannot see a use for an object other than the use for which it was intended. For example, if you need something to hold up a tarp in the rain, but only have a pitchfork, you must overcome your expectation that a pitchfork can only be used for garden chores before you realize that you could stick it in the ground and drape the tarp on top of it to hold it up.

2. An algorithm is a proven formula for achieving a desired outcome. It saves time because if you follow it exactly, you will solve the problem without having to figure out how to solve the problem. It is a bit like not reinventing the wheel.

  • Psychology. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:1/Psychology . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/content/col11629/latest/.

VectorKnight/Shutterstock

Reviewed by Psychology Today Staff

A heuristic is a mental shortcut that allows an individual to make a decision, pass judgment, or solve a problem quickly and with minimal mental effort. While heuristics can reduce the burden of decision-making and free up limited cognitive resources, they can also be costly when they lead individuals to miss critical information or act on unjust biases.

  • Understanding Heuristics
  • Different Heuristics
  • Problems with Heuristics

Cat Box/Shutterstock

As humans move throughout the world, they must process large amounts of information and make many choices with limited amounts of time. When information is missing, or an immediate decision is necessary, heuristics act as “rules of thumb” that guide behavior down the most efficient pathway.

Heuristics are not unique to humans; animals use heuristics that, though less complex, also serve to simplify decision-making and reduce cognitive load.

Generally, yes. Navigating day-to-day life requires everyone to make countless small decisions within a limited timeframe. Heuristics can help individuals save time and mental energy, freeing up cognitive resources for more complex planning and problem-solving endeavors.

The human brain and all its processes—including heuristics— developed over millions of years of evolution . Since mental shortcuts save both cognitive energy and time, they likely provided an advantage to those who relied on them.

Heuristics that were helpful to early humans may not be universally beneficial today . The familiarity heuristic, for example—in which the familiar is preferred over the unknown—could steer early humans toward foods or people that were safe, but may trigger anxiety or unfair biases in modern times.

fizkes/Shutterstock

The study of heuristics was developed by renowned psychologists Daniel Kahneman and Amos Tversky. Starting in the 1970s, Kahneman and Tversky identified several different kinds of heuristics, most notably the availability heuristic and the anchoring heuristic.

Since then, researchers have continued their work and identified many different kinds of heuristics, including:

Familiarity heuristic

Fundamental attribution error

Representativeness heuristic

Satisficing

The anchoring heuristic, or anchoring bias , occurs when someone relies more heavily on the first piece of information learned when making a choice, even if it's not the most relevant. In such cases, anchoring is likely to steer individuals wrong .

The availability heuristic describes the mental shortcut in which someone estimates whether something is likely to occur based on how readily examples come to mind . People tend to overestimate the probability of plane crashes, homicides, and shark attacks, for instance, because examples of such events are easily remembered.

People who make use of the representativeness heuristic categorize objects (or other people) based on how similar they are to known entities —assuming someone described as "quiet" is more likely to be a librarian than a politician, for instance. 

Satisficing is a decision-making strategy in which the first option that satisfies certain criteria is selected , even if other, better options may exist.

KieferPix/Shutterstock

Heuristics, while useful, are imperfect; if relied on too heavily, they can result in incorrect judgments or cognitive biases. Some are more likely to steer people wrong than others.

Assuming, for example, that child abductions are common because they’re frequently reported on the news—an example of the availability heuristic—may trigger unnecessary fear or overprotective parenting practices. Understanding commonly unhelpful heuristics, and identifying situations where they could affect behavior, may help individuals avoid such mental pitfalls.

Sometimes called the attribution effect or correspondence bias, the term describes a tendency to attribute others’ behavior primarily to internal factors—like personality or character— while attributing one’s own behavior more to external or situational factors .

If one person steps on the foot of another in a crowded elevator, the victim may attribute it to carelessness. If, on the other hand, they themselves step on another’s foot, they may be more likely to attribute the mistake to being jostled by someone else .

Listen to your gut, but don’t rely on it . Think through major problems methodically—by making a list of pros and cons, for instance, or consulting with people you trust. Make extra time to think through tasks where snap decisions could cause significant problems, such as catching an important flight.

what problem solving strategies are essentially mental shortcuts

Artificial intelligence already plays a role in deciding who’s getting hired. The way to improve AI is very similar to how we fight human biases.

what problem solving strategies are essentially mental shortcuts

Think you are avoiding the motherhood penalty by not having children? Think again. Simply being a woman of childbearing age can trigger discrimination.

what problem solving strategies are essentially mental shortcuts

Psychological experiments on human judgment under uncertainty showed that people often stray from presumptions about rational economic agents.

what problem solving strategies are essentially mental shortcuts

Psychology, like other disciplines, uses the scientific method to acquire knowledge and uncover truths—but we still ask experts for information and rely on intuition. Here's why.

what problem solving strategies are essentially mental shortcuts

We all experience these 3 cognitive blind spots at work, frequently unaware of their costs in terms of productivity and misunderstanding. Try these strategies to work around them.

what problem solving strategies are essentially mental shortcuts

Have you ever fallen for fake news? This toolkit can help you easily evaluate whether a claim is real or phony.

what problem solving strategies are essentially mental shortcuts

An insidious form of prejudice occurs when a more powerful group ignores groups with less power and keeps them out of the minds of society.

what problem solving strategies are essentially mental shortcuts

We can never know everything and yet unconscious biases often convince us that we do. Being alert to your own ignorance is crucial for more efficient thinking in daily life.

what problem solving strategies are essentially mental shortcuts

Chatbot designers engage in dishonest anthropomorphism by designing features to exploit our heuristic processing and dupe us into overtrusting and assigning moral responsibility.

what problem solving strategies are essentially mental shortcuts

How do social media influencers convert a scroll into a like, follow, and sale? Here are the psychological principles used by digital influencers.

  • Find a Therapist
  • Find a Treatment Centre
  • Find a Support Group
  • Find Online Therapy
  • Calgary, AB
  • Edmonton, AB
  • Hamilton, ON
  • Montréal, QC
  • Toronto, ON
  • Vancouver, BC
  • Winnipeg, MB
  • Mississauga, ON
  • Oakville, ON
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

May 2024 magazine cover

At any moment, someone’s aggravating behavior or our own bad luck can set us off on an emotional spiral that threatens to derail our entire day. Here’s how we can face our triggers with less reactivity so that we can get on with our lives.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    what problem solving strategies are essentially mental shortcuts

  2. Problem Solving Strategies [EFFECTIVE STRATEGIES] SmallBusinessify.com

    what problem solving strategies are essentially mental shortcuts

  3. Problem Solving Infographic 10 Steps Concept Vector Image

    what problem solving strategies are essentially mental shortcuts

  4. Heuristics decisions and mental thinking shortcut approach outline

    what problem solving strategies are essentially mental shortcuts

  5. Problem-Solving Steps

    what problem solving strategies are essentially mental shortcuts

  6. Developing Problem-Solving Skills for Kids

    what problem solving strategies are essentially mental shortcuts

VIDEO

  1. Problem Solving Techniques

  2. What is Confirmation Bias?

  3. Problem Solving

  4. What is Regression to Mean? #cognitivebiases #criticalthinking

  5. What is 'Because' Justification? #cognitivebiases #criticalthinking

  6. What is Social Proof? #cognitivebiases

COMMENTS

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness. 4. Working backward. Working backward is a problem-solving approach often ...

  2. Heuristics: Definition, Examples, and How They Work

    These mental shortcuts can help people make decisions more efficiently. Heuristics are mental shortcuts that allow people to solve problems and make judgments quickly and efficiently. These rule-of-thumb strategies shorten decision-making time and allow people to function without constantly stopping to think about their next course of action.

  3. How to Develop Impactful Mental Shortcuts

    This is one reason lessons learned, or post-action evaluation, are one of the most important best practices in project management. 2. Networking and Mentorship. Project managers should network ...

  4. Heuristics: The Psychology of Mental Shortcuts

    Heuristics are efficient mental processes (or "mental shortcuts") that help humans solve problems or learn a new concept. In the 1970s, researchers Amos Tversky and Daniel Kahneman identified three key heuristics: representativeness, anchoring and adjustment, and availability. The work of Tversky and Kahneman led to the development of the ...

  5. 8 Effective Problem-Solving Strategies

    Communication. Time management. Emotional intelligence. Solving a problem is complex and requires the ability to recognize the issue, collect and analyze relevant data, and make decisions about the best course of action. It can also involve asking others for input, communicating goals, and providing direction to others.

  6. 7.3 Problem-Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  7. Heuristics

    Heuristics are mental shortcuts that can facilitate problem-solving and probability judgments. These strategies are generalizations, or rules-of-thumb, that reduce cognitive load. They can be effective for making immediate judgments, however, they often result in irrational or inaccurate conclusions. Most of us work & live in environments that ...

  8. Heuristics: How Mental Shortcuts Help Us Make Decisions [2024] • Asana

    Heuristic thinking refers to a method of problem-solving, learning, or discovery that employs a practical approach—often termed a "rule of thumb"—to make decisions quickly. Heuristic thinking is a type of cognition that humans use subconsciously to make decisions and judgments with limited time.

  9. 6.2: Problem Solving Strategies

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  10. Heuristics

    2. Next. A heuristic is a mental shortcut that allows an individual to make a decision, pass judgment, or solve a problem quickly and with minimal mental effort. While heuristics can reduce the ...

  11. 7.4: Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  12. 7.3 Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  13. Our Mental Shortcuts

    Cognitive Biases. There are many different mental shortcuts our brains take when System 1 is activated; we call these cognitive biases. Cognition refers to a variety of thinking processes such as attention, perception, memory, and reasoning that we use to gain knowledge and understanding. "Cognitive biases" does not refer to biases related ...

  14. 8.2 Problem-Solving: Heuristics and Algorithms

    Algorithms. In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your ...

  15. PSYCH Exam #3 Flashcards

    Study with Quizlet and memorize flashcards containing terms like What problem-solving strategies are essentially mental shortcuts? heuristics mnemonic devices algorithms cognitive shortcuts, The brain's tendency to streamline our thinking processes by use of preexisting knowledge is referred to as _____. taxonomic construction inductive reasoning bottom-up processing top-down processing, If I ...

  16. Chapter 8: Thinking, Reasoning and Language (Pre-Qs)

    What problem solving strategies are essentially mental short-cuts? Click the card to flip 👆 ... Test; Match; Q-Chat; Created by. phillyowls. Share. Share. Terms in this set (10) Heuristics. What problem solving strategies are essentially mental short-cuts? Confirmation Bias.

  17. Solving Problems

    Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4.

  18. Psych 100 Chapter 8 Quiz Flashcards

    Study with Quizlet and memorize flashcards containing terms like Generally speaking, _______ refers to any mental activity or processing of information, including learning, remembering, perceiving, believing, and deciding., What problem-solving strategies are essentially mental shortcuts?, Many people drew faulty conclusions about the relative safety of air travel compared to automobile travel ...

  19. Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  20. Chapter 8: Cognition and Language Flashcards

    Study with Quizlet and memorize flashcards containing terms like 1. The term cognitive _____ is used to reflect the fact that human beings seek to reduce their mental effort as much as possible, while still being able to make accurate decisions. A) miser B) parsimony C) heuristic D) frugality, 2. What problem-solving strategies are essentially mental shortcuts? A) Heuristics B) Algorithms C ...

  21. Heuristics

    Heuristics. A heuristic is a mental shortcut that allows an individual to make a decision, pass judgment, or solve a problem quickly and with minimal mental effort. While heuristics can reduce the ...

  22. It's OK You Can't Solve Every Problem

    In coaching others, I often discuss problem-solving strategies to help individuals think creatively and consider many options when they are faced with challenging situations. Problem solving 1-2 ...

  23. psychology exam #2 Flashcards

    Study with Quizlet and memorize flashcards containing terms like What problem-solving strategies are essentially mental shortcuts?, As symbolic systems of communication, most languages ___, Our co-worker says, "It's awful in here." To understand what she means, we must and more.

  24. Heuristics

    Heuristics. A heuristic is a mental shortcut that allows an individual to make a decision, pass judgment, or solve a problem quickly and with minimal mental effort. While heuristics can reduce the ...