Integer Word Problems Worksheets

An integer is defined as a number that can be written without a fractional component. For example, 11, 8, 0, and −1908 are integers whereas √5, Π are not integers. The set of integers consists of zero, the positive natural numbers, and their additive inverses. Integers are closed under the operations of addition and multiplication . Integer word problems worksheets provide a variety of word problems associated with the use and properties of integers. 

Benefits of Integers Word Problems Worksheets

We use integers in our day-to-day life like measuring temperature, sea level, and speed limit. Translating verbal descriptions into expressions is an essential initial step in solving word problems. Deposits are normally represented by a positive sign and withdrawals are denoted by a negative sign. Negative numbers are used in weather forecasting to show the temperature of a region. Solving these integers word problems will help us relate the concept with practical applications.

Download Integers Word Problems Worksheet PDFs

These math worksheets should be practiced regularly and are free to download in PDF formats.

☛ Check Grade wise Integers Word Problems Worksheets

  • 6th Grade Integers Worksheets
  • Integers Worksheets for Grade 7
  • 8th Grade Integers Worksheets
  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Solve Integers and Their Properties

Last Updated: April 6, 2024

This article was reviewed by Joseph Meyer . Joseph Meyer is a High School Math Teacher based in Pittsburgh, Pennsylvania. He is an educator at City Charter High School, where he has been teaching for over 7 years. Joseph is also the founder of Sandbox Math, an online learning community dedicated to helping students succeed in Algebra. His site is set apart by its focus on fostering genuine comprehension through step-by-step understanding (instead of just getting the correct final answer), enabling learners to identify and overcome misunderstandings and confidently take on any test they face. He received his MA in Physics from Case Western Reserve University and his BA in Physics from Baldwin Wallace University. This article has been viewed 30,655 times.

An integer is a set of natural numbers, their negatives, and zero. However, some integers are natural numbers, including 1, 2, 3, and so on. Their negative values are, -1, -2, -3, and so on. So integers are the set of numbers including (…-3, -2, -1, 0, 1, 2, 3,…). An integer is never a fraction, decimal, or percentage, it can only be a whole number. To solve integers and use their properties, learn to use addition and subtraction properties and use multiplication properties.

Using Addition and Subtraction Properties

Step 1 Use the commutative property when both numbers are positive.

  • a + b = c (where both a and b are positive numbers the sum c is also positive)
  • For example: 2 + 2 = 4

Step 2 Use the commutative property if a and b are both negative.

  • -a + -b = -c (where both a and b are negative, you get the absolute value of the numbers then you proceed to add, and use the negative sign for the sum)
  • For example: -2+ (-2)=-4

Step 3 Use the commutative property when one number is positive and the other is negative.

  • a + (-b) = c (when your terms are of different signs, determine the larger number's value, then get the absolute value of both terms and subtract the lesser value from the larger value. Use the sign of the larger number for the answer.)
  • For example: 5 + (-1) = 4

Step 4 Use the commutative property when a is negative and b is positive.

  • -a +b = c (get the absolute value of the numbers and again, proceed to subtract the lesser value from the larger value and assume the sign of the larger value)
  • For example: -5 + 2 = -3

Step 5 Understand the additive identity when adding a number to zero.

  • An example of the additive identity is: a + 0 = a
  • Mathematically, the additive identity looks like: 2 + 0 = 2 or 6 + 0 = 6

Step 6 Know that adding the additive inverse is equal to zero.

  • The additive inverse is when a number is added to the negative equivalent of itself.
  • For example: a + (-b) = 0, where b is equal to a
  • Mathematically, the additive inverse looks like: 5 + -5 = 0

Step 7 Realize that the...

  • For example: (5+3) +1 = 9 has the same sum as 5+ (3+1) = 9

Using Multiplication Properties

Step 1 Realize that the...

  • When a and b are positive numbers and not equal to zero: +a * + b = +c
  • When a and b are both negative numbers and not equal to zero: -a*-b = +c

Step 1 Realize that the...

  • However, understand that any number multiplied by zero, equals zero.

Step 2 Understand that the multiplicative identity of an integer states that any integer multiplied by 1 is itself.

  • For example: a(b+c) = ab + ac
  • Mathematically, this looks like: 5(2+3) = 5(2) + 5(3)
  • Note that there is no inverse property for multiplication because the inverse of a whole number is a fraction, and fractions are not an element of integer.

Joseph Meyer

Joseph Meyer

The distributive property helps you avoid repetitive calculations. You can use the distributive property to solve equations where you must multiply a number by a sum or difference. It simplifies calculations, enables expression manipulation (like factoring), and forms the basis for solving many equations.

Community Q&A

Community Answer

You Might Also Like

Find the Maximum or Minimum Value of a Quadratic Function Easily

About This Article

Joseph Meyer

  • Send fan mail to authors

Did this article help you?

problem solving about integers

Featured Articles

Express Your Feelings

Trending Articles

18 Practical Ways to Celebrate Pride as an Ally

Watch Articles

Clean Silver Jewelry with Vinegar

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

  • Math Article
  • Word Problems On Integers

Integers: Word Problems On Integers

Class Registration Banner

An arithmetic operation is an elementary branch of mathematics. Arithmetical operations include addition, subtraction, multiplication and division. Arithmetic operations are applicable to different types of numbers including integers.

Integers are a special group of numbers that do not have a fractional or a decimal part. It includes positive numbers, negative numbers and zero.  Arithmetic operations on integers are similar to that of whole numbers. Since integers can be positive or negative numbers i.e. as these numbers are preceded either by a positive (+) or a negative sign (-), it makes them a little confusing concept. Therefore, they are different from whole numbers . Let us now see how various arithmetical operations can be performed on integers with the help of a few word problems. Solve the following word problems using various rules of operations of integers.

Word problems on integers Examples:

Example 1: Shyak has overdrawn his checking account by Rs.38.  The bank debited him Rs.20 for an overdraft fee.  Later, he deposited Rs.150.  What is his current balance?

Solution:  Given,

Total amount deposited= Rs. 150

Amount overdrew by Shyak= Rs. 38

Amount charged by bank= Rs. 20

⇒ Debit amount= -20

Total amount debited = (-38) + (-20) = -58

Current balance= Total deposit +Total Debit

Hence, the current balance is Rs. 92.

Example 2: Anna is a microbiology student. She was doing research on optimum temperature for the survival of different strains of bacteria. Studies showed that bacteria X need optimum temperature of -31˚C while bacteria Y need optimum temperature of -56˚C. What is the temperature difference?

Solution: Given,

Optimum temperature for bacteria X = -31˚C

Optimum temperature for bacteria Y= -56˚C

Temperature difference= Optimum temperature for bacteria X – Optimum temperature for bacteria Y

⇒ (-31) – (-56)

Hence, temperature difference is 25˚C.

Example 3: A submarine submerges at the rate of 5 m/min. If it descends from 20 m above the sea level, how long will it take to reach 250 m below sea level?

Initial position = 20 m    (above sea level)

Final position = 250 m    (below sea level)

Total depth it submerged = (250+20) = 270 m

Thus, the submarine travelled 270 m below sea level.

Time taken to submerge 1 meter = 1/5 minutes

Time taken to submerge 270 m = 270 (1/5) = 54 min

Hence, the submarine will reach 250 m below sea level in 54 minutes.

To solve more problems on the topic, download BYJU’S – The Learning App and watch interactive videos. Also, take free tests to practice for exams.

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

problem solving about integers

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Integers Worksheets

Welcome to the integers worksheets page at Math-Drills.com where you may have a negative experience, but in the world of integers, that's a good thing! This page includes Integers worksheets for comparing and ordering integers, adding, subtracting, multiplying and dividing integers and order of operations with integers.

If you've ever spent time in Canada in January, you've most likely experienced a negative integer first hand. Banks like you to keep negative balances in your accounts, so they can charge you loads of interest. Deep sea divers spend all sorts of time in negative integer territory. There are many reasons why a knowledge of integers is helpful even if you are not going to pursue an accounting or deep sea diving career. One hugely important reason is that there are many high school mathematics topics that will rely on a strong knowledge of integers and the rules associated with them.

We've included a few hundred integers worksheets on this page to help support your students in their pursuit of knowledge. You may also want to get one of those giant integer number lines to post if you are a teacher, or print off a few of our integer number lines. You can also project them on your whiteboard or make an overhead transparency. For homeschoolers or those with only one or a few students, the paper versions should do. The other thing that we highly recommend are integer chips a.k.a. two-color counters. Read more about them below.

Most Popular Integers Worksheets this Week

Adding, Subtracting, Multiplying and Dividing Mixed Integers from -12 to 12 (50 Questions; All Parentheses)

Integer Resources

problem solving about integers

Coordinate graph paper can be very useful when studying integers. Coordinate geometry is a practical application of integers and can give students practice with using integers while learning another related skill. Coordinate graph paper can be found on the Graph Paper page:

Coordinate Graph Paper

Integer number lines can be used for various math activities including operations with integers, counting, comparing, ordering, etc.

  • Integer Number Lines Integers Number Lines from -10 to 10 Integers Number Lines from -15 to 15 Integers Number Lines from -20 to 20 Integers Number Lines from -25 to 25 OLD Integer Number Lines

Comparing and Ordering Integers

problem solving about integers

For students who are just starting with integers, it is very helpful if they can use an integer number line to compare integers and to see how the placement of integers works. They should quickly realize that negative numbers are counter-intuitive because they are probably quite used to larger absolute values meaning larger numbers. The reverse is the case, of course, with negative numbers. Students should be able to recognize easily that a positive number is always greater than a negative number and that between two negative integers, the one with the lesser absolute value is actually the greater number. Have students practice with these integers worksheets and follow up with the close proximity comparing integers worksheets.

  • Comparing Integers Worksheets Comparing Positive and Negative Integers (-9 to +9) Comparing Positive and Negative Integers (-15 to +15) Comparing Positive and Negative Integers (-25 to +25) Comparing Positive and Negative Integers (-50 to +50) Comparing Positive and Negative Integers (-99 to +99) Comparing Negative Integers (-15 to -1)

By close proximity, we mean that the integers being compared differ very little in value. Depending on the range, we have allowed various differences between the two integers being compared. In the first set where the range is -9 to 9, the difference between the two numbers is always 1. With the largest range, a difference of up to 5 is allowed. These worksheets will help students further hone their ability to visualize and conceptualize the idea of negative numbers and will serve as a foundation for all the other worksheets on this page.

  • Comparing Integers in Close Proximity Comparing Positive and Negative Integers (-9 to +9) in Close Proximity Comparing Positive and Negative Integers (-15 to +15) in Close Proximity Comparing Positive and Negative Integers (-25 to +25) in Close Proximity Comparing Positive and Negative Integers (-50 to +50) in Close Proximity Comparing Positive and Negative Integers (-99 to +99) in Close Proximity
  • Ordering Integers Worksheets Ordering Integers on a Number Line Ordering Integers (range -9 to 9) Ordering Integers (range -20 to 20) Ordering Integers (range -50 to 50) Ordering Integers (range -99 to 99) Ordering Integers (range -999 to 999) Ordering Negative Integers (range -9 to -1) Ordering Negative Integers (range -99 to -10) Ordering Negative Integers (range -999 to -100)

Adding and Subtracting Integers

problem solving about integers

Two-color counters are fantastic manipulatives for teaching and learning about integer addition. Two-color counters are usually plastic chips that come with yellow on one side and red on the other side. They might be available in other colors, so you'll have to substitute your own colors in the following description.

Adding with two-color counters is actually quite easy. You model the first number with a pile of chips flipped to the correct side and you also model the second number with a pile of chips flipped to the correct side; then you mash them all together, take out the zeros (if any) and behold, you have your answer! Need further elaboration? Read on!

The correct side means using red to model negative numbers and yellow to model positive numbers. You would model —5 with five red chips and 7 with seven yellow chips. Mashing them together should be straight forward although, you'll want to caution your students to be less exuberant than usual, so none of the chips get flipped. Taking out the zeros means removing as many pairs of yellow and red chips as you can. You can do this because —1 and 1 when added together equals zero (this is called the zero principle). If you remove the zeros, you don't affect the answer. The benefit of removing the zeros, however, is that you always end up with only one color and as a consequence, the answer to the integer question. If you have no chips left at the end, the answer is zero!

  • Adding Integers Worksheets with 75 Questions Per Page (Some Parentheses) Adding Integers from -9 to 9 (75 Questions) ✎ Adding Integers from -12 to 12 (75 Questions) ✎ Adding Integers from -15 to 15 (75 Questions) ✎ Adding Integers from -20 to 20 (75 Questions) ✎ Adding Integers from -25 to 25 (75 Questions) ✎ Adding Integers from -50 to 50 (75 Questions) ✎ Adding Integers from -99 to 99 (75 Questions) ✎
  • Adding Integers Worksheets with 75 Questions Per Page (All Parentheses) Adding Integers from (-9) to (+9) All Parentheses (75 Questions) ✎ Adding Integers from (-12) to (+12) All Parentheses (75 Questions) ✎ Adding Integers from (-15) to (+15) All Parentheses (75 Questions) ✎ Adding Integers from (-20) to (+20) All Parentheses (75 Questions) ✎ Adding Integers from (-25) to (+25) All Parentheses (75 Questions) ✎ Adding Integers from (-50) to (+50) All Parentheses (75 Questions) ✎ Adding Integers from (-99) to (+99) All Parentheses (75 Questions) ✎
  • Adding Integers Worksheets with 75 Questions Per Page (No Parentheses) Adding Integers from -9 to 9 No Parentheses (75 Questions) ✎ Adding Integers from -12 to 12 No Parentheses (75 Questions) ✎ Adding Integers from -15 to 15 No Parentheses (75 Questions) ✎ Adding Integers from -20 to 20 No Parentheses (75 Questions) ✎ Adding Integers from -25 to 25 No Parentheses (75 Questions) ✎ Adding Integers from -50 to 50 No Parentheses (75 Questions) ✎ Adding Integers from -99 to 99 No Parentheses (75 Questions) ✎
  • Adding Integers Worksheets with 50 Questions Per Page (Some Parentheses) Adding Integers from -9 to 9 (50 Questions) ✎ Adding Integers from -12 to 12 (50 Questions) ✎ Adding Integers from -15 to 15 (50 Questions) ✎ Adding Integers from -20 to 20 (50 Questions) ✎ Adding Integers from -25 to 25 (50 Questions) ✎ Adding Integers from -50 to 50 (50 Questions) ✎ Adding Integers from -99 to 99 (50 Questions) ✎
  • Adding Integers Worksheets with 50 Questions Per Page (All Parentheses) Adding Integers from (-9) to (+9) All Parentheses (50 Questions) ✎ Adding Integers from (-12) to (+12) All Parentheses (50 Questions) ✎ Adding Integers from (-15) to (+15) All Parentheses (50 Questions) ✎ Adding Integers from (-20) to (+20) All Parentheses (50 Questions) ✎ Adding Integers from (-25) to (+25) All Parentheses (50 Questions) ✎ Adding Integers from (-50) to (+50) All Parentheses (50 Questions) ✎ Adding Integers from (-99) to (+99) All Parentheses (50 Questions) ✎
  • Adding Integers Worksheets with 50 Questions Per Page (No Parentheses) Adding Integers from -9 to 9 No Parentheses (50 Questions) ✎ Adding Integers from -12 to 12 No Parentheses (50 Questions) ✎ Adding Integers from -15 to 15 No Parentheses (50 Questions) ✎ Adding Integers from -20 to 20 No Parentheses (50 Questions) ✎ Adding Integers from -25 to 25 No Parentheses (50 Questions) ✎ Adding Integers from -50 to 50 No Parentheses (50 Questions) ✎ Adding Integers from -99 to 99 No Parentheses (50 Questions) ✎
  • Adding Integers Worksheets with 25 Large Print Questions Per Page (Some Parentheses) Adding Integers from -9 to 9 (Large Print; 25 Questions) ✎ Adding Integers from -12 to 12 (Large Print; 25 Questions) ✎ Adding Integers from -15 to 15 (Large Print; 25 Questions) ✎ Adding Integers from -20 to 20 (Large Print; 25 Questions) ✎ Adding Integers from -25 to 25 (Large Print; 25 Questions) ✎ Adding Integers from -50 to 50 (Large Print; 25 Questions) ✎ Adding Integers from -99 to 99 (Large Print; 25 Questions) ✎
  • Adding Integers Worksheets with 25 Large Print Questions Per Page (All Parentheses) Adding Integers from (-9) to (+9) All Parentheses (Large Print; 25 Questions) ✎ Adding Integers from (-12) to (+12) All Parentheses (Large Print; 25 Questions) ✎ Adding Integers from (-15) to (+15) All Parentheses (Large Print; 25 Questions) ✎ Adding Integers from (-20) to (+20) All Parentheses (Large Print; 25 Questions) ✎ Adding Integers from (-25) to (+25) All Parentheses (Large Print; 25 Questions) ✎ Adding Integers from (-50) to (+50) All Parentheses (Large Print; 25 Questions) ✎ Adding Integers from (-99) to (+99) All Parentheses (Large Print; 25 Questions) ✎
  • Adding Integers Worksheets with 25 Large Print Questions Per Page (No Parentheses) Adding Integers from -9 to 9 No Parentheses (Large Print; 25 Questions) ✎ Adding Integers from -12 to 12 No Parentheses (Large Print; 25 Questions) ✎ Adding Integers from -15 to 15 No Parentheses (Large Print; 25 Questions) ✎ Adding Integers from -20 to 20 No Parentheses (Large Print; 25 Questions) ✎ Adding Integers from -25 to 25 No Parentheses (Large Print; 25 Questions) ✎ Adding Integers from -50 to 50 No Parentheses (Large Print; 25 Questions) ✎ Adding Integers from -99 to 99 No Parentheses (Large Print; 25 Questions) ✎
  • Vertically Arranged Integer Addition Worksheets 3-Digit Integer Addition (Vertically Arranged) 3-Digit Positive Plus a Negative Integer Addition (Vertically Arranged) 3-Digit Negative Plus a Positive Integer Addition (Vertically Arranged) 3-Digit Negative Plus a Negative Integer Addition (Vertically Arranged)

Subtracting with integer chips is a little different. Integer subtraction can be thought of as removing. To subtract with integer chips, begin by modeling the first number (the minuend) with integer chips. Next, remove the chips that would represent the second number from your pile and you will have your answer. Unfortunately, that isn't all there is to it. This works beautifully if you have enough of the right color chip to remove, but often times you don't. For example, 5 - (-5), would require five yellow chips to start and would also require the removal of five red chips, but there aren't any red chips! Thank goodness, we have the zero principle. Adding or subtracting zero (a red chip and a yellow chip) has no effect on the original number, so we could add as many zeros as we wanted to the pile, and the number would still be the same. All that is needed then is to add as many zeros (pairs of red and yellow chips) as needed until there are enough of the correct color chip to remove. In our example 5 - (-5), you would add 5 zeros, so that you could remove five red chips. You would then be left with 10 yellow chips (or +10) which is the answer to the question.

  • Subtracting Integers Worksheets with 75 Questions Per Page (Some Parentheses) Subtracting Integers from -9 to 9 (75 Questions) ✎ Subtracting Integers from -12 to 12 (75 Questions) ✎ Subtracting Integers from -15 to 15 (75 Questions) ✎ Subtracting Integers from -20 to 20 (75 Questions) ✎ Subtracting Integers from -25 to 25 (75 Questions) ✎ Subtracting Integers from -50 to 50 (75 Questions) ✎ Subtracting Integers from -99 to 99 (75 Questions) ✎
  • Subtracting Integers Worksheets with 75 Questions Per Page (All Parentheses) Subtracting Integers from (-9) to (+9) All Parentheses (75 Questions) ✎ Subtracting Integers from (-12) to (+12) All Parentheses (75 Questions) ✎ Subtracting Integers from (-15) to (+15) All Parentheses (75 Questions) ✎ Subtracting Integers from (-20) to (+20) All Parentheses (75 Questions) ✎ Subtracting Integers from (-25) to (+25) All Parentheses (75 Questions) ✎ Subtracting Integers from (-50) to (+50) All Parentheses (75 Questions) ✎ Subtracting Integers from (-99) to (+99) All Parentheses (75 Questions) ✎
  • Subtracting Integers Worksheets with 75 Questions Per Page (No Parentheses) Subtracting Integers from -9 to 9 No Parentheses (75 Questions) ✎ Subtracting Integers from -12 to 12 No Parentheses (75 Questions) ✎ Subtracting Integers from -15 to 15 No Parentheses (75 Questions) ✎ Subtracting Integers from -20 to 20 No Parentheses (75 Questions) ✎ Subtracting Integers from -25 to 25 No Parentheses (75 Questions) ✎ Subtracting Integers from -50 to 50 No Parentheses (75 Questions) ✎ Subtracting Integers from -99 to 99 No Parentheses (75 Questions) ✎
  • Subtracting Integers Worksheets with 50 Questions Per Page (Some Parentheses) Subtracting Integers from -9 to 9 (50 Questions) ✎ Subtracting Integers from -12 to 12 (50 Questions) ✎ Subtracting Integers from -15 to 15 (50 Questions) ✎ Subtracting Integers from -20 to 20 (50 Questions) ✎ Subtracting Integers from -25 to 25 (50 Questions) ✎ Subtracting Integers from -50 to 50 (50 Questions) ✎ Subtracting Integers from -99 to 99 (50 Questions) ✎
  • Subtracting Integers Worksheets with 50 Questions Per Page (All Parentheses) Subtracting Integers from (-9) to (+9) All Parentheses (50 Questions) ✎ Subtracting Integers from (-12) to (+12) All Parentheses (50 Questions) ✎ Subtracting Integers from (-15) to (+15) All Parentheses (50 Questions) ✎ Subtracting Integers from (-20) to (+20) All Parentheses (50 Questions) ✎ Subtracting Integers from (-25) to (+25) All Parentheses (50 Questions) ✎ Subtracting Integers from (-50) to (+50) All Parentheses (50 Questions) ✎ Subtracting Integers from (-99) to (+99) All Parentheses (50 Questions) ✎
  • Subtracting Integers Worksheets with 50 Questions Per Page (No Parentheses) Subtracting Integers from -9 to 9 No Parentheses (50 Questions) ✎ Subtracting Integers from -12 to 12 No Parentheses (50 Questions) ✎ Subtracting Integers from -15 to 15 No Parentheses (50 Questions) ✎ Subtracting Integers from -20 to 20 No Parentheses (50 Questions) ✎ Subtracting Integers from -25 to 25 No Parentheses (50 Questions) ✎ Subtracting Integers from -50 to 50 No Parentheses (50 Questions) ✎ Subtracting Integers from -99 to 99 No Parentheses (50 Questions) ✎
  • Subtracting Integers Worksheets with 25 Large Print Questions Per Page (Some Parentheses) Subtracting Integers from -9 to 9 (Large Print; 25 Questions) ✎ Subtracting Integers from -12 to 12 (Large Print; 25 Questions) ✎ Subtracting Integers from -15 to 15 (Large Print; 25 Questions) ✎ Subtracting Integers from -20 to 20 (Large Print; 25 Questions) ✎ Subtracting Integers from -25 to 25 (Large Print; 25 Questions) ✎ Subtracting Integers from -50 to 50 (Large Print; 25 Questions) ✎ Subtracting Integers from -99 to 99 (Large Print; 25 Questions) ✎
  • Subtracting Integers Worksheets with 25 Large Print Questions Per Page (All Parentheses) Subtracting Integers from (-9) to (+9) All Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-12) to (+12) All Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-15) to (+15) All Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-20) to (+20) All Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-25) to (+25) All Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-50) to (+50) All Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-99) to (+99) All Parentheses (Large Print; 25 Questions) ✎
  • Subtracting Integers Worksheets with 25 Large Print Questions Per Page (No Parentheses) Subtracting Integers from (-9) to 9 No Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-12) to 12 No Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-15) to 15 No Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-20) to 20 No Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-25) to 25 No Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-50) to 50 No Parentheses (Large Print; 25 Questions) ✎ Subtracting Integers from (-99) to 99 No Parentheses (Large Print; 25 Questions) ✎
  • Vertically Arranged Integer Subtraction Worksheets 3-Digit Integer Subtraction (Vertically Arranged) 3-Digit Positive Minus a Positive Integer Subtraction (Vertically Arranged) 3-Digit Positive Minus a Negative Integer Subtraction (Vertically Arranged) 3-Digit Negative Minus a Positive Integer Subtraction (Vertically Arranged) 3-Digit Negative Minus a Negative Integer Subtraction (Vertically Arranged)

The worksheets in this section include addition and subtraction on the same page. Students will have to pay close attention to the signs and apply their knowledge of integer addition and subtraction to each question. The use of counters or number lines could be helpful to some students.

  • Adding and Subtracting Integers Worksheets with 75 Questions Per Page (Some Parentheses) Adding & Subtracting Integers from -9 to 9 (75 Questions) ✎ Adding & Subtracting Integers from -10 to 10 (75 Questions) ✎ Adding & Subtracting Integers from -12 to 12 (75 Questions) ✎ Adding & Subtracting Integers from -15 to 15 (75 Questions) ✎ Adding & Subtracting Integers from -20 to 20 (75 Questions) ✎ Adding & Subtracting Integers from -25 to 25 (75 Questions) ✎ Adding & Subtracting Integers from -50 to 50 (75 Questions) ✎ Adding & Subtracting Integers from -99 to 99 (75 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 75 Questions Per Page (All Parentheses) Adding & Subtracting Integers from (-5) to (+5) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-9) to (+9) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-12) to (+12) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-15) to (+15) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-20) to (+20) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-25) to (+25) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-50) to (+50) All Parentheses (75 Questions) ✎ Adding & Subtracting Integers from (-99) to (+99) All Parentheses (75 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 75 Questions Per Page (No Parentheses) Adding & Subtracting Integers from -9 to 9 No Parentheses (75 Questions) ✎ Adding & Subtracting Integers from -12 to 12 No Parentheses (75 Questions) ✎ Adding & Subtracting Integers from -15 to 15 No Parentheses (75 Questions) ✎ Adding & Subtracting Integers from -20 to 20 No Parentheses (75 Questions) ✎ Adding & Subtracting Integers from -25 to 25 No Parentheses (75 Questions) ✎ Adding & Subtracting Integers from -50 to 50 No Parentheses (75 Questions) ✎ Adding & Subtracting Integers from -99 to 99 No Parentheses (75 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 50 Questions Per Page (Some Parentheses) Adding & Subtracting Integers from -9 to 9 (50 Questions) ✎ Adding & Subtracting Integers from -12 to 12 (50 Questions) ✎ Adding & Subtracting Integers from -15 to 15 (50 Questions) ✎ Adding & Subtracting Integers from -20 to 20 (50 Questions) ✎ Adding & Subtracting Integers from -25 to 25 (50 Questions) ✎ Adding & Subtracting Integers from -50 to 50 (50 Questions) ✎ Adding & Subtracting Integers from -99 to 99 (50 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 50 Questions Per Page (All Parentheses) Adding & Subtracting Integers from (-9) to (+9) All Parentheses (50 Questions) ✎ Adding & Subtracting Integers from (-12) to (+12) All Parentheses (50 Questions) ✎ Adding & Subtracting Integers from (-15) to (+15) All Parentheses (50 Questions) ✎ Adding & Subtracting Integers from (-20) to (+20) All Parentheses (50 Questions) ✎ Adding & Subtracting Integers from (-25) to (+25) All Parentheses (50 Questions) ✎ Adding & Subtracting Integers from (-50) to (+50) All Parentheses (50 Questions) ✎ Adding & Subtracting Integers from (-99) to (+99) All Parentheses (50 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 50 Questions Per Page (No Parentheses) Adding & Subtracting Integers from -9 to 9 No Parentheses (50 Questions) ✎ Adding & Subtracting Integers from -12 to 12 No Parentheses (50 Questions) ✎ Adding & Subtracting Integers from -15 to 15 No Parentheses (50 Questions) ✎ Adding & Subtracting Integers from -20 to 20 No Parentheses (50 Questions) ✎ Adding & Subtracting Integers from -25 to 25 No Parentheses (50 Questions) ✎ Adding & Subtracting Integers from -50 to 50 No Parentheses (50 Questions) ✎ Adding & Subtracting Integers from -99 to 99 No Parentheses (50 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 25 Large Print Questions Per Page (Some Parentheses) Adding & Subtracting Integers from -9 to 9 (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from -12 to 12 (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from -15 to 15 (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from -20 to 20 (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from -25 to 25 (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from -50 to 50 (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from -99 to 99 (Large Print; 25 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 25 Large Print Questions Per Page (All Parentheses) Adding & Subtracting Integers from (-9) to (+9) All Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-12) to (+12) All Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-15) to (+15) All Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-20) to (+20) All Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-25) to (+25) All Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-50) to (+50) All Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-99) to (+99) All Parentheses (Large Print; 25 Questions) ✎
  • Adding and Subtracting Integers Worksheets with 25 Large Print Questions Per Page (No Parentheses) Adding & Subtracting Integers from (-9) to 9 No Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-12) to 12 No Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-15) to 15 No Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-20) to 20 No Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-25) to 25 No Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-50) to 50 No Parentheses (Large Print; 25 Questions) ✎ Adding & Subtracting Integers from (-99) to 99 No Parentheses (Large Print; 25 Questions) ✎

These worksheets include groups of questions that all result in positive or negative sums or differences. They can be used to help students see more clearly how certain integer questions end up with positive and negative results. In the case of addition of negative and positive integers, some people suggest looking for the "heavier" value to determine whether the sum will be positive of negative. More technically, it would be the integer with the greater absolute value. For example, in the question (−2) + 5, the absolute value of the positive integer is greater, so the sum will be positive.

In subtraction questions, the focus is on the subtrahend (the value being subtracted). In positive minus positive questions, if the subtrahend is greater than the minuend, the answer will be negative. In negative minus negative questions, if the subtrahend has a greater absolute value, the answer will be positive. Vice-versa for both situations. Alternatively, students can always convert subtraction questions to addition questions by changing the signs (e.g. (−5) − (−7) is the same as (−5) + 7; 3 − 5 is the same as 3 + (−5)).

  • Scaffolded Integer Addition and Subtraction Positive Plus Negative Integer Addition (Scaffolded) ✎ Negative Plus Positive Integer Addition (Scaffolded) ✎ Mixed Integer Addition (Scaffolded) ✎ Positive Minus Positive Integer Subtraction (Scaffolded) ✎ Negative Minus Negative Integer Subtraction (Scaffolded) ✎

Multiplying and Dividing Integers

problem solving about integers

Multiplying integers is very similar to multiplication facts except students need to learn the rules for the negative and positive signs. In short, they are:

In words, multiplying two positives or two negatives together results in a positive product, and multiplying a negative and a positive in either order results in a negative product. So, -8 × 8, 8 × (-8), -8 × (-8) and 8 × 8 all result in an absolute value of 64, but in two cases, the answer is positive (64) and in two cases the answer is negative (-64).

Should you wish to develop some "real-world" examples of integer multiplication, it might be a stretch due to the abstract nature of negative numbers. Sure, you could come up with some scenario about owing a debt and removing the debt in previous months, but this may only result in confusion. For now students can learn the rules of multiplying integers and worry about the analogies later!

  • Multiplying Integers with 100 Questions Per Page Multiplying Mixed Integers from -9 to 9 (100 Questions) ✎ Multiplying Positive by Negative Integers from -9 to 9 (100 Questions) ✎ Multiplying Negative by Positive Integers from -9 to 9 (100 Questions) ✎ Multiplying Negative by Negative Integers from -9 to 9 (100 Questions) ✎ Multiplying Mixed Integers from -12 to 12 (100 Questions) ✎ Multiplying Positive by Negative Integers from -12 to 12 (100 Questions) ✎ Multiplying Negative by Positive Integers from -12 to 12 (100 Questions) ✎ Multiplying Negative by Negative Integers from -12 to 12 (100 Questions) ✎ Multiplying Mixed Integers from -20 to 20 (100 Questions) ✎ Multiplying Mixed Integers from -50 to 50 (100 Questions) ✎
  • Multiplying Integers with 50 Questions Per Page Multiplying Mixed Integers from -9 to 9 (50 Questions) ✎ Multiplying Positive by Negative Integers from -9 to 9 (50 Questions) ✎ Multiplying Negative by Positive Integers from -9 to 9 (50 Questions) ✎ Multiplying Negative by Negative Integers from -9 to 9 (50 Questions) ✎ Multiplying Mixed Integers from -12 to 12 (50 Questions) ✎ Multiplying Positive by Negative Integers from -12 to 12 (50 Questions) ✎ Multiplying Negative by Positive Integers from -12 to 12 (50 Questions) ✎ Multiplying Negative by Negative Integers from -12 to 12 (50 Questions) ✎
  • Multiplying Integers with 25 Large Print Questions Per Page Multiplying Mixed Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying Positive by Negative Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying Negative by Positive Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying Negative by Negative Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying Mixed Integers from -12 to 12 (25 Questions; Large Print) ✎ Multiplying Positive by Negative Integers from -12 to 12 (25 Questions; Large Print) ✎ Multiplying Negative by Positive Integers from -12 to 12 (25 Questions; Large Print) ✎ Multiplying Negative by Negative Integers from -12 to 12 (25 Questions; Large Print) ✎

Luckily (for your students), the rules of dividing integers are the same as the rules for multiplying:

Dividing a positive by a positive integer or a negative by a negative integer will result in a positive integer. Dividing a negative by a positive integer or a positive by a negative integer will result in a negative integer. A good grasp of division facts and a knowledge of the rules for multiplying and dividing integers will go a long way in helping your students master integer division. Use the worksheets in this section to guide students along.

  • Dividing Integers with 100 Questions Per Page Dividing Mixed Integers from -9 to 9 (100 Questions) ✎ Dividing Positive by Negative Integers from -9 to 9 (100 Questions) ✎ Dividing Negative by Positive Integers from -9 to 9 (100 Questions) ✎ Dividing Negative by Negative Integers from -9 to 9 (100 Questions) ✎ Dividing Mixed Integers from -12 to 12 (100 Questions) ✎ Dividing Positive by Negative Integers from -12 to 12 (100 Questions) ✎ Dividing Negative by Positive Integers from -12 to 12 (100 Questions) ✎ Dividing Negative by Negative Integers from -12 to 12 (100 Questions) ✎
  • Dividing Integers with 50 Questions Per Page Dividing Mixed Integers from -9 to 9 (50 Questions) ✎ Dividing Positive by Negative Integers from -9 to 9 (50 Questions) ✎ Dividing Negative by Positive Integers from -9 to 9 (50 Questions) ✎ Dividing Negative by Negative Integers from -9 to 9 (50 Questions) ✎ Dividing Mixed Integers from -12 to 12 (50 Questions) ✎ Dividing Positive by Negative Integers from -12 to 12 (50 Questions) ✎ Dividing Negative by Positive Integers from -12 to 12 (50 Questions) ✎ Dividing Negative by Negative Integers from -12 to 12 (50 Questions) ✎
  • Dividing Integers with 25 Large Print Questions Per Page Dividing Mixed Integers from -9 to 9 (25 Questions; Large Print) ✎ Dividing Positive by Negative Integers from -9 to 9 (25 Questions; Large Print) ✎ Dividing Negative by Positive Integers from -9 to 9 (25 Questions; Large Print) ✎ Dividing Negative by Negative Integers from -9 to 9 (25 Questions; Large Print) ✎ Dividing Mixed Integers from -12 to 12 (25 Questions; Large Print) ✎ Dividing Positive by Negative Integers from -12 to 12 (25 Questions; Large Print) ✎ Dividing Negative by Positive Integers from -12 to 12 (25 Questions; Large Print) ✎ Dividing Negative by Negative Integers from -12 to 12 (25 Questions; Large Print) ✎

This section includes worksheets with both multiplying and dividing integers on the same page. As long as students know their facts and the integer rules for multiplying and dividing, their sole worry will be to pay attention to the operation signs.

  • Multiplying and Dividing Integers with 100 Questions Per Page Multiplying and Dividing Mixed Integers from -9 to 9 (100 Questions) ✎ Multiplying and Dividing Positive and Negative Integers from -9 to 9 (100 Questions) ✎ Multiplying and Dividing Negative and Positive Integers from -9 to 9 (100 Questions) ✎ Multiplying and Dividing Negative and Negative Integers from -9 to 9 (100 Questions) ✎ Multiplying and Dividing Mixed Integers from -12 to 12 (100 Questions) ✎ Multiplying and Dividing Positive and Negative Integers from -12 to 12 (100 Questions) ✎ Multiplying and Dividing Negative and Positive Integers from -12 to 12 (100 Questions) ✎ Multiplying and Dividing Negative and Negative Integers from -12 to 12 (100 Questions) ✎
  • Multiplying and Dividing Integers with 75 Questions Per Page Multiplying and Dividing Mixed Integers from -9 to 9 (75 Questions) ✎ Multiplying and Dividing Positive and Negative Integers from -9 to 9 (75 Questions) ✎ Multiplying and Dividing Negative and Positive Integers from -9 to 9 (75 Questions) ✎ Multiplying and Dividing Negative and Negative Integers from -9 to 9 (75 Questions) ✎ Multiplying and Dividing Mixed Integers from -12 to 12 (75 Questions) ✎ Multiplying and Dividing Positive and Negative Integers from -12 to 12 (75 Questions) ✎ Multiplying and Dividing Negative and Positive Integers from -12 to 12 (75 Questions) ✎ Multiplying and Dividing Negative and Negative Integers from -12 to 12 (75 Questions) ✎
  • Multiplying and Dividing Integers with 50 Questions Per Page Multiplying and Dividing Mixed Integers from -9 to 9 (50 Questions) ✎ Multiplying and Dividing Positive and Negative Integers from -9 to 9 (50 Questions) ✎ Multiplying and Dividing Negative and Positive Integers from -9 to 9 (50 Questions) ✎ Multiplying and Dividing Negative and Negative Integers from -9 to 9 (50 Questions) ✎ Multiplying and Dividing Mixed Integers from -12 to 12 (50 Questions) ✎ Multiplying and Dividing Positive and Negative Integers from -12 to 12 (50 Questions) ✎ Multiplying and Dividing Negative and Positive Integers from -12 to 12 (50 Questions) ✎ Multiplying and Dividing Negative and Negative Integers from -12 to 12 (50 Questions) ✎
  • Multiplying and Dividing Integers with 25 Large Print Questions Per Page Multiplying and Dividing Mixed Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying and Dividing Positive and Negative Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying and Dividing Negative and Positive Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying and Dividing Negative and Negative Integers from -9 to 9 (25 Questions; Large Print) ✎ Multiplying and Dividing Mixed Integers from -12 to 12 (25 Questions; Large Print) ✎ Multiplying and Dividing Positive and Negative Integers from -12 to 12 (25 Questions; Large Print) ✎ Multiplying and Dividing Negative and Positive Integers from -12 to 12 (25 Questions; Large Print) ✎ Multiplying and Dividing Negative and Negative Integers from -12 to 12 (25 Questions; Large Print) ✎

All Operations with Integers

problem solving about integers

In this section, the integers math worksheets include all of the operations. Students will need to pay attention to the operations and the signs and use mental math or another strategy to arrive at the correct answers. It should go without saying that students need to know their basic addition, subtraction, multiplication and division facts and rules regarding operations with integers before they should complete any of these worksheets independently. Of course, the worksheets can be used as a source of questions for lessons, tests or other learning activities.

  • All Operations with Integers with 50 Questions Per Page (Some Parentheses) All operations with integers from -9 to 9 (50 Questions) ✎ All operations with integers from -12 to 12 (50 Questions) ✎ All operations with integers from -15 to 15 (50 Questions) ✎ All operations with integers from -20 to 20 (50 Questions) ✎ All operations with integers from -25 to 25 (50 Questions) ✎ All operations with integers from -50 to 50 (50 Questions) ✎ All operations with integers from -99 to 99 (50 Questions) ✎
  • All Operations with Integers with 50 Questions Per Page (All Parentheses) All operations with integers from (-9) to (+9) All Parentheses (50 Questions) ✎ All operations with integers from (-12) to (+12) All Parentheses (50 Questions) ✎ All operations with integers from (-15) to (+15) All Parentheses (50 Questions) ✎ All operations with integers from (-20) to (+20) All Parentheses (50 Questions) ✎ All operations with integers from (-25) to (+25) All Parentheses (50 Questions) ✎ All operations with integers from (-50) to (+50) All Parentheses (50 Questions) ✎ All operations with integers from (-99) to (+99) All Parentheses (50 Questions) ✎
  • All Operations with Integers with 50 Questions Per Page (No Parentheses) All operations with integers from -9 to 9 No Parentheses (50 Questions) ✎ All operations with integers from -12 to 12 No Parentheses (50 Questions) ✎ All operations with integers from -15 to 15 No Parentheses (50 Questions) ✎ All operations with integers from -20 to 20 No Parentheses (50 Questions) ✎ All operations with integers from -25 to 25 No Parentheses (50 Questions) ✎ All operations with integers from -50 to 50 No Parentheses (50 Questions) ✎ All operations with integers from -99 to 99 No Parentheses (50 Questions) ✎

Order of operations with integers can be found on the Order of Operations page:

Order of Operations with Integers

Copyright © 2005-2024 Math-Drills.com You may use the math worksheets on this website according to our Terms of Use to help students learn math.

OML Search

Algebra Word Problems: Integers

Things to watch out for: be careful when translating the sentences into equations.

For example: “John has 5 fewer sweets than twice the number that Alice has”         is translated as j = 2 a –5         and not j = 5 – 2 a

Although, the number 5 is mentioned first in the sentence that does not mean that it would come first in the equation. Read the sentence carefully. In these lessons, we will cover some examples of integer word problems with two unknowns. Refer to the following related topics for other types of integer word problems.

Integer Problems With Two Unknowns

A team won 3 times as many matches as it lost. If it won 15 matches, how many games did it lose?

Step 1: Sentence: A team won 3 times as many matches as it lost.

Assign variables :

Sentence: It won 15 matches 3x = 15

Step 2: Solve the equation

Initially, there were the same number of blue marbles and red marbles in a bag. John took out 5 blue marbles and then there were twice as many red marbles as blue marbles in the bag. How many red marbles are there in the bag?

Step 1: Assign variables :

Let x = red marbles

Sentence: Initially, blue marbles = red marbles = x , then John took out 5 blue marbles. x – 5 = blue marbles

Sentence: twice as many red marbles as blue marbles in the bag x = 2( x –5)

x = 2( x –5)

Remove the brackets x = 2 x – 10

Isolate variable x x = 10

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

1.3: Integers

  • Last updated
  • Save as PDF
  • Page ID 5118

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

By the end of this section, you will be able to:

  • Simplify expressions with absolute value
  • Add and subtract integers
  • Multiply and divide integers
  • Simplify expressions with integers
  • Evaluate variable expressions with integers
  • Translate phrases to expressions with integers
  • Use integers in applications

A more thorough introduction to the topics covered in this section can be found in the Elementary Algebra chapter, Foundations.

Simplify Expressions with Absolute Value

A negative number is a number less than 0. The negative numbers are to the left of zero on the number line ( Figure \(\PageIndex{1}\)).

Figure shows a horizontal line marked with numbers at equal distances. At the center of the line is 0. To the right of this, starting from the number closest to 0 are 1, 2, 3 and 4. These are labeled positive numbers. To the left of 0, starting from the number closest to 0 are minus 1, minus 2, minus 3 and minus 4. These are labeled negative numbers.

You may have noticed that, on the number line, the negative numbers are a mirror image of the positive numbers, with zero in the middle. Because the numbers \(2\) and \(−2\) are the same distance from zero, each one is called the opposite of the other. The opposite of \(2\) is \(−2\), and the opposite of \(−2\) is \(2\).

The opposite of a number is the number that is the same distance from zero on the number line but on the opposite side of zero.

Figure \(\PageIndex{2}\) illustrates the definition.

Figure shows a number line with the numbers 3 and minus 3 highlighted. These are equidistant from 0, both being 3 numbers away from 0.

OPPOSITE NOTATION

\[\begin{align} & -a \text{ means the opposite of the number }a \\ & \text{The notation} -a \text{ is read as “the opposite of }a \text{.”} \end{align} \]

We saw that numbers such as 3 and −3 are opposites because they are the same distance from 0 on the number line. They are both three units from 0. The distance between 0 and any number on the number line is called the absolute value of that number.

Definition: ABSOLUTE VALUE

The absolute value of a number is its distance from 0 on the number line.

The absolute value of a number \(n\) is written as \(|n|\) and \(|n|≥0\) for all numbers.

Absolute values are always greater than or equal to zero.

For example,

\[\begin{align} & -5 \text{ is } 5 \text{ units away from 0, so } |-5|=5. \\ & 5 \text{ is }5\text{ units away from 0, so }|5|=5. \end{align}\]

Figure \(\PageIndex{3}\) illustrates this idea.

Figure shows a number line showing the numbers 0, 5 and minus 5. 5 and minus 5 are equidistant from 0, both being 5 units away from 0.

The absolute value of a number is never negative because distance cannot be negative. The only number with absolute value equal to zero is the number zero itself because the distance from 0 to 0 on the number line is zero units.

In the next example, we’ll order expressions with absolute values.

EXAMPLE \(\PageIndex{1}\)

Fill in \(<,\,>,\) or \(=\) for each of the following pairs of numbers:

  • \(\mathrm{|−5|}\_\_\mathrm{−|−5|}\_\_\mathrm{−|5|}\)
  • \(\text{8__−|−8|}\)
  • \(\text{−9__−|−9|}\)
  • (\text{−(−16)__|−16|}\).

\(\begin{array}{lrcc} { \text{ } \\ \text{Simplify.} \\ \text{Order.} \\ \text{ } } & {|−5| \\ 5 \\ 5 \\ |−5|} & {\_\_ \\ \_\_ \\ > \\ >} & {−|−5| \\ −5 \\ −5 \\ −|−5|} \end{array}\)

\(\begin{array}{llcc} { \text{ } \\ \text{Simplify.} \\ \text{Order.} \\ \text{ } } & {8 \\ 8 \\ 8 \\ 8} & {\_\_ \\ \_\_ \\ > \\ >} & {−|−8| \\ −8 \\ −8 \\ −|−8|} \end{array}\)

\(\begin{array}{lrcc} { \text{ } \\ \text{Simplify.} \\ \text{Order.} \\ \text{ } } & {−9 \\ −9 \\ −9 \\ −9} & {\_\_ \\ \_\_ \\ = \\ =} & {−|−9| \\ −9 \\ −9 \\ −|−9|} \end{array}\)

\(\begin{array}{lrcc} { \text{ } \\ \text{Simplify.} \\ \text{Order.} \\ \text{ } } & {−(−16) \\ 16 \\ 16 \\ −(−16)} & {\_\_ \\ \_\_ \\ = \\ =} & {−|−16| \\ 16 \\ 16 \\ |−16|} \end{array}\)

EXAMPLE \(\PageIndex{2}\)

ⓐ \(−9 \_\_−|−9|\) ⓑ \(2 \_\_−|−2|\) ⓒ \(−8 \_\_|−8|\) ⓓ \(−(−9) \_\_|−9|.\)

ⓐ \(>\) ⓑ \(>\) ⓒ \(<\)

ⓓ \(=\)

EXAMPLE \(\PageIndex{3}\)

Fill in \(<,>,\) or \(=\) for each of the following pairs of numbers:

  • \(7 \_\_ −|−7|\)
  • \(−(−10) \_ \_|−10|\)
  • \(|−4| \_\_ −|−4|\)
  • \(−1 \_\_ |−1|.\)

ⓐ \(>\) ⓑ \(=\) ⓒ \(>\)

ⓓ \(<\)

We now add absolute value bars to our list of grouping symbols. When we use the order of operations, first we simplify inside the absolute value bars as much as possible, then we take the absolute value of the resulting number.

GROUPING SYMBOLS

  • \[\begin{array}{lclc} \text{Parentheses} & () & \text{Braces} & \{ \} \\ \text{Brackets} & [] & \text{Absolute value} & ||\end{array}\]

In the next example, we simplify the expressions inside absolute value bars first just like we do with parentheses.

EXAMPLE \(\PageIndex{4}\)

Simplify: \(\mathrm{24−|19−3(6−2)|}\).

\(\begin{array}{lc} \text{} & 24−|19−3(6−2)| \\ \text{Work inside parentheses first:} & \text{} \\ \text{subtract 2 from 6.} & 24−|19−3(4)| \\ \text{Multiply 3(4).} & 24−|19−12| \\ \text{Subtract inside the absolute value bars.} & 24−|7| \\ \text{Take the absolute value.} & 24−7 \\ \text{Subtract.} & 17 \end{array}\)

EXAMPLE \(\PageIndex{5}\)

Simplify: \(19−|11−4(3−1)|\).

EXAMPLE \(\PageIndex{6}\)

Simplify: \(9−|8−4(7−5)|\).

Add and Subtract Integers

So far in our examples, we have only used the counting numbers and the whole numbers.

\[\begin{array}{ll} \text{Counting numbers} & 1,2,3… \\ \text{Whole numbers} 0,1,2,3…. \end{array}\]

Our work with opposites gives us a way to define the integers . The whole numbers and their opposites are called the integers. The integers are the numbers \(…−3,−2,−1,0,1,2,3…\)

Definition: INTEGERS

The whole numbers and their opposites are called the integers .

The integers are the numbers

\[…-3,-2,-1,0,1,2,3…,\]

Most students are comfortable with the addition and subtraction facts for positive numbers. But doing addition or subtraction with both positive and negative numbers may be more challenging.

We will use two color counters to model addition and subtraction of negatives so that you can visualize the procedures instead of memorizing the rules.

We let one color (blue) represent positive. The other color (red) will represent the negatives.

Figure show two circles labeled positive blue and negative red.

If we have one positive counter and one negative counter, the value of the pair is zero. They form a neutral pair. The value of this neutral pair is zero.

Figure shows a blue circle and a red circle encircled in a larger shape. This is labeled 1 plus minus 1 equals 0.

We will use the counters to show how to add:

\[5+3 \; \; \; \; \; \; −5+(−3) \; \; \; \; \; \; −5+3 \; \; \; \; \; \; \; 5+(−3)\]

The first example, \(5+3,\) adds 5 positives and 3 positives—both positives.

The second example, \(−5+(−3),\) adds 5 negatives and 3 negatives—both negatives.

When the signs are the same, the counters are all the same color, and so we add them. In each case we get 8—either 8 positives or 8 negatives.

Figure on the left is labeled 5 plus 3. It shows 8 blue circles. 5 plus 3 equals 8. Figure on the right is labeled minus 5 plus open parentheses minus 3 close parentheses. It shows 8 blue circles labeled 8 negatives. Minus 5 plus open parentheses minus 3 close parentheses equals minus 8.

So what happens when the signs are different? Let’s add \(−5+3\) and \(5+(−3)\).

When we use counters to model addition of positive and negative integers, it is easy to see whether there are more positive or more negative counters. So we know whether the sum will be positive or negative.

Figure on the left is labeled minus 5 plus 3. It has 5 red circles and 3 blue circles. Three pairs of red and blue circles are formed. More negatives means the sum is negative. The figure on the right is labeled 5 plus minus 3. It has 5 blue and 3 red circles. Three pairs of red and blue circles are formed. More positives means the sum is positive.

EXAMPLE \(\PageIndex{7}\)

Add: ⓐ \(−1+(−4)\) ⓑ \(−1+5\) ⓒ \(1+(−5)\).

EXAMPLE \(\PageIndex{8}\)

Add: ⓐ \(−2+(−4)\) ⓑ \(−2+4\) ⓒ \(2+(−4)\).

ⓐ \(−6\) ⓑ \(2\) ⓒ \(−2\)

EXAMPLE \(\PageIndex{9}\)

Add: ⓐ \(−2+(−5)\) ⓑ \(−2+5\) ⓒ \(2+(−5)\).

ⓐ \(−7\) ⓑ \(3\) ⓒ \(−3\)

We will continue to use counters to model the subtraction. Perhaps when you were younger, you read \(“5−3”\) as “5 take away 3.” When you use counters, you can think of subtraction the same way!

We will use the counters to show to subtract:

\[5−3 \; \; \; \; \; \; −5−(−3) \; \; \; \; \; \; −5−3 \; \; \; \; \; \; 5−(−3) \]

The first example, \(5−3\), we subtract 3 positives from 5 positives and end up with 2 positives.

In the second example, \(−5−(−3),\) we subtract 3 negatives from 5 negatives and end up with 2 negatives.

Each example used counters of only one color, and the “take away” model of subtraction was easy to apply.

Figure on the left is labeled 5 minus 3 equals 2. There are 5 blue circles. Three of these are encircled and an arrow indicates that they are taken away. The figure on the right is labeled minus 5 minus open parentheses minus 3 close parentheses equals minus 2. There are 5 red circles. Three of these are encircled and an arrow indicates that they are taken away.

What happens when we have to subtract one positive and one negative number? We’ll need to use both blue and red counters as well as some neutral pairs. If we don’t have the number of counters needed to take away, we add neutral pairs. Adding a neutral pair does not change the value. It is like changing quarters to nickels—the value is the same, but it looks different.

Let’s look at \(−5−3\) and \(5−(−3)\).

EXAMPLE \(\PageIndex{10}\)

Subtract: ⓐ \(3−1\) ⓑ \(−3−(−1)\) ⓒ \(−3−1\) ⓓ \(3−(−1)\).

EXAMPLE \(\PageIndex{11}\)

Subtract: ⓐ \(6−4\) ⓑ \(−6−(−4)\) ⓒ \(−6−4\) ⓓ \(6−(−4)\).

ⓐ \(2\) ⓑ \(−2\) ⓒ \(−10\) ⓓ \(10\)

EXAMPLE \(\PageIndex{12}\)

Subtract: ⓐ \(7−4\) ⓑ \(−7−(−4)\) ⓒ \(−7−4\) ⓓ \(7−(−4)\).

ⓐ \(3\) ⓑ \(−3\) ⓒ \(−11\) ⓓ \(11\)

Have you noticed that subtraction of signed numbers can be done by adding the opposite ? In the last example, \(−3−1\) is the same as \(−3+(−1)\) and \(3−(−1)\) is the same as \(3+1\). You will often see this idea, the Subtraction Property, written as follows:

Definition: SUBTRACTION PROPERTY

\[a−b=a+(−b)\]

Subtracting a number is the same as adding its opposite.

EXAMPLE \(\PageIndex{13}\)

Simplify: ⓐ \(13−8\) and \(13+(−8)\) ⓑ \(−17−9\) and \(−17+(−9)\) ⓒ \(9−(−15)\) and \(9+15\) ⓓ \(−7−(−4)\) and \(−7+4\).

\(\begin{array}{lccc} \text{} & −17−9 & \text{and} & −17+(−9) \\ \text{Subtract.} & −26 & \text{} & −26 \end{array}\)

\(\begin{array}{lccc} \text{} & 9−(−15) & \text{and} & 9+15 \\ \text{Subtract.} & 24 & \text{} & 24 \end{array}\)

\(\begin{array}{lccc} \text{} & −7−(−4) & \text{and} & −7+4 \\ \text{Subtract.} & −3 & \text{} & −3 \end{array}\)

EXAMPLE \(\PageIndex{14}\)

Simplify: ⓐ \(21−13\) and \(21+(−13)\) ⓑ \(−11−7\) and \(−11+(−7)\) ⓒ \(6−(−13)\) and \(6+13\) ⓓ \(−5−(−1)\) and \(−5+1\).

ⓐ \(8,8\) ⓑ \(−18,−18\)

ⓒ \(19,19\) ⓓ \(−4,−4\)

EXAMPLE \(\PageIndex{15}\)

Simplify: ⓐ \(15−7\) and \(15+(−7)\) ⓑ \(−14−8\) and \(−14+(−8)\) ⓒ \(4−(−19)\) and \(4+19\) ⓓ \(−4−(−7)\) and \(−4+7\).

ⓐ \(8,8\) ⓑ \(−22,−22\)

ⓒ \(23,23\) ⓓ \(3,3\)

What happens when there are more than three integers? We just use the order of operations as usual.

EXAMPLE \(\PageIndex{16}\)

Simplify: \(7−(−4−3)−9.\)

\(\begin{array}{lc} \text{} & 7−(−4−3)−9 \\ \text{Simplify inside the parentheses first.} & 7−(−7)−9 \\ \text{Subtract left to right.} & 14−9 \\ \text{Subtract.} & 5 \end{array}\)

Simplify: \(8−(−3−1)−9.\)

EXAMPLE \(\PageIndex{18}\)

Simplify: \(12−(−9−6)−14.\)

Multiply and Divide Integers

Since multiplication is mathematical shorthand for repeated addition, our model can easily be applied to show multiplication of integers. Let’s look at this concrete model to see what patterns we notice. We will use the same examples that we used for addition and subtraction. Here, we are using the model just to help us discover the pattern.

We remember that a⋅ba·b means add a , b times .

The figure on the left is labeled 5 dot 3. Here, we need to add 5, 3 times. Three rows of five blue counters each are shown. This makes 15 positives. Hence, 5 times 3 is 15. The figure on the right is labeled minus 5 open parentheses 3 close parentheses. Here we need to add minus 5, 3 times. Three rows of five red counters each are shown. This makes 15 negatives. Hence, minus 5 times 3 is minus 15.

The next two examples are more interesting. What does it mean to multiply 5 by −3? It means subtract 5,3 times. Looking at subtraction as “taking away”, it means to take away 5, 3 times. But there is nothing to take away, so we start by adding neutral pairs on the workspace.

The figure on the left is labeled 5 open parentheses minus 3 close parentheses. We need to take away 5, three times. Three rows of five positive counters each and three rows of five negative counters each are shown. What is left is 15 negatives. Hence, 5 times minus 3 is minus 15. The figure on the right is labeled open parentheses minus 5 close parentheses open parentheses minus 3 close parentheses. We need to take away minus 5, three times. Three rows of five positive counters each and three rows of five negative counters each are shown. What is left is 15 positives. Hence, minus 5 times minus 3 is 15.

In summary:

\[\begin{array}{ll} 5·3=15 & −5(3)=−15 \\ 5(−3)=−15 & (−5)(−3)=15 \end{array}\]

Notice that for multiplication of two signed numbers, when the

\[ \text{signs are the } \textbf{same} \text{, the product is } \textbf{positive.} \\ \text{signs are } \textbf{different} \text{, the product is } \textbf{negative.} \]

What about division? Division is the inverse operation of multiplication. So, \(15÷3=5\) because \(15·3=15\). In words, this expression says that 15 can be divided into 3 groups of 5 each because adding five three times gives 15. If you look at some examples of multiplying integers, you might figure out the rules for dividing integers.

\[\begin{array}{lclrccl} 5·3=15 & \text{so} & 15÷3=5 & \text{ } −5(3)=−15 & \text{so} & −15÷3=−5 \\ (−5)(−3)=15 & \text{so} & 15÷(−3)=−5 & \text{ } 5(−3)=−15 & \text{so} & −15÷(−3)=5 \end{array}\]

Division follows the same rules as multiplication with regard to signs.

MULTIPLICATION AND DIVISION OF SIGNED NUMBERS

For multiplication and division of two signed numbers:

If the signs are the same, the result is positive.

If the signs are different, the result is negative.

EXAMPLE \(\PageIndex{19}\)

Multiply or divide: ⓐ \(−100÷(−4)\) ⓑ \(7⋅6\) ⓒ \(4(−8)\) ⓓ \(−27÷3.\)

\(\begin{array}{lc} \text{} & −100÷(−4) \\ \text{Divide, with signs that are} \\ \text{the same the quotient is positive.} & 25 \end{array}\)

\(\begin{array} {lc} \text{} & 7·6 \\ \text{Multiply, with same signs.} & 42 \end{array}\)

\(\begin{array} {lc} \text{} & 4(−8) \\ \text{Multiply, with different signs.} & −32 \end{array}\)

\(\begin{array}{lc} \text{} & −27÷3 \\ \text{Divide, with different signs,} \\ \text{the quotient is negative.} & −9 \end{array}\)

EXAMPLE \(\PageIndex{20}\)

Multiply or divide: ⓐ \(−115÷(−5)\) ⓑ \(5⋅12\) ⓒ \(9(−7)\) ⓓ\(−63÷7.\)

ⓐ 23 ⓑ 60 ⓒ −63 ⓓ −9

Multiply or divide: ⓐ \(−117÷(−3)\) ⓑ \(3⋅13\) ⓒ \(7(−4)\) ⓓ\(−42÷6\).

ⓐ 39 ⓑ 39 ⓒ −28 ⓓ −7

When we multiply a number by 1, the result is the same number. Each time we multiply a number by −1, we get its opposite!

MULTIPLICATION BY −1

\[−1a=−a\]

Multiplying a number by \(−1\) gives its opposite.

Simplify Expressions with Integers

What happens when there are more than two numbers in an expression? The order of operations still applies when negatives are included. Remember Please Excuse My Dear Aunt Sally?

Let’s try some examples. We’ll simplify expressions that use all four operations with integers—addition, subtraction, multiplication, and division. Remember to follow the order of operations.

EXAMPLE \(\PageIndex{22}\)

Simplify: ⓐ \((−2)^4\) ⓑ \(−2^4\).

Notice the difference in parts (a) and (b). In part (a), the exponent means to raise what is in the parentheses, the −2 to the 4 th power. In part (b), the exponent means to raise just the 2 to the 4 th power and then take the opposite.

\(\begin{array}{lc} \text{} & −2^4 \\ \text{Write in expanded form.} & −(2·2·2·2) \\ \text{We are asked to find} & \text{} \\ \text{the opposite of }24. & \text{} \\ \text{Multiply.} & −(4·2·2) \\ \text{Multiply.} & −(8·2) \\ \text{Multiply.} & −16 \end{array}\)

Simplify: ⓐ \((−3)^4\) ⓑ \(−3^4\).

ⓐ 81 ⓑ −81

EXAMPLE \(\PageIndex{24}\)

Simplify: ⓐ \((−7)^2\) ⓑ \(−7^2\).

ⓐ 49 ⓑ −49

The last example showed us the difference between \((−2)^4\) and \(−2^4\). This distinction is important to prevent future errors. The next example reminds us to multiply and divide in order left to right.

EXAMPLE \(\PageIndex{25}\)

Simplify: ⓐ \(8(−9)÷(−2)^3\) ⓑ \(−30÷2+(−3)(−7)\).

\(\begin{array}{lc} \text{} & 8(−9)÷(−2)^3 \\ \text{Exponents first.} & 8(−9)÷(−8) \\ \text{Multiply.} & −72÷(−8) \\ \text{Divide.} & 9 \end{array}\)

\(\begin{array}{lc} \text{} & −30÷2+(−3)(−7) \\ \text{Multiply and divide} \\ \text{left to right, so divide first.} & −15+(−3)(−7) \\ \text{Multiply.} & −15+21 \\ \text{Add.} & 6 \end{array}\)

Simplify: ⓐ \(12(−9)÷(−3)^3\) ⓑ \(−27÷3+(−5)(−6).\)

ⓐ 4 ⓑ 21

EXAMPLE \(\PageIndex{27}\)

Simplify: ⓐ \(18(−4)÷(−2)^3\) ⓑ \(−32÷4+(−2)(−7).\)

ⓐ 9 ⓑ 6

Evaluate Variable Expressions with Integers

Remember that to evaluate an expression means to substitute a number for the variable in the expression. Now we can use negative numbers as well as positive numbers.

EXAMPLE \(\PageIndex{28}\)

Evaluate \(4x^2−2xy+3y^2\) when \(x=2,y=−1\).

EXAMPLE \(\PageIndex{29}\)

Evaluate: \(3x^2−2xy+6y^2\) when \(x=1,y=−2\).

EXAMPLE \(\PageIndex{30}\)

Evaluate: \(4x^2−xy+5y^2\) when \(x=−2,y=3\).

Translate Phrases to Expressions with Integers

Our earlier work translating English to algebra also applies to phrases that include both positive and negative numbers.

EXAMPLE \(\PageIndex{31}\)

Translate and simplify: the sum of 8 and −12, increased by 3.

\(\begin{array}{lc} \text{} & \text{the } \textbf{sum } \underline{\text{of}} \; –8 \; \underline{\text{and}} −12 \text{ increased by } 3 \\ \text{Translate.} & [8+(−12)]+3 \\ \text{Simplify. Be careful not to confuse the} \; \; \; \; \; \; \; \; \; \; & (−4)+3 \\ \text{brackets with an absolute value sign.} \\ \text{Add.} & −1 \end{array}\)

EXAMPLE \(\PageIndex{32}\)

Translate and simplify the sum of 9 and −16, increased by 4.

\((9+(−16))+4;−3\)

EXAMPLE \(\PageIndex{33}\)

Translate and simplify the sum of −8 and −12, increased by 7.

\((−8+(−12))+7;−13\)

Use Integers in Applications

We’ll outline a plan to solve applications. It’s hard to find something if we don’t know what we’re looking for or what to call it! So when we solve an application, we first need to determine what the problem is asking us to find. Then we’ll write a phrase that gives the information to find it. We’ll translate the phrase into an expression and then simplify the expression to get the answer. Finally, we summarize the answer in a sentence to make sure it makes sense.

EXAMPLE \(\PageIndex{34}\): How to Solve Application Problems Using Integers

The temperature in Kendallville, Indiana one morning was 11 degrees. By mid-afternoon, the temperature had dropped to −9−9degrees. What was the difference in the morning and afternoon temperatures?

Figure shows a glass thermometer, with temperature markings ranging from minus 10 to 30. Two markings are highlighted, minus 9 degrees C and 11 degrees C.

EXAMPLE \(\PageIndex{35}\)

The temperature in Anchorage, Alaska one morning was 15 degrees. By mid-afternoon the temperature had dropped to 30 degrees below zero. What was the difference in the morning and afternoon temperatures?

The difference in temperatures was 45 degrees Fahrenheit.

EXAMPLE \(\PageIndex{36}\)

The temperature in Denver was −6 degrees at lunchtime. By sunset the temperature had dropped to −15 degrees. What was the difference in the lunchtime and sunset temperatures?

The difference in temperatures was 9 degrees.

USE INTEGERS IN APPLICATIONS.

  • Read the problem. Make sure all the words and ideas are understood.
  • Identify what we are asked to find.
  • Write a phrase that gives the information to find it.
  • Translate the phrase to an expression.
  • Simplify the expression.
  • Answer the question with a complete sentence.

Access this online resource for additional instruction and practice with integers.

  • Subtracting Integers with Counters

Key Concepts

  • \[\begin{align} & −a \text{ means the opposite of the number }a \\ & \text{The notation} −a \text{ is read as “the opposite of }a \text{.”} \end{align} \]

The absolute value of a number n is written as \(|n|\) and \(|n|≥0\) for all numbers.

  • Subtraction Property \(a−b=a+(−b)\) Subtracting a number is the same as adding its opposite.

\(−1a=−a\)

  • Read the problem. Make sure all the words and ideas are understood

Reset password New user? Sign up

Existing user? Log in

Already have an account? Log in here.

  • Jovan Fonte
  • Matin Naseri
  • Sharky Kesa
  • Anuj Shikarkhane

An integer is a number that does not have a fractional part. The set of integers is

\[\mathbb{Z}=\{\cdots -4, -3, -2, -1, 0, 1, 2, 3, 4 \dots\}. \]

The notation \(\mathbb{Z}\) for the set of integers comes from the German word Zahlen , which means "numbers". Integers strictly larger than zero are positive integers and integers strictly less than zero are negative integers .

For example, \(2\), \(67\), \(0\), and \(-13\) are all integers (2 and 67 are positive integers and -13 is a negative integer). The values \(\frac{4}{7}\), \(10.7\), \(\frac{34}{7}\), \(\sqrt{2}\), and \(\pi\) are not integers.

Properties of Integers

Integers - problem solving.

The following are the properties of integers:

  • The set of integers is closed under the operation of addition: if \(a, b \in \mathbb{Z}\), then \(a+b \in \mathbb{Z}\).
  • The set of integers is closed under the operation of multiplication: if \(a, b \in \mathbb{Z}\), then \(ab\in \mathbb{Z}\).
  • For any integer \(a\), the additive inverse \(-a\) is an integer.
  • If \(a\) and \(b\) are integers such that \(a \cdot b = 0\), then \(a=0\) or \(b=0\).
  • The set of integers is infinite and has no smallest element and no largest element.

\((\in\) means "belongs to", as \(a \in Z\) means \(a\) is an element of the set \(Z\) or \(a\) belongs to the set \(Z.)\)

Note that the set of integers is not closed under the operation of division. As an example, \(a=3\) and \(b=4\) are integers, but \(\frac{a}{b} = \frac{3}{4} \) is not an integer.

Which of the following are integers? \[\begin{array} &\frac{4}{2}, &-8, &0. 2, &12-4, &\frac{10}{4} \end{array}\] Since \(\frac{4}{2} = 2\), \(12-4 = 8,\) and \(2 < \frac{10}{4} < 3\), the integers in the list are \( \frac{4}{2}, -8 \), and \( 12-4.\) \(_\square\)
What is the smallest integer that is larger than \(\frac{10}{3}?\) Since \( 3< \frac{10}{3} < 4,\) the smallest integer that is larger than \(\frac{10}{3}\) is \(4\). \(_\square\)
What is the largest integer that is smaller than \(\frac{10}{3}?\) Since \( 3< \frac{10}{3} < 4,\) the largest integer that is smaller than \(\frac{10}{3}\) is \(3\). \(_\square\)
Using the properties of integers above, show that set of integers is closed under the operation of subtraction. Consider any two integers \(a\) and \(b\). We would like to show \(a-b\) is also an integer. By property \(3,\) the additive inverse of \(b\) is \(-b\), which is an integer. Then \[ a-b = a + (-b)\] is an integer by Property \(1.\) Therefore, the set of integers is closed under the operation of subtraction. \(_\square\)

Problem Loading...

Note Loading...

Set Loading...

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Course: Class 6   >   Unit 5

  • Subtracting a negative = adding a positive
  • Subtracting integers: find the missing value
  • Understand subtraction as adding the opposite
  • Subtracting negative numbers

Addition and subtraction of integers

problem solving about integers

  • Your answer should be
  • an integer, like 6 ‍  
  • a simplified proper fraction, like 3 / 5 ‍  
  • a simplified improper fraction, like 7 / 4 ‍  
  • a mixed number, like 1   3 / 4 ‍  
  • an exact decimal, like 0.75 ‍  
  • a multiple of pi, like 12   pi ‍   or 2 / 3   pi ‍  

COMMENTS

  1. Integer Word Problems Worksheets

    Integer Word Problems Worksheets. An integer is defined as a number that can be written without a fractional component. For example, 11, 8, 0, and −1908 are integers whereas √5, Π are not integers. The set of integers consists of zero, the positive natural numbers, and their additive inverses.

  2. Challenge Exercises Integer Word Problems

    Challenge Exercises Integer Word Problems. Directions: Read each question below. Click once in an ANSWER BOX and type in your answer; then click ENTER. After you click ENTER, a message will appear in the RESULTS BOX to indicate whether your answer is correct or incorrect. To start over, click CLEAR. Each answer should be given as a positive or ...

  3. Integers Questions

    Integers positive and negative whole numbers along with zero. Integers questions for practice are provided for students of classes 6 and 7. ... Practice these questions on integers to improve your understanding, skill and speed of solving questions. Question 1: Evaluate the following: (i) 22 - ( -87) (ii) 198 + ( -12) (iii) -16.87 ...

  4. How to Solve Integers and Their Properties: 10 Steps

    For example: 5 + (-1) = 4. 4. Use the commutative property when a is negative and b is positive. Do the addition as follows: -a +b = c (get the absolute value of the numbers and again, proceed to subtract the lesser value from the larger value and assume the sign of the larger value) For example: -5 + 2 = -3. 5.

  5. Integers: Word Problems On Integers involving operations

    Let us now see how various arithmetical operations can be performed on integers with the help of a few word problems. Solve the following word problems using various rules of operations of integers. Word problems on integers Examples: Example 1: Shyak has overdrawn his checking account by Rs.38. The bank debited him Rs.20 for an overdraft fee.

  6. Integers Worksheets

    This page includes Integers worksheets for comparing and ordering integers, adding, subtracting, multiplying and dividing integers and order of operations with integers. If you've ever spent time in Canada in January, you've most likely experienced a negative integer first hand.

  7. 3.E: Integers (Exercises)

    In the following exercises, evaluate. 35 − a when a = −4. (−2r) 2 when r = 3. 3m − 2n when m = 6, n = −8. −|−y| when y = 17. In the following exercises, translate each phrase into an algebraic expression and then simplify, if possible. the difference of −7 and −4. the quotient of 25 and the sum of m and n.

  8. Integer Word Problems

    The first is five times the second and the sum of the first and third is 9. Find the numbers. Advanced Consecutive Integer Problems. Example: (1) Find three consecutive positive integers such that the sum of the two smaller integers exceed the largest integer by 5. (2) The sum of a number and three times its additive inverse is 16.

  9. Integers

    We could solve the problem above using Integers, the set of whole numbers and their opposites. The number line below is used to represent them. Definitions. The number line goes on forever in both directions. This is indicated by the arrows. Whole numbers greater than zero are called positive integers (+). These numbers are to the right of zero ...

  10. Algebra Word Problems: Integers

    Solution: Step 1: Assign variables: Let x = red marbles. Sentence: Initially, blue marbles = red marbles = x, then John took out 5 blue marbles. Step 2: Solve the equation. x = 2 ( x -5) Answer: There are 10 red marbles in the bag. The following videos give more examples of integer word problems.

  11. Integers

    Learn how to use integers to represent positive and negative numbers, and how to perform operations with them. This unit covers the concepts of addition, subtraction, multiplication, and division of integers, as well as the properties of these operations. You will also practice solving word problems involving integers and applying them to real-world situations.

  12. IXL

    Recommendations. Skill plans. IXL plans. Virginia state standards. Textbooks. Test prep. Awards. Improve your math knowledge with free questions in "Add and subtract integers: word problems" and thousands of other math skills.

  13. 1.3: Integers

    Figure 1.3.1. The number line shows the location of positive and negative numbers. You may have noticed that, on the number line, the negative numbers are a mirror image of the positive numbers, with zero in the middle. Because the numbers 2 and − 2 are the same distance from zero, each one is called the opposite of the other.

  14. Operations on Integers

    According to step #1, we have to change the subtraction sign to an addition sign. According to step #2, we have to take the opposite of 4, which is -4. Therefore the problem becomes: 3 + (-4) Using the rules for addition, the answer is -1. Here are a few other examples: Example 2: -2 - 8 = -2 + (-8) = -10.

  15. PDF 7. Word PROBLEMS WITH INTEGERS

    12. The temperature was -3o C last night. It is now -4o C. What was the change in temperature? 13. While watching a football game, Lin Chow decided to list yardage gained as positive integers and yardage lost as negative integers. After these plays, Lin recorded 14, -7, and 9.

  16. Solving Integer Word Problems

    http://www.greenemath.com/In this video, we practice solving integer word problems. These applied problems that deal with integers are very basic in nature.

  17. Operations on Integers

    Easily solve Operations on integers problems. Learn how to Quickly add integers, subtract integers, multiply integers and divide integers. Also learn how to ...

  18. Dynamically Created Integers Worksheets

    These integers worksheets will dynamically produce problems based on your selections. You may select 1 though 6 digits problems, use numbers in the range of 1 through 20, or randomly generate problems with mixed digits based on your selection. You may select positive, negative or mixed sign problems.

  19. Multiplying Integers Practice Problems With Answers

    Below are ten (10) practice problems that involve multiplying integers. For your convenience, I included below the rules on how to multiply integers. In a nutshell, the product of two integers with the same sign is always positive. On the other hand, the product of two integers with different signs is always negative.

  20. Adding Integers Practice Problems With Answers

    Below is a quick summary for the rules of adding integers. Problem 1:Add the integers: [latex]2 + 7[/latex] Answer. [latex]9[/latex] Explanation:The two integers are both positive that means they have the same sign. It implies that we should add their absolute values and copy the common sign which is positive.

  21. Art of Problem Solving

    Integer. An integer is one of the numbers obtained in counting the natural numbers ( ), zero ( ), or the negatives of the natural numbers ( ). If and are integers, then their sum , their difference , and their product are all integers (that is, the integers are closed under addition and multiplication), but their quotient may or may not be an ...

  22. Comparing and Ordering Integers

    Since the temperatures are given as integers, a number line will help us solve this problem. As you move to the right on the number line, integers get larger in value. As you move to the left on the number line, integers get smaller in value. Solution: The cities in order from least to greatest according to their temperatures are listed below.

  23. Integers

    Using the properties of integers above, show that set of integers is closed under the operation of subtraction. Consider any two integers \(a\) and \(b\). We would like to show \(a-b\) is also an integer.

  24. Addition and subtraction of integers (practice)

    Addition and subtraction of integers. Google Classroom. Microsoft Teams. Death Valley is one of the hottest places on earth with a recorded maximum temperature of 57 ° celsius. The lowest temperature ever recorded was − 89 ° celsius in Antartica.

  25. Integers Calculator & Solver

    Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here. Go! Here, we show you a step-by-step solved example of integers. This solution was automatically generated by our smart calculator: Add the values $20$ and $90$. Add the values $110$ and $51$.

  26. Math Message Boards FAQ & Community Help

    Decently nice problem involving a set of integers. Not sure whether this one is combinatorics or number theory, so I tagged both. Problem: Given . A subset of is considered good if there exists three elements such that , , , with being three distinct elements of . Find the smallest value of such that every subset of with elements is considered ...