• Engineering Mathematics
  • Discrete Mathematics
  • Operating System
  • Computer Networks
  • Digital Logic and Design
  • C Programming
  • Data Structures
  • Theory of Computation
  • Compiler Design
  • Computer Org and Architecture
  • Computer Network Tutorial

Basics of Computer Network

  • Basics of Computer Networking
  • Introduction to basic Networking Terminology
  • Goals of Networks
  • Basic characteristics of Computer Networks
  • Challenges of Computer Network
  • Physical Components of Computer Network

Network Hardware and Software

  • Types of Computer Networks
  • LAN Full Form
  • How to Set Up a LAN Network?
  • MAN Full Form in Computer Networking
  • MAN Full Form
  • WAN Full Form
  • Introduction of Internetworking
  • Difference between Internet, Intranet and Extranet
  • Protocol Hierarchies in Computer Network
  • Network Devices (Hub, Repeater, Bridge, Switch, Router, Gateways and Brouter)
  • Introduction of a Router
  • Introduction of Gateways
  • What is a network switch, and how does it work?

Network Topology

  • Types of Network Topology
  • Difference between Physical and Logical Topology
  • What is OSI Model? - Layers of OSI Model
  • Physical Layer in OSI Model
  • Data Link Layer
  • Session Layer in OSI model

Presentation Layer in OSI model

  • Application Layer in OSI Model
  • Protocol and Standard in Computer Networks
  • Examples of Data Link Layer Protocols
  • TCP/IP Model
  • TCP/IP Ports and Its Applications
  • What is Transmission Control Protocol (TCP)?
  • TCP 3-Way Handshake Process
  • Services and Segment structure in TCP
  • TCP Connection Establishment
  • TCP Connection Termination
  • Fast Recovery Technique For Loss Recovery in TCP
  • Difference Between OSI Model and TCP/IP Model

Medium Access Control

  • MAC Full Form
  • Channel Allocation Problem in Computer Network
  • Multiple Access Protocols in Computer Network
  • Carrier Sense Multiple Access (CSMA)
  • Collision Detection in CSMA/CD
  • Controlled Access Protocols in Computer Network

SLIDING WINDOW PROTOCOLS

  • Stop and Wait ARQ
  • Sliding Window Protocol | Set 3 (Selective Repeat)
  • Piggybacking in Computer Networks

IP Addressing

  • What is IPv4?
  • What is IPv6?
  • Introduction of Classful IP Addressing
  • Classless Addressing in IP Addressing
  • Classful Vs Classless Addressing
  • Classless Inter Domain Routing (CIDR)
  • Supernetting in Network Layer
  • Introduction To Subnetting
  • Difference between Subnetting and Supernetting
  • Types of Routing
  • Difference between Static and Dynamic Routing
  • Unicast Routing - Link State Routing
  • Distance Vector Routing (DVR) Protocol
  • Fixed and Flooding Routing algorithms
  • Introduction of Firewall in Computer Network

Congestion Control Algorithms

  • Congestion Control in Computer Networks
  • Congestion Control techniques in Computer Networks
  • Computer Network | Leaky bucket algorithm
  • TCP Congestion Control

Network Switching

  • Circuit Switching in Computer Network
  • Message switching techniques
  • Packet Switching and Delays in Computer Network
  • Differences Between Virtual Circuits and Datagram Networks

Application Layer:DNS

  • Domain Name System (DNS) in Application Layer
  • Details on DNS
  • Introduction to Electronic Mail
  • E-Mail Format
  • World Wide Web (WWW)
  • HTTP Full Form
  • Streaming Stored Video
  • What is a Content Distribution Network and how does it work?

CN Interview Quetions

  • Top 50 Networking Interview Questions (2024)
  • Top 50 TCP/IP interview questions and answers
  • Top 50 IP addressing interview questions and answers
  • Last Minute Notes - Computer Networks
  • Computer Network - Cheat Sheet
  • Network Layer
  • Transport Layer
  • Application Layer

Prerequisite : OSI Model

Introduction : Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model. This layer is also known as Translation layer, as this layer serves as a data translator for the network. The data which this layer receives from the Application Layer is extracted and manipulated here as per the required format to transmit over the network. The main responsibility of this layer is to provide or define the data format and encryption. The presentation layer is also called as Syntax layer since it is responsible for maintaining the proper syntax of the data which it either receives or transmits to other layer(s).

Functions of Presentation Layer :

The presentation layer, being the 6th layer in the OSI model, performs several types of functions, which are described below-

  • Presentation layer format and encrypts data to be sent across the network.
  • This layer takes care that the data is sent in such a way that the receiver will understand the information (data) and will be able to use the data efficiently and effectively.
  • This layer manages the abstract data structures and allows high-level data structures (example- banking records), which are to be defined or exchanged.
  • This layer carries out the encryption at the transmitter and decryption at the receiver.
  • This layer carries out data compression to reduce the bandwidth of the data to be transmitted (the primary goal of data compression is to reduce the number of bits which is to be transmitted).
  • This layer is responsible for interoperability (ability of computers to exchange and make use of information) between encoding methods as different computers use different encoding methods.
  • This layer basically deals with the presentation part of the data.
  • Presentation layer, carries out the data compression (number of bits reduction while transmission), which in return improves the data throughput.
  • This layer also deals with the issues of string representation.
  • The presentation layer is also responsible for integrating all the formats into a standardized format for efficient and effective communication.
  • This layer encodes the message from the user-dependent format to the common format and vice-versa for communication between dissimilar systems.
  • This layer deals with the syntax and semantics of the messages.
  • This layer also ensures that the messages which are to be presented to the upper as well as the lower layer should be standardized as well as in an accurate format too.
  • Presentation layer is also responsible for translation, formatting, and delivery of information for processing or display.
  • This layer also performs serialization (process of translating a data structure or an object into a format that can be stored or transmitted easily).

Features of Presentation Layer in the OSI model: Presentation layer, being the 6th layer in the OSI model, plays a vital role while communication is taking place between two devices in a network.

List of features which are provided by the presentation layer are:

  • Presentation layer could apply certain sophisticated compression techniques, so fewer bytes of data are required to represent the information when it is sent over the network.
  • If two or more devices are communicating over an encrypted connection, then this presentation layer is responsible for adding encryption on the sender’s end as well as the decoding the encryption on the receiver’s end so that it can represent the application layer with unencrypted, readable data.
  • This layer formats and encrypts data to be sent over a network, providing freedom from compatibility problems.
  • This presentation layer also negotiates the Transfer Syntax.
  • This presentation layer is also responsible for compressing data it receives from the application layer before delivering it to the session layer (which is the 5th layer in the OSI model) and thus improves the speed as well as the efficiency of communication by minimizing the amount of the data to be transferred.

Working of Presentation Layer in the OSI model : Presentation layer in the OSI model, as a translator, converts the data sent by the application layer of the transmitting node into an acceptable and compatible data format based on the applicable network protocol and architecture.  Upon arrival at the receiving computer, the presentation layer translates data into an acceptable format usable by the application layer. Basically, in other words, this layer takes care of any issues occurring when transmitted data must be viewed in a format different from the original format. Being the functional part of the OSI mode, the presentation layer performs a multitude (large number of) data conversion algorithms and character translation functions. Mainly, this layer is responsible for managing two network characteristics: protocol (set of rules) and architecture.

Presentation Layer Protocols : Presentation layer being the 6th layer, but the most important layer in the OSI model performs several types of functionalities, which makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there in a closed network. Presentation Layer, for performing translations or other specified functions, needs to use certain protocols which are defined below –

  • Apple Filing Protocol (AFP): Apple Filing Protocol is the proprietary network protocol (communications protocol) that offers services to macOS or the classic macOS. This is basically the network file control protocol specifically designed for Mac-based platforms.
  • Lightweight Presentation Protocol (LPP): Lightweight Presentation Protocol is that protocol which is used to provide ISO presentation services on the top of TCP/IP based protocol stacks.
  • NetWare Core Protocol (NCP): NetWare Core Protocol is the network protocol which is used to access file, print, directory, clock synchronization, messaging, remote command execution and other network service functions.
  • Network Data Representation (NDR): Network Data Representation is basically the implementation of the presentation layer in the OSI model, which provides or defines various primitive data types, constructed data types and also several types of data representations.
  • External Data Representation (XDR): External Data Representation (XDR) is the standard for the description and encoding of data. It is useful for transferring data between computer architectures and has been used to communicate data between very diverse machines. Converting from local representation to XDR is called encoding, whereas converting XDR into local representation is called decoding.
  • Secure Socket Layer (SSL): The Secure Socket Layer protocol provides security to the data that is being transferred between the web browser and the server. SSL encrypts the link between a web server and a browser, which ensures that all data passed between them remains private and free from attacks.

Please Login to comment...

Similar reads.

author

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  Layer 6 Presentation Layer

De/Encryption, Encoding, String representation

The presentation layer (data presentation layer, data provision level) sets the system-dependent representation of the data (for example, ASCII, EBCDIC) into an independent form, enabling the syntactically correct data exchange between different systems. Also, functions such as data compression and encryption are guaranteed that data to be sent by the application layer of a system that can be read by the application layer of another system to the layer 6. The presentation layer. If necessary, the presentation layer acts as a translator between different data formats, by making an understandable for both systems data format, the ASN.1 (Abstract Syntax Notation One) used.

OSI Layer 6 - Presentation Layer

The presentation layer is responsible for the delivery and formatting of information to the application layer for further processing or display. It relieves the application layer of concern regarding syntactical differences in data representation within the end-user systems. An example of a presentation service would be the conversion of an EBCDIC-coded text computer file to an ASCII-coded file. The presentation layer is the lowest layer at which application programmers consider data structure and presentation, instead of simply sending data in the form of datagrams or packets between hosts. This layer deals with issues of string representation - whether they use the Pascal method (an integer length field followed by the specified amount of bytes) or the C/C++ method (null-terminated strings, e.g. "thisisastring\0"). The idea is that the application layer should be able to point at the data to be moved, and the presentation layer will deal with the rest. Serialization of complex data structures into flat byte-strings (using mechanisms such as TLV or XML) can be thought of as the key functionality of the presentation layer. Encryption is typically done at this level too, although it can be done on the application, session, transport, or network layers, each having its own advantages and disadvantages. Decryption is also handled at the presentation layer. For example, when logging on to bank account sites the presentation layer will decrypt the data as it is received.[1] Another example is representing structure, which is normally standardized at this level, often by using XML. As well as simple pieces of data, like strings, more complicated things are standardized in this layer. Two common examples are 'objects' in object-oriented programming, and the exact way that streaming video is transmitted. In many widely used applications and protocols, no distinction is made between the presentation and application layers. For example, HyperText Transfer Protocol (HTTP), generally regarded as an application-layer protocol, has presentation-layer aspects such as the ability to identify character encoding for proper conversion, which is then done in the application layer. Within the service layering semantics of the OSI network architecture, the presentation layer responds to service requests from the application layer and issues service requests to the session layer. In the OSI model: the presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. For example, a PC program communicates with another computer, one using extended binary coded decimal interchange code (EBCDIC) and the other using ASCII to represent the same characters. If necessary, the presentation layer might be able to translate between multiple data formats by using a common format. Wikipedia
  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption

The Presentation OSI Layer is usually composed of 2 sublayers that are:

CASE common application service element

Sase specific application service element, layer 7   application layer, layer 6   presentation layer, layer 5   session layer, layer 4   transport layer, layer 3   network layer, layer 2   data link layer, layer 1   physical layer.

Javatpoint Logo

Computer Network

  • Operating Systems
  • Computer Fundamentals
  • Interview Q

Physical Layer

Data link layer, network layer, routing algorithm, transport layer, application layer, application protocols, network security.

Interview Questions

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

The OSI Model – The 7 Layers of Networking Explained in Plain English

Chloe Tucker

This article explains the Open Systems Interconnection (OSI) model and the 7 layers of networking, in plain English.

The OSI model is a conceptual framework that is used to describe how a network functions. In plain English, the OSI model helped standardize the way computer systems send information to each other.

Learning networking is a bit like learning a language - there are lots of standards and then some exceptions. Therefore, it’s important to really understand that the OSI model is not a set of rules. It is a tool for understanding how networks function.

Once you learn the OSI model, you will be able to further understand and appreciate this glorious entity we call the Internet, as well as be able to troubleshoot networking issues with greater fluency and ease.

All hail the Internet!

Prerequisites

You don’t need any prior programming or networking experience to understand this article. However, you will need:

  • Basic familiarity with common networking terms (explained below)
  • A curiosity about how things work :)

Learning Objectives

Over the course of this article, you will learn:

  • What the OSI model is
  • The purpose of each of the 7 layers
  • The problems that can happen at each of the 7 layers
  • The difference between TCP/IP model and the OSI model

Common Networking Terms

Here are some common networking terms that you should be familiar with to get the most out of this article. I’ll use these terms when I talk about OSI layers next.

A node is a physical electronic device hooked up to a network, for example a computer, printer, router, and so on. If set up properly, a node is capable of sending and/or receiving information over a network.

Nodes may be set up adjacent to one other, wherein Node A can connect directly to Node B, or there may be an intermediate node, like a switch or a router, set up between Node A and Node B.

Typically, routers connect networks to the Internet and switches operate within a network to facilitate intra-network communication. Learn more about hub vs. switch vs. router.

Here's an example:

1-Router-Image

For the nitpicky among us (yep, I see you), host is another term that you will encounter in networking. I will define a host as a type of node that requires an IP address. All hosts are nodes, but not all nodes are hosts. Please Tweet angrily at me if you disagree.

Links connect nodes on a network. Links can be wired, like Ethernet, or cable-free, like WiFi.

Links to can either be point-to-point, where Node A is connected to Node B, or multipoint, where Node A is connected to Node B and Node C.

When we’re talking about information being transmitted, this may also be described as a one-to-one vs. a one-to-many relationship.

A protocol is a mutually agreed upon set of rules that allows two nodes on a network to exchange data.

“A protocol defines the rules governing the syntax (what can be communicated), semantics (how it can be communicated), and synchronization (when and at what speed it can be communicated) of the communications procedure. Protocols can be implemented on hardware, software, or a combination of both. Protocols can be created by anyone, but the most widely adopted protocols are based on standards.” - The Illustrated Network.

Both wired and cable-free links can have protocols.

While anyone can create a protocol, the most widely adopted protocols are often based on standards published by Internet organizations such as the Internet Engineering Task Force (IETF).

A network is a general term for a group of computers, printers, or any other device that wants to share data.

Network types include LAN, HAN, CAN, MAN, WAN, BAN, or VPN. Think I’m just randomly rhyming things with the word can ? I can ’t say I am - these are all real network types. Learn more here .

Topology describes how nodes and links fit together in a network configuration, often depicted in a diagram. Here are some common network topology types:

What is Network Topology? Best Guides to Types & Diagrams - DNSstuff

A network consists of nodes, links between nodes, and protocols that govern data transmission between nodes.

At whatever scale and complexity networks get to, you will understand what’s happening in all computer networks by learning the OSI model and 7 layers of networking.

What is the OSI Model?

The OSI model consists of 7 layers of networking.

First, what’s a layer?

Cave, Dragon's Lair, mountains

No, a layer - not a lair . Here there are no dragons.

A layer is a way of categorizing and grouping functionality and behavior on and of a network.

In the OSI model, layers are organized from the most tangible and most physical, to less tangible and less physical but closer to the end user.

Each layer abstracts lower level functionality away until by the time you get to the highest layer. All the details and inner workings of all the other layers are hidden from the end user.

How to remember all the names of the layers? Easy.

  • Please | Physical Layer
  • Do | Data Link Layer
  • Not | Network Layer
  • Tell (the) | Transport Layer
  • Secret | Session Layer
  • Password (to) | Presentation Layer
  • Anyone | Application Layer

Keep in mind that while certain technologies, like protocols, may logically “belong to” one layer more than another, not all technologies fit neatly into a single layer in the OSI model. For example, Ethernet, 802.11 (Wifi) and the Address Resolution Protocol (ARP) procedure operate on >1 layer.

The OSI is a model and a tool, not a set of rules.

OSI Layer 1

Layer 1 is the physical layer . There’s a lot of technology in Layer 1 - everything from physical network devices, cabling, to how the cables hook up to the devices. Plus if we don’t need cables, what the signal type and transmission methods are (for example, wireless broadband).

Instead of listing every type of technology in Layer 1, I’ve created broader categories for these technologies. I encourage readers to learn more about each of these categories:

  • Nodes (devices) and networking hardware components. Devices include hubs, repeaters, routers, computers, printers, and so on. Hardware components that live inside of these devices include antennas, amplifiers, Network Interface Cards (NICs), and more.
  • Device interface mechanics. How and where does a cable connect to a device (cable connector and device socket)? What is the size and shape of the connector, and how many pins does it have? What dictates when a pin is active or inactive?
  • Functional and procedural logic. What is the function of each pin in the connector - send or receive? What procedural logic dictates the sequence of events so a node can start to communicate with another node on Layer 2?
  • Cabling protocols and specifications. Ethernet (CAT), USB, Digital Subscriber Line (DSL) , and more. Specifications include maximum cable length, modulation techniques, radio specifications, line coding, and bits synchronization (more on that below).
  • Cable types. Options include shielded or unshielded twisted pair, untwisted pair, coaxial and so on. Learn more about cable types here .
  • Signal type. Baseband is a single bit stream at a time, like a railway track - one-way only. Broadband consists of multiple bit streams at the same time, like a bi-directional highway.
  • Signal transmission method (may be wired or cable-free). Options include electrical (Ethernet), light (optical networks, fiber optics), radio waves (802.11 WiFi, a/b/g/n/ac/ax variants or Bluetooth). If cable-free, then also consider frequency: 2.5 GHz vs. 5 GHz. If it’s cabled, consider voltage. If cabled and Ethernet, also consider networking standards like 100BASE-T and related standards.

The data unit on Layer 1 is the bit.

A bit the smallest unit of transmittable digital information. Bits are binary, so either a 0 or a 1. Bytes, consisting of 8 bits, are used to represent single characters, like a letter, numeral, or symbol.

Bits are sent to and from hardware devices in accordance with the supported data rate (transmission rate, in number of bits per second or millisecond) and are synchronized so the number of bits sent and received per unit of time remains consistent (this is called bit synchronization). The way bits are transmitted depends on the signal transmission method.

Nodes can send, receive, or send and receive bits. If they can only do one, then the node uses a simplex mode. If they can do both, then the node uses a duplex mode. If a node can send and receive at the same time, it’s full-duplex – if not, it’s just half-duplex.

The original Ethernet was half-duplex. Full-duplex Ethernet is an option now, given the right equipment.

How to Troubleshoot OSI Layer 1 Problems

Here are some Layer 1 problems to watch out for:

  • Defunct cables, for example damaged wires or broken connectors
  • Broken hardware network devices, for example damaged circuits
  • Stuff being unplugged (...we’ve all been there)

If there are issues in Layer 1, anything beyond Layer 1 will not function properly.

Layer 1 contains the infrastructure that makes communication on networks possible.

It defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating physical links between network devices. - Source

Fun fact: deep-sea communications cables transmit data around the world. This map will blow your mind: https://www.submarinecablemap.com/

And because you made it this far, here’s a koala:

Closeup of a Koala

OSI Layer 2

Layer 2 is the data link layer . Layer 2 defines how data is formatted for transmission, how much data can flow between nodes, for how long, and what to do when errors are detected in this flow.

In more official tech terms:

  • Line discipline. Who should talk for how long? How long should nodes be able to transit information for?
  • Flow control. How much data should be transmitted?
  • Error control - detection and correction . All data transmission methods have potential for errors, from electrical spikes to dirty connectors. Once Layer 2 technologies tell network administrators about an issue on Layer 2 or Layer 1, the system administrator can correct for those errors on subsequent layers. Layer 2 is mostly concerned with error detection, not error correction. ( Source )

There are two distinct sublayers within Layer 2:

  • Media Access Control (MAC): the MAC sublayer handles the assignment of a hardware identification number, called a MAC address, that uniquely identifies each device on a network. No two devices should have the same MAC address. The MAC address is assigned at the point of manufacturing. It is automatically recognized by most networks. MAC addresses live on Network Interface Cards (NICs). Switches keep track of all MAC addresses on a network. Learn more about MAC addresses on PC Mag and in this article . Learn more about network switches here .
  • Logical Link Control (LLC): the LLC sublayer handles framing addressing and flow control. The speed depends on the link between nodes, for example Ethernet or Wifi.

The data unit on Layer 2 is a frame .

Each frame contains a frame header, body, and a frame trailer:

  • Header: typically includes MAC addresses for the source and destination nodes.
  • Body: consists of the bits being transmitted.
  • Trailer: includes error detection information. When errors are detected, and depending on the implementation or configuration of a network or protocol, frames may be discarded or the error may be reported up to higher layers for further error correction. Examples of error detection mechanisms: Cyclic Redundancy Check (CRC) and Frame Check Sequence (FCS). Learn more about error detection techniques here .

Example of frames, the network layer, and the physical layer

Typically there is a maximum frame size limit, called an Maximum Transmission Unit, MTU. Jumbo frames exceed the standard MTU, learn more about jumbo frames here .

How to Troubleshoot OSI Layer 2 Problems

Here are some Layer 2 problems to watch out for:

  • All the problems that can occur on Layer 1
  • Unsuccessful connections (sessions) between two nodes
  • Sessions that are successfully established but intermittently fail
  • Frame collisions

The Data Link Layer allows nodes to communicate with each other within a local area network. The foundations of line discipline, flow control, and error control are established in this layer.

OSI Layer 3

Layer 3 is the network layer . This is where we send information between and across networks through the use of routers. Instead of just node-to-node communication, we can now do network-to-network communication.

Routers are the workhorse of Layer 3 - we couldn’t have Layer 3 without them. They move data packets across multiple networks.

Not only do they connect to Internet Service Providers (ISPs) to provide access to the Internet, they also keep track of what’s on its network (remember that switches keep track of all MAC addresses on a network), what other networks it’s connected to, and the different paths for routing data packets across these networks.

Routers store all of this addressing and routing information in routing tables.

Here’s a simple example of a routing table:

A routing table showing the destination, subnet mask, and interface

The data unit on Layer 3 is the data packet . Typically, each data packet contains a frame plus an IP address information wrapper. In other words, frames are encapsulated by Layer 3 addressing information.

The data being transmitted in a packet is also sometimes called the payload . While each packet has everything it needs to get to its destination, whether or not it makes it there is another story.

Layer 3 transmissions are connectionless, or best effort - they don't do anything but send the traffic where it’s supposed to go. More on data transport protocols on Layer 4.

Once a node is connected to the Internet, it is assigned an Internet Protocol (IP) address, which looks either like 172.16. 254.1 (IPv4 address convention) or like 2001:0db8:85a3:0000:0000:8a2e:0370:7334 (IPv6 address convention). Routers use IP addresses in their routing tables.

IP addresses are associated with the physical node’s MAC address via the Address Resolution Protocol (ARP), which resolves MAC addresses with the node’s corresponding IP address.

ARP is conventionally considered part of Layer 2, but since IP addresses don’t exist until Layer 3, it’s also part of Layer 3.

How to Troubleshoot OSI Layer 3 Problems

Here are some Layer 3 problems to watch out for:

  • All the problems that can crop up on previous layers :)
  • Faulty or non-functional router or other node
  • IP address is incorrectly configured

Many answers to Layer 3 questions will require the use of command-line tools like ping , trace , show ip route , or show ip protocols . Learn more about troubleshooting on layer 1-3 here .

The Network Layer allows nodes to connect to the Internet and send information across different networks.

OSI Layer 4

Layer 4 is the transport layer . This where we dive into the nitty gritty specifics of the connection between two nodes and how information is transmitted between them. It builds on the functions of Layer 2 - line discipline, flow control, and error control.

This layer is also responsible for data packet segmentation, or how data packets are broken up and sent over the network.

Unlike the previous layer, Layer 4 also has an understanding of the whole message, not just the contents of each individual data packet. With this understanding, Layer 4 is able to manage network congestion by not sending all the packets at once.

The data units of Layer 4 go by a few names. For TCP, the data unit is a packet. For UDP, a packet is referred to as a datagram. I’ll just use the term data packet here for the sake of simplicity.

Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are two of the most well-known protocols in Layer 4.

TCP, a connection-oriented protocol, prioritizes data quality over speed.

TCP explicitly establishes a connection with the destination node and requires a handshake between the source and destination nodes when data is transmitted. The handshake confirms that data was received. If the destination node does not receive all of the data, TCP will ask for a retry.

TCP also ensures that packets are delivered or reassembled in the correct order. Learn more about TCP here .

UDP, a connectionless protocol, prioritizes speed over data quality. UDP does not require a handshake, which is why it’s called connectionless.

Because UDP doesn’t have to wait for this acknowledgement, it can send data at a faster rate, but not all of the data may be successfully transmitted and we’d never know.

If information is split up into multiple datagrams, unless those datagrams contain a sequence number, UDP does not ensure that packets are reassembled in the correct order. Learn more about UDP here .

TCP and UDP both send data to specific ports on a network device, which has an IP address. The combination of the IP address and the port number is called a socket.

Learn more about sockets here .

Learn more about the differences and similarities between these two protocols here .

How to Troubleshoot OSI Layer 4 Problems

Here are some Layer 4 problems to watch out for:

  • Blocked ports - check your Access Control Lists (ACL) & firewalls
  • Quality of Service (QoS) settings. QoS is a feature of routers/switches that can prioritize traffic, and they can really muck things up. Learn more about QoS here .

The Transport Layer provides end-to-end transmission of a message by segmenting a message into multiple data packets; the layer supports connection-oriented and connectionless communication.

OSI Layer 5

Layer 5 is the session layer . This layer establishes, maintains, and terminates sessions.

A session is a mutually agreed upon connection that is established between two network applications. Not two nodes! Nope, we’ve moved on from nodes. They were so Layer 4.

Just kidding, we still have nodes, but Layer 5 doesn’t need to retain the concept of a node because that’s been abstracted out (taken care of) by previous layers.

So a session is a connection that is established between two specific end-user applications. There are two important concepts to consider here:

  • Client and server model: the application requesting the information is called the client, and the application that has the requested information is called the server.
  • Request and response model: while a session is being established and during a session, there is a constant back-and-forth of requests for information and responses containing that information or “hey, I don’t have what you’re requesting.”

Sessions may be open for a very short amount of time or a long amount of time. They may fail sometimes, too.

Depending on the protocol in question, various failure resolution processes may kick in. Depending on the applications/protocols/hardware in use, sessions may support simplex, half-duplex, or full-duplex modes.

Examples of protocols on Layer 5 include Network Basic Input Output System (NetBIOS) and Remote Procedure Call Protocol (RPC), and many others.

From here on out (layer 5 and up), networks are focused on ways of making connections to end-user applications and displaying data to the user.

How to Troubleshoot OSI Layer 5 Problems

Here are some Layer 5 problems to watch out for:

  • Servers are unavailable
  • Servers are incorrectly configured, for example Apache or PHP configs
  • Session failure - disconnect, timeout, and so on.

The Session Layer initiates, maintains, and terminates connections between two end-user applications. It responds to requests from the presentation layer and issues requests to the transport layer.

OSI Layer 6

Layer 6 is the presentation layer . This layer is responsible for data formatting, such as character encoding and conversions, and data encryption.

The operating system that hosts the end-user application is typically involved in Layer 6 processes. This functionality is not always implemented in a network protocol.

Layer 6 makes sure that end-user applications operating on Layer 7 can successfully consume data and, of course, eventually display it.

There are three data formatting methods to be aware of:

  • American Standard Code for Information Interchange (ASCII): this 7-bit encoding technique is the most widely used standard for character encoding. One superset is ISO-8859-1, which provides most of the characters necessary for languages spoken in Western Europe.
  • Extended Binary-Coded Decimal Interchange Code (EBDCIC): designed by IBM for mainframe usage. This encoding is incompatible with other character encoding methods.
  • Unicode: character encodings can be done with 32-, 16-, or 8-bit characters and attempts to accommodate every known, written alphabet.

Learn more about character encoding methods in this article , and also here .

Encryption: SSL or TLS encryption protocols live on Layer 6. These encryption protocols help ensure that transmitted data is less vulnerable to malicious actors by providing authentication and data encryption for nodes operating on a network. TLS is the successor to SSL.

How to Troubleshoot OSI Layer 6 Problems

Here are some Layer 6 problems to watch out for:

  • Non-existent or corrupted drivers
  • Incorrect OS user access level

The Presentation Layer formats and encrypts data.

OSI Layer 7

Layer 7 is the application layer .

True to its name, this is the layer that is ultimately responsible for supporting services used by end-user applications. Applications include software programs that are installed on the operating system, like Internet browsers (for example, Firefox) or word processing programs (for example, Microsoft Word).

Applications can perform specialized network functions under the hood and require specialized services that fall under the umbrella of Layer 7.

Electronic mail programs, for example, are specifically created to run over a network and utilize networking functionality, such as email protocols, which fall under Layer 7.

Applications will also control end-user interaction, such as security checks (for example, MFA), identification of two participants, initiation of an exchange of information, and so on.

Protocols that operate on this level include File Transfer Protocol (FTP), Secure Shell (SSH), Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol (IMAP), Domain Name Service (DNS), and Hypertext Transfer Protocol (HTTP).

While each of these protocols serve different functions and operate differently, on a high level they all facilitate the communication of information. ( Source )

How to Troubleshoot OSI Layer 7 Problems

Here are some Layer 7 problems to watch out for:

  • All issues on previous layers
  • Incorrectly configured software applications
  • User error (... we’ve all been there)

The Application Layer owns the services and functions that end-user applications need to work. It does not include the applications themselves.

Our Layer 1 koala is all grown up.

Koala with Photoshopped makeup

Learning check - can you apply makeup to a koala?

Don’t have a koala?

Well - answer these questions instead. It’s the next best thing, I promise.

  • What is the OSI model?
  • What are each of the layers?
  • How could I use this information to troubleshoot networking issues?

Congratulations - you’ve taken one step farther to understanding the glorious entity we call the Internet.

Learning Resources

Many, very smart people have written entire books about the OSI model or entire books about specific layers. I encourage readers to check out any O’Reilly-published books about the subject or about network engineering in general.

Here are some resources I used when writing this article:

  • The Illustrated Network, 2nd Edition
  • Protocol Data Unit (PDU): https://www.geeksforgeeks.org/difference-between-segments-packets-and-frames/
  • Troubleshooting Along the OSI Model: https://www.pearsonitcertification.com/articles/article.aspx?p=1730891
  • The OSI Model Demystified: https://www.youtube.com/watch?v=HEEnLZV2wGI
  • OSI Model for Dummies: https://www.dummies.com/programming/networking/layers-in-the-osi-model-of-a-computer-network/

Chloe Tucker is an artist and computer science enthusiast based in Portland, Oregon. As a former educator, she's continuously searching for the intersection of learning and teaching, or technology and art. Reach out to her on Twitter @_chloetucker and check out her website at chloe.dev .

Read more posts .

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

Network Encyclopedia Logo

Presentation Layer

Last Edited

What is the Presentation Layer?

Presentation Layer is the Layer 6 of the seven-layer Open Systems Interconnection (OSI) reference model . The presentation layer structures data that is passed down from the application layer into a format suitable for network transmission. This layer is responsible for data encryption, data compression, character set conversion, interpretation of graphics commands, and so on. The network redirector also functions at this layer.

Presentation Layer

Presentation Layer functions

  • Translation:  Before being transmitted, information in the form of characters and numbers should be changed to bit streams. Layer 6 is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption:  Encryption at the transmitter and decryption at the receiver
  • Compression:  Data compression to reduce the bandwidth of the data to be transmitted. The primary role of  data compression  is to reduce the number of bits to be transmitted. Multimedia files, such as audio and video, are bigger than text files and compression is more important.

Role of Presentation Layer in the OSI Model

This layer is not always used in network communications because its functions are not always necessary. Translation is only needed if different types of machines need to talk with each other. Encryption is optional in communication. If the information is public there is no need to encrypt and decrypt info. Compression is also optional. If files are small there is no need for compression.

Explaining Layer 6 in video

Most real-world protocol suites, such as TCP/IP , do not use separate presentation layer protocols. This layer is mostly an abstraction in real-world networking.

An example of a program that loosely adheres to layer 6 of OSI is the tool that manages the Hypertext Transfer Protocol (HTTP) — although it’s technically considered an application-layer protocol per the TCP/IP model.

However, HTTP includes presentation layer services within it. HTTP works when the requesting device forwards user requests passed to the web browser onto a web server elsewhere in the network.

It receives a return message from the web server that includes a multipurpose internet mail extensions (MIME) header. The MIME header indicates the type of file – text, video, or audio – that has been received so that an appropriate player utility can be used to present the file to the user.

In short, the presentation layer

Makes sure that data which is being transferred or received should be accurate or clear to all the devices which are there, in a closed network.

  • ensures proper formatting and delivery to and from the application layer;
  • performs data encryption; and
  • manages serialization of data objects.

presentation layer functions

Please Whitelist This Site? I know everyone hates ads. But please understand that I am providing premium content for free that takes hundreds of hours of time to research and write. I don't want to go to a pay-only model like some sites, but when more and more people block ads, I end up working for free. And I have a family to support, just like you. :) If you like The TCP/IP Guide, please consider the download version . It's priced very economically and you can read all of it in a convenient format without ads. If you want to use this site for free, I'd be grateful if you could add the site to the whitelist for Adblock. To do so, just open the Adblock menu and select "Disable on tcpipguide.com". Or go to the Tools menu and select "Adblock Plus Preferences...". Then click "Add Filter..." at the bottom, and add this string: "@@||tcpipguide.com^$document". Then just click OK. Thanks for your understanding! Sincerely, Charles Kozierok Author and Publisher, The TCP/IP Guide

The presentation layer is the sixth layer of the OSI Reference Model protocol stack, and second from the top. It is different from the other layers in two key respects. First, it has a much more limited and specific function than the other layers; it's actually somewhat easy to describe, hurray! Second, it is used much less often than the other layers; in many types of connections it is not required.

The name of this layer suggests its main function as well: it deals with the presentation of data. More specifically, the presentation layer is charged with taking care of any issues that might arise where data sent from one system needs to be viewed in a different way by the other system. It also takes care of any special processing that must be done to data from the time an application tries to send it until the time it is sent over the network.

Here are some of the specific types of data handling issues that the presentation layer handles:

The reason that the presentation layer is not always used in network communications is that the jobs mentioned above are simply not always needed. Compression and encryption are usually considered “optional”, and translation features are also only needed in certain circumstances. Another reason why the presentation layer is sometimes not mentioned is that its functions may be performed as part of the application layer.

The fact that the translation job done by the presentation layer isn't always needed means that it is common for it to be “skipped” by actual protocol stack implementations. This means that protocols at layer seven may talk directly with those at layer five. Once again, this is part of the reason why all of the functions of layers five through seven may be included together in the same software package, as described in the overview of layers and layer groupings .

IncludeHelp_logo

  • Data Structure
  • Coding Problems
  • C Interview Programs
  • C++ Aptitude
  • Java Aptitude
  • C# Aptitude
  • PHP Aptitude
  • Linux Aptitude
  • DBMS Aptitude
  • Networking Aptitude
  • AI Aptitude
  • MIS Executive
  • Web Technologie MCQs
  • CS Subjects MCQs
  • Databases MCQs
  • Programming MCQs
  • Testing Software MCQs
  • Digital Mktg Subjects MCQs
  • Cloud Computing S/W MCQs
  • Engineering Subjects MCQs
  • Commerce MCQs
  • More MCQs...
  • Machine Learning/AI
  • Operating System
  • Computer Network
  • Software Engineering
  • Discrete Mathematics
  • Digital Electronics
  • Data Mining
  • Embedded Systems
  • Cryptography
  • CS Fundamental
  • More Tutorials...
  • Tech Articles
  • Code Examples
  • Programmer's Calculator
  • XML Sitemap Generator
  • Tools & Generators

IncludeHelp

Computer Network Tutorial

  • Computer Network - Home
  • Computer Network - Overview
  • Computer Network - Applications
  • Computer Network - TCP/IP
  • Computer Network - OSI Model
  • Computer Network - Transport, Network, & Application Layers
  • Computer Network - Network Protocols & Network Software
  • Computer Network - TopologiesTypes
  • Computer Network - Hub
  • Computer Network - Routing
  • Computer Network - Routers
  • Computer Network - Dynamic Routing Protocols
  • Computer Network - Router
  • Computer Network - Populating a Routing Table
  • Computer Network - Switches
  • Computer Network - Layer 2 Switching
  • Computer Network - Configure Cisco Switch
  • Computer Network - ICMP
  • Computer Network - ICMP Messages
  • Computer Network - Addressing
  • Computer Network - Classless Addressing
  • Computer Network - IPV4 Addressing
  • Computer Network - IPV6 Addressing
  • Computer Network - Logical Addressing, Notations
  • Computer Network - Classful & Classless Addressing
  • Computer Network - Subnetting & Supernetting
  • Computer Network - Network Address Translation
  • Computer Network - FLSM & VLSM
  • Computer Network - Line Configuration
  • Transmission Computer Network - Modes
  • Computer Network - Data Link Layer
  • Computer Network - Physical Layer
  • Computer Network - Network Layer
  • Computer Network - Session Layer
  • Computer Network - Transport Layer
  • Computer Network - Application Layer
  • Computer Network - Presentation Layer
  • Computer Network - Coaxial Cable
  • Computer Network - Optical Fiber
  • Computer Network - Unguided Transmission Media
  • Computer Network - Virtual LAN (VLAN)
  • Computer Network - VSAN
  • Computer Network - Multiple Access Protocol
  • Computer Network - Random Access methods
  • Computer Network - Aloha Network
  • Computer Network - CSMA
  • Computer Network - FDMA & TDMA
  • Computer Network - CDMA
  • Computer Network - Ethernet Technology
  • Computer Network - Types of Network Topology
  • Computer Network - Data Transmission
  • Computer Network - Switching Techniques
  • Computer Network - Transmission Impairment
  • Computer Network - Synchronous & Asynchronous Transmission
  • Computer Network - Intent-Based Networking
  • Computer Network - Software-Defined Networking
  • Computer Network - Wireless Personal Area Network
  • Computer Network - Wireless Wide Area Network
  • Computer Network - P2P File Sharing
  • Computer Network - Packet Switching
  • Computer Network - PGP - Authentication & Confidentiality
  • Computer Network - PGP - Encryption & Compression
  • Computer Network - Phishing Attacks
  • Computer Network - ICMP Ping
  • Computer Network - Pipelining in Packet Switching
  • Computer Network - Plaintext Vs. Cleartext Encryption
  • Computer Network - Platform as a Service (PaaS)
  • Computer Network - GPRS Architecture
  • Computer Network - Identify & Prevent Phishing & Pharming
  • Computer Network - Change MAC Address
  • Computer Network - Network Administrator Vs. Network Engineer

Difference B/W Articles

  • Computer Network - Phishing & Pharming
  • Computer Network - Ping Vs. Traceroute
  • Computer Network - Network Vs. System Administrator
  • Computer Network - Network & Application Layer Protocols
  • Computer Network - Network Security Vs. Network Administration
  • Computer Network - Network Vs. Internet
  • Computer Network - PDH Vs. SDH
  • Computer Network - PCI Vs. PCI express
  • Computer Network - PCI-E Vs. PCI-X
  • Computer Network - OT Vs. IT Networks

Computer Network Practice

  • Computer Network - MCQs
  • Computer Network - Aptitude Questions

Home » Computer Network

Presentation Layer: What It Is, Design Issues, Functionalities

Description and Functions of Presentation Layer in the OSI model: In this tutorial, we are going to learn what the Presentation layer is and the Functions of the Presentation Layer in the OSI model in Computer Networking. We will also discuss the Design issues with the Presentation Layer and the working of the Presentation Layer with the help of its diagram. By Monika Jha Last updated : May 05, 2023

What is Presentation Layer?

The Presentation Layer is concerned with the syntax and semantics of the information exchanged between two communicating devices.

  • The presentation layer takes care that the data is sent in that way the receiver of the data will understand the information (data) and will be able to use the data.
  • Languages that are syntax can be different from the two communicating machines. In this condition, the presentation layer plays the role of translator between them.
  • It is possible for two machines to communicate with different data representations, data structures to be exchanged can be defined in an abstract way.
  • These abstract data structures will be managed by the presentation layer and this layer allows higher-level data structures (For example banking records), to be defined and exchanged.

This figure shows the relationship of the presentation layer to the session layer and application layer.

presentation layer

Design Issues with Presentation Layer

The following are the design issues with presentation layer:

  • To manage and maintain the Syntax and Semantics of the information transmitted.
  • Encoding data in a standard agreed-upon way just like a string, double, date, etc.
  • It Performs Standard Encoding scheme on the wire.

Functionalities of the Presentation Layer

Specific functionalities of the presentation layer are as follows:

1. Translation

  • The processes or running programs in two machines are usually exchanging the information in the form of numbers, character strings and so on before being transmitted. The information should be changed to bitstreams because different computers use different encoding schemes.
  • The Presentation layer is responsible for compatibility between these encoding methods.
  • The Presentation layer at the sender's side changes the information from its sender dependent format.
  • The Presentation layer at the receiving machine changes the common format into its receivers dependent format.

Example: Convert ASCII code to EBCDIC code.

2. Encryption

  • The system must be able to assure privacy regarding the message or information as it also carries sensitive information.
  • Encryption means that the sender transforms the original information or message to another form, this data after encryption is known as the ciphertext and this ciphertext sends the resulting message out over the network.
  • Decryption concerned with the transform of the message back to its original form. This decrypted data is known as plain text.

3. Compression

  • Data Compression means reduces the number of bits to be transmitted by this reduce the bandwidth of the data.
  • Data Compression becomes particularly important in the transmission of multimedia such as audio, video, text, etc.

Related Tutorials

  • IPV4 Addressing | Classful and Classless Addressing
  • Subnetting and Supernetting in Computer Network
  • Network Address Translation (NAT) in Computer Network
  • Fixed Length and Variable Length Subnet Mask (FLSM & VLSM)
  • Line Configuration in Computer Network
  • Transmission Modes in Computer Network
  • Data Link Layer: What It Is, Sublayers, Design Issues, Functions
  • Physical Layer: What It Is, Design Issues, Functions
  • Network Layer: What It Is, Design Issues, Responsibilities
  • Session Layer: What It Is, Design Issues, Functionalities
  • Transport Layer: What It Is, Design Issues, Functions, and Example
  • Optical Fiber (Fiber Optics) in Computer Network
  • Unguided Transmission Media in Computer Network
  • Virtual LAN (VLAN) in Computer Network
  • Virtual Storage Area Networking (VSAN)

Comments and Discussions!

Load comments ↻

  • Marketing MCQs
  • Blockchain MCQs
  • Artificial Intelligence MCQs
  • Data Analytics & Visualization MCQs
  • Python MCQs
  • C++ Programs
  • Python Programs
  • Java Programs
  • D.S. Programs
  • Golang Programs
  • C# Programs
  • JavaScript Examples
  • jQuery Examples
  • CSS Examples
  • C++ Tutorial
  • Python Tutorial
  • ML/AI Tutorial
  • MIS Tutorial
  • Software Engineering Tutorial
  • Scala Tutorial
  • Privacy policy
  • Certificates
  • Content Writers of the Month

Copyright © 2024 www.includehelp.com. All rights reserved.

PrepBytes Blog

ONE-STOP RESOURCE FOR EVERYTHING RELATED TO CODING

Sign in to your account

Forgot your password?

Login via OTP

We will send you an one time password on your mobile number

An OTP has been sent to your mobile number please verify it below

Register with PrepBytes

Presentation layer in osi model.

' src=

Last Updated on March 7, 2024 by Abhishek Sharma

presentation layer functions

The OSI (Open Systems Interconnection) model is a conceptual framework used to understand the functions of a telecommunication or computing system. It consists of seven layers, each responsible for specific tasks. The sixth layer, known as the Presentation Layer, plays a crucial role in ensuring that data exchanged between systems is readable and usable. Let’s explore the functions and importance of the Presentation Layer in the OSI model.

What is Presentation Layer in OSI Model?

The Presentation Layer, the sixth layer of the OSI (Open Systems Interconnection) model, is responsible for ensuring that data exchanged between systems is in a format that can be interpreted and used by the receiving system. It performs various functions, including data translation, encryption, compression, and formatting, to facilitate efficient and secure communication between networked devices.

Functions of the Presentation Layer

Below are some of the functions of the Presentation Layer in OSI Model:

  • Data Translation: The Presentation Layer translates data from the format used by the application layer into a format that can be transmitted over the network. This includes encoding, compression, and encryption.
  • Data Formatting: It ensures that data is formatted according to the specifications of the application layer. This includes converting between different character sets, such as ASCII and Unicode.
  • Data Compression: The Presentation Layer compresses data to reduce the amount of bandwidth required for transmission, improving network efficiency.
  • Data Encryption: It encrypts data to ensure that it remains secure during transmission, protecting it from unauthorized access.
  • Data Syntax: The Presentation Layer defines the syntax for data representation, ensuring that both the sender and receiver understand the structure of the data being exchanged.

Importance of the Presentation Layer

Importance of Presentation Layer are:

  • Data Integrity: By ensuring that data is formatted correctly and encrypted, the Presentation Layer helps maintain the integrity of data during transmission.
  • Interoperability: The Presentation Layer enables different systems to communicate with each other by ensuring that data is translated into a common format that both systems understand.
  • Efficiency: Data compression reduces the amount of data that needs to be transmitted, improving network efficiency and reducing bandwidth requirements.
  • Security: Encryption provided by the Presentation Layer ensures that data remains secure and protected from unauthorized access.

Conclusion The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity, facilitating interoperability, and ensuring the security of data during transmission.

FAQs related to Presentation Layer in OSI Model

Here are some of the FAQs related to Presentation Layer in OSI Model:

Q1: What is the role of the Presentation Layer in the OSI model? The Presentation Layer ensures that data exchanged between systems is in a usable format, performing functions such as data translation, encryption, compression, and formatting.

Q2: How does the Presentation Layer ensure data security? The Presentation Layer encrypts data before transmission, making it unreadable to unauthorized parties, thus ensuring data security.

Q3: Why is data compression important in the Presentation Layer? Data compression reduces the size of data packets, leading to faster transmission speeds and optimized bandwidth usage, which is crucial in high-traffic networks.

Q4: How does the Presentation Layer facilitate interoperability between systems? By translating data into a common format that both sender and receiver understand, the Presentation Layer enables different systems to communicate with each other seamlessly.

Q5: Can the Presentation Layer be bypassed in data transmission? While it is possible to bypass the Presentation Layer in some cases, doing so can lead to compatibility issues between systems and is not recommended.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Linked List
  • Segment Tree
  • Backtracking
  • Dynamic Programming
  • Greedy Algorithm
  • Operating System
  • Company Placement
  • Interview Tips
  • General Interview Questions
  • Data Structure
  • Other Topics
  • Computational Geometry
  • Game Theory

Related Post

Quantum cryptography, introduction to sniffers, multiplexing and demultiplexing in transport layer, transport layer responsibilities, tacacs+ and radius.

OSI Seven Layers Model Explained with Examples

This tutorial explains the OSI reference model. Learn the seven layers of the OSI model and the functions of each layer in detail through examples.

The OSI (Open System Interconnection) reference model is a comprehensive set of standards and rules for hardware manufacturers and software developers. By following these standards, they can build networking components and software applications that work in any environment. It was published in 1984 by ISO (International Organization for Standardization).

It provides a framework for creating and implementing networking standards, devices, and internetworking schemes. It explains the networking from a modular perspective, making it easier to understand and troubleshoot.

Seven layers of the OSI Model

The OSI model has seven different layers, which are divided into two groups. The following table lists all the layers with their names and numbers.

seven layers of OSI model

Let’s understand each layer in detail.

This tutorial is the second part of the article " Networking reference models explained in detail with examples. ". Other parts of this article are the following.

This tutorial is the first part of the article. It summarizes why the OSI model was created and what advantages it has.

This tutorial is the third part of the article. It compares the OSI reference model with the TCP/IP model and lists the similarities and differences between both.

This tutorial is the fourth part of the article. It explains the five layers of the TCP/IP model in detail.

This tutorial is the fifth part of the article. It explains how data is encapsulated and de-encapsulated when it passes through the layers.

The Application Layer

This is the last and topmost layer of the OSI model. This layer provides an interface between the local system and the application program running on the network. If an application wants to use the resources available on the remote system, it interacts with this layer. Then, this layer provides the protocols and services that the application needs to access those resources.

There are two types of application programs: Network-aware and Network-unaware . An application program is considered a Network-aware application if it can make any type of network request. If an application program cannot make any type of network request, it is considered a Network-unaware program.

Network-aware programs are further divided into two types.

Programs that are mainly built to work on a local system. This type of program occasionally accesses the network for particular reasons such as updates, documentation, and troubleshooting. MS-Word, Adobe-Photoshop, and VLC Player are examples of this type of program.

Programs that are mainly built to work with a remote system. This type of program provides a platform to access resources available on a remote system. This type of program only works if the system is connected to the network. SSH, FTP, and TFTP are examples of this type of program.

The Application layer describes only the programs which fall in the second type. But it doesn’t mean that the first type of programs can’t take the advantage of the Application layer. It simply means that they are not documented in the Application layer. But if required, they can also connect to the network through the Application layer.

The Top layer of the OSI model is the application layer. It provides the protocols and services that are required by the network-aware applications to connect to the network. FTP, TFTP, POP3, SMTP, and HTTP are examples of standards and protocols used in this layer.

The Presentation Layer

The sixth layer of the OSI model is the Presentation layer. Applications running on the local system may or may not understand the format that is used to transmit the data over the network. The presentation layer works as a translator. When receiving data from the Application layer, it converts that data in such a format that can be sent over the network. When receiving data from the Session layer, it reconverts the data in such a format that the application, which will use it, can understand.

Conversion, compression, and encryption are the main functions that the Presentation layer performs on the sending computer while on the receiving computer these functions are reconversion, decompression, and decryption. ASCII, BMP, GIF, JPEG, WAV, AVI, and MPEG are examples of standards and protocols that work in this layer.

The Session Layer

The session layer is the fifth layer of the OSI model. It is responsible for setting up, managing, and dismantling sessions between presentation layer entities and providing dialogs between computers.

When an application makes a network request, this layer checks whether the requested resource is available on the local system or on a remote system. If the requested resource is available on a remote system, it tests whether a network connection to access that resource is available or not. If a network connection is not available, it sends an error message back to the application informing that the connection is not available.

If a network connection is available, it establishes a session with the remote system. For each request, it uses a separate session. This allows multiple applications to send or receive data simultaneously. When data transmission is completed, it terminates the session.

The session layer is responsible for establishing, managing, and terminating communications between two computers. RPCs and NFS are examples of the session layer.

The Transport Layer

The transport layer is the fourth layer of the OSI model. It provides the following functionalities: -

Segmentation

On the sending computer, it breaks the data stream into smaller pieces. Each piece is known as a segment and the process of breaking the data stream into smaller pieces is known as the segmentation . On the receiving computer, it joins all segments to recreate the original data stream.

Data transportation

This layer establishes a logical connection between the sending system and receiving system and uses that connection to provide end-to-end data transportation. This process uses two protocols: TCP and UDP.

The TCP protocol is used for reliable data transportation. TCP is a connection-oriented protocol. UDP protocol is used for unreliable data transportation. UDP is a connection-less protocol.

The main difference between a connection-less and connection-oriented protocol is that a connection-oriented protocol provides reliable data delivery. For reliable data delivery, it uses several mechanisms such as the three-way handshake process, acknowledgments, sequencing, and flow control.

Multiplexing

Through the use of port numbers, this layer also provides connection multiplexing. Connection multiplexing allows multiple applications to send and receive data simultaneously.

The main functionalities of the Transport layer are segmentation, data transportation, and connection multiplexing. For data transportation, it uses TCP and UDP protocols. TCP is a connection-oriented protocol. It provides reliable data delivery.

The Network Layer

The third layer of the OSI model is the Network Layer. This layer takes the data segment from the Transport layer and adds a logical address to it. A logical address has two components; network partition and host partition. The Network partition is used to group networking components while the host partition is used to uniquely identify a system on the network. A logical address is known as the IP address. Once the logical address and other related information are added to the segment , it becomes the packet .

This layer decides whether the packet is intended for the local system or a remote system. It also specifies the standards and protocols which are used to move data packets over networks.

To move data packets between two different networks, a device known as the router is used. Routers use the logical address to make the routing decision. Routing is the process of forwarding data packets to their destination.

Defining logical addresses and finding the best path to reach the destination address are the main functions of this layer. Routers work in this layer. Routing also takes place in this layer. IP, IPX, and AppleTalk are examples of this layer.

The Data Link Layer

The Data Link Layer is the second layer of the OSI model. This layer defines how networking components access the media and what transmission methods they use. This layer has two sub-layers: MAC and LLC.

MAC (Media Access Control)

This sub-layer defines how the data packets are placed in media. It also provides physical addressing. The physical address is known as the MAC address. Unlike logical addresses that need to be configured, physical addresses are pre-configured in NIC. The MAC address is used to uniquely identify a host in the local network.

LLC (Logical Link Control)

This sub-layer identifies the network layer protocol. On the sending computer, it encapsulates the information of the Network Layer protocol in the LLC header from which the Data Link layer receives the data packet. On the receiving computer, it checks the LLC header to get the information about the network layer protocol. This way, a data packet is always delivered to the same network layer protocol from which it was sent.

Defining physical addresses, finding hosts in the local network, specifying standards and methods to access the media are the primary functions of this layer. Switching takes place in this layer. Switches and Bridges work in this layer. HDLC, PPP, and Frame Relay are examples of this layer.

The Physical Layer

The Physical Layer is the first layer of the OSI model. This layer specifies the standards for devices, media, and technologies that are used in moving the data across the network such as:-

  • Type of cable used in connecting the devices
  • Patterns of pins used in both sides of the cable
  • Type of interface-card used in the networking device
  • Type of connector used to connect the cable with the network interface
  • Encoding of digital signals received from the Data Link layer based on the attached media type such as electrical for copper, light for fiber, or a radio wave for wireless.

On the sending computer, it converts digital signals received from the Data Link layer, into analog signals and loads them on the physical media. On the receiving computer, it picks analog signals from the media and converts them into digital signals, and transfers them to the Data Link layer for further processing.

The Physical Layer mainly defines standards for media and devices that are used to move data across the network. 10BaseT, 10Base100, CSU/DSU, DCE, and DTE are examples of the standards used in this layer.

That’s all for this tutorial. In the next part of this article, we will compare the OSI model with the TCP/IP model and explains the similarities and differences between both models. If you like this tutorial, please don’t forget to share it with friends.

By ComputerNetworkingNotes Updated on 2024-01-25 05:30:01 IST

ComputerNetworkingNotes CCNA Study Guide OSI Seven Layers Model Explained with Examples

We do not accept any kind of Guest Post. Except Guest post submission, for any other query (such as adverting opportunity, product advertisement, feedback, suggestion, error reporting and technical issue) or simply just say to hello mail us [email protected]

presentation layer functions

Presentation Layer: Protocols, Examples, Services | Functions of Presentation Layer

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts. Now, we will explain about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. At the end of this article, you will completely educate about What is Presentation Layer in OSI Model without any hassle.

  • What is Presentation Layer?

Definition : Presentation layer is 6th layer in the OSI model , and its main objective is to present all messages to upper layer as a standardized format. It is also known as the “ Translation layer “.  This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can understand all data, and it will be to implement all data languages can be dissimilar of two communication system.

presentation layer

Presentation layer is capable to handle abstract data structures, and further it helps to defined and exchange of higher-level data structures.

Presentation Layer Tutorial Headlines:

In this section, we will show you all headlines about this entire article; you can check them as your choice; below shown all:

  • Functions of Presentation Layer

Protocols of Presentation Layer

  • Example of Presentation Layer Protocols

Presentation Layer Services

Design issues with presentation layer, faqs (frequently asked questions), what is meant by presentation layer in osi model, what protocols are used in the presentation layer, can you explain some presentation layer examples, what are the main functions of the presentation layer, what are services of presentation layer in osi, let’s get started,   functions of presentation layer.

Presentation layer performs various functions in the OSI model ; below explain each one – 

  • Presentation layer helps to translate from American standard code for information interchange (ASCII) to the extended binary code decimal interchange code (EBCDIC).
  • It deals with user interface as well as supporting for several services such as email and file transfer.
  • It provides encoding mechanism for translating all messages from user dependent format with common format and vice – versa.
  • It’s main goal for data encryption and decryption of entire data before they are getting transmission over all common platforms.
  • It provides data compression mechanism for source point to decrease the all bits which are transmitted. Due to this data compression system, user are able to transmit enlarge multimedia file at fastest file transfer rate.
  • Due to use of Data Encryption and Decryption algorithm, presentation layer provides more network protection and confidentiality while transmission data over the entire network.
  • This layer offers best flexibility for data translation for making connections with various kinds of servers , computers, and mainframes over the similar network.
  • Presentation layer has responsible to fix all translations in between all network systems .

Presentation layer is used various protocols; below list is available –

  • Multipurpose Internet Mail Extensions
  • File Transfer Protocol
  • Network News Transfer Protocol
  • Apple Filing Protocol (AFP)
  • Independent Computing Architecture (ICA), the Citrix system core protocol
  • Lightweight Presentation Protocol (LPP)
  • NetWare Core Protocol (NCP)
  • Network Data Representation (NDR)
  • Telnet (a remote terminal access protocol)
  • Tox Protocol
  • eXternal Data Representation (XDR)
  • 25 Packet Assembler/Disassembler Protocol (PAD)

Example of Presentation Layer Protocols:

Here, we will discuss all examples of presentation layer protocols; below explain each one –  

Multipurpose Internet Mail Extensions (MIME) : MIME protocol was introduced by Bell Communications in 1991, and it is an internet standard that provides scalable capable of email for attaching of images, sounds and text in a message.

File Transfer Protocol (FTP) : FTP is a internet protocol, and its main goal is to transmit all files in between one host to other hosts over the internet on TCP/IP connections.

Network News Transfer Protocol (NNTP) : This protocol is used to make connection with Usenet server and transmit all newsgroup articles in between system over internet.

Apple Filing Protocol (AFP ) : AFP protocol is designed by Apple company for sharing all files over the entire network .

Lightweight Presentation Protocol (LPP) : This protocol is used to offer ISO presentation services on top of TCP/IP based protocol stacks.

NetWare Core Protocol (NCP) : NCP is a Novell client server model protocol that is designed especially for Local Area Network (LAN). It is capable to perform several functions like as file/print-sharing, clock synchronization, remote processing and messaging.

Network Data Representation (NDR) : NDR is an data encoding standard, and it is implement in the Distributed Computing Environment (DCE).

Telnet (Telecommunication Network) : Telnet protocol was introduced in 1969, and it offers the command line interface for making communication along with remote device or server .

Tox : The Tox protocol is sometimes regarded as part of both the presentation and application layer , and it is used for sending peer-to-peer instant-messaging as well as video calling.

eXternal Data Representation (XDR) : This protocol provides the description and encoding of entire data, and  it’s main goal is to transfer data in between dissimilar computer architecture.

25 Packet Assembler/Disassembler Protocol (PAD) : Main objective of this protocol is to obtain all data from group of terminal and allots the data into X. 25 packets.

Presentation layer provides several services like as –

  • Data conversion
  • Character code translation
  • Compression
  • Encryption and Decryption
  • It helps to handle and maintain Syntax and Semantics of the message transmitted.
  • Encoding data can be done as standard agreed like as String, double, date, and more.
  • Standard Encoding can be done on wire.

Presentation Layer is the 6th layer in the Open System Interconnection (OSI) model that is the lowest layer, where all application programmer consider data structure and presentation, beyond of simply sending the data into form of datagram otherwise packets in between the hosts.

Presentation layer is used various protocols like as:

Yes! In this article, already we have been explained many examples of presentation layer; you can check them.

Presentation layer has a responsibility for formatting, translation, and delivery of the information for getting to process otherwise display .

Now, i hope that you have completely learnt about what is presentation layer with its protocols, example, service ; involving with major functions of presentation Layer with ease. If this post is useful for you, then please share it along with your friends, family members or relatives over social media platforms like as Facebook, Instagram, Linked In, Twitter, and more.

Also Read: Data Link Layer: Protocols, Examples | Functions of Data Link Layer

If you have any experience, tips, tricks, or query regarding this issue? You can drop a comment!

Related Posts

transport layer

Trending Articles on Technical and Non Technical topics

  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

The Presentation Layer of OSI Model

The presentation layer (Layer 6) ensures that the message is presented to the upper layer in a standardized format. It deals with the syntax and the semantics of the messages.

The main functions of the presentation layer are as follows −

  • It encodes the messages from the user dependent format to the common format and vice versa, for communication among dissimilar systems.
  • It is responsible for data encryption and decryption of sensitive data before they are transmitted over common channels.
  • It is also responsible for data compression. Data compression is done at the source to reduce the number of bits to be transmitted. It reduces the storage space and increases the file transfer rate. It is particularly useful for transmission of large multimedia files.

presentation layer functions

Related Articles

  • The Physical Layer of OSI Model
  • The Network Layer of OSI Model
  • The Transport Layer of OSI Model
  • The Session Layer of OSI Model
  • The Application Layer of OSI Model
  • The Data Link Layer of OSI Model
  • Explain the functions of Presentation Layer.
  • What is Presentation Layer?
  • The OSI Reference Model
  • What is a presentation layer?
  • Advantages and Disadvantages of the OSI Model
  • Computer Networks – Layers of OSI Model
  • What is the OSI Reference Model?
  • OSI Model in Computer Networking
  • Why Does the OSI Reference Model Matter?

Kickstart Your Career

Get certified by completing the course

To Continue Learning Please Login

COMPUTER NETWORK BASICS

  • Introduction To Computer Networks
  • Uses of Computer Networks
  • Line Configuration
  • Types of Network Topology
  • Transmission Modes
  • Transmission Mediums
  • Bounded/Guided Transmission Media
  • UnBounded/UnGuided Transmission Media
  • Types of Communication Networks
  • Connection Oriented and Connectionless Services
  • Network Layer
  • Quality of Service(QoS)
  • IGMP Protocol
  • Reference Models

Physical Layer

  • Digital Transmission
  • Multiplexing
  • Circuit-Switched
  • Message-Switched Networks
  • Packet Switching

Data link layer

  • Error Correction
  • Data Link Control
  • Flow and Error
  • Simplest Protocol
  • Stop-and-Wait Protocol
  • Go-Back-N Automatic Repeat
  • Sliding Window Protocol
  • HDLC Protocol
  • Point-to-Point Protocol
  • Multiple Access in DL
  • Channelization Protocols
  • Gigabit Ethernet
  • Random Access Protocol
  • Controlled Access Protocols
  • Carrier Sense Multiple Access

Transport layer

  • Transport Layer
  • Telnet vs SSH
  • UDP Protocol
  • TCP - Protocol

ISO/OSI REFERENCE MODEL

  • Introduction to Reference Models
  • OSI Model: Physical Layer
  • OSI Model: Datalink Layer
  • OSI Model: Network Layer
  • OSI Model: Transport Layer
  • OSI Model: Session Layer
  • OSI Model: Presentation Layer
  • OSI Model: Application Layer

TCP/IP REFERENCE MODELCOMPUTER NETWORKS

  • The TCP/IP Reference Model
  • Difference between OSI and TCP/IP Model
  • Key Terms - Computer Network

Session layer

  • Session Layer

Computer Networks

  • Components of Computer Networks
  • Features of Computer Network
  • Protocols and Standards
  • Connection Oriented and Connectionless
  • OSI Vs TCP/IP

Presentation layer

  • Presentation Layer

Application layer

  • HTTP Protocol
  • FTP Protocol
  • SMTP Protocol
  • POP Protocol
  • SNMP Protocol
  • Electronic Mail
  • MIME Protocol
  • World Wide Web
  • DNS Protocol

Presentation Layer - OSI Model

The primary goal of this layer is to take care of the syntax and semantics of the information exchanged between two communicating systems. Presentation layer takes care that the data is sent in such a way that the receiver will understand the information(data) and will be able to use the data. Languages(syntax) can be different of the two communicating systems. Under this condition presentation layer plays a role translator.

In order to make it possible for computers with different data representations to communicate, the data structures to be exchanged can be defined in an abstract way. The presentation layer manages these abstract data structures and allows higher-level data structures(eg: banking records), to be defined and exchanged.

Functions of Presentation Layer

  • Translation: Before being transmitted, information in the form of characters and numbers should be changed to bit streams. The presentation layer is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the format the computer.
  • Encryption: It carries out encryption at the transmitter and decryption at the receiver.
  • Compression: It carries out data compression to reduce the bandwidth of the data to be transmitted. The primary role of Data compression is to reduce the number of bits to be 0transmitted. It is important in transmitting multimedia such as audio, video, text etc.

Presentation Layer in ISO-OSI Model

Design Issues with Presentation Layer

  • To manage and maintain the Syntax and Semantics of the information transmitted.
  • Encoding data in a standard agreed upon way. Eg: String, double, date, etc.
  • Perform Standard Encoding on wire.
  • ← Prev
  • Next →

  CN MCQ Tests

  gate interview tests.

presentation layer functions

Unveiling the Interpreter: Fortifying the Presentation Layer’s Role in Cybersecurity

  • March 28, 2024

Cherise Esparza

Welcome back to Tea with C. As we navigate deeper into the OSI model, today’s spotlight shines on Layer 6: the Presentation Layer. The Presentation Layer, often likened to an adept interpreter in the digital realm, plays a pivotal role in the seamless transmission and reception of data across the network.

At its essence, the Presentation Layer is tasked with data translation, encryption, and compression. It ensures that the information sent from the application layer is suitably formatted for transmission across the network and can be accurately interpreted by the receiving system. This layer is a universal translator for network communications, bridging different data formats into a universally understood language.

Encryption protocols at this layer are vital for securing data at rest and in transit. They are the bedrock of data integrity and confidentiality, shielding sensitive information from prying eyes and potential cyber threats. This is where the magic of transforming data into a secure format occurs, making it an essential battleground for cybersecurity efforts.

However, the Presentation Layer is not without its vulnerabilities. Some of the most insidious security threats stem from weaknesses in the coding practices used to develop applications interacting at this layer. Buffer overflows, SQL injections, and cross-site scripting are prime examples of exploits that can lead to significant security breaches. These vulnerabilities underscore the critical importance of secure coding practices and robust input validation procedures to fend off attackers.

The roles vital to securing the Presentation Layer span a broad spectrum of cybersecurity expertise. Network security analysts play a key role in scrutinizing the data exchange protocols and ensuring that encryption measures are robust and correctly implemented. Developers adhere to a secure development lifecycle, ensuring that code is thoroughly vetted and sanitized before deployment. Lastly, the overarching vigilance of security analysts dedicated to network monitoring and logging forms the backbone of a comprehensive security strategy at this layer.

Ensuring the security of the Presentation Layer is a multifaceted challenge that requires a concerted effort from all parties involved in the development and deployment of network applications. As we gear up for our following discussion on the final layer of the OSI model , the Application Layer, remember that each layer presents unique challenges and opportunities for enhancing our cybersecurity posture. Join us next week as we conclude our exploration of the OSI model.

Share this post

Recent articles.

presentation layer functions

The Enhanced “Recover” Function in CSF 2.0: Bridging from 2018 to Modern Resilience

In the aftermath of a cybersecurity incident, an organization’s ability to recover and return to normal operations is crucial for its resilience and continuity. The

presentation layer functions

Evolving Cybersecurity Response: The “Respond” Function in CSF 2.0 Versus 2018

The capacity to respond effectively in a cybersecurity incident is critical for minimizing impact and restoring operations. The “Respond” function of the National Institute of

presentation layer functions

The Enhanced “Detect” Function in CSF 2.0: A Leap Forward from the 2018 Framework

In the evolving field of cybersecurity, the ability to quickly detect anomalies and cybersecurity events is crucial for maintaining the integrity of organizational assets. The

presentation layer functions

Fortifying Cybersecurity: Unpacking the Enhancements in CSF 2.0’s ‘Protect’ Function

The need for robust cybersecurity measures has never been more apparent in the rapidly advancing digital landscape. With cyber threats becoming increasingly sophisticated, the National

presentation layer functions

SecurityGate Unveils New Channel Program

HOUSTON, April 16, 2024 /PRNewswire/– SecurityGate, the provider of the leading SaaS platform for OT cyber improvement, is excited to announce the launch of its new

presentation layer functions

Deep Dive into the “Identify” Function: Transitioning from the 2018 Framework to CSF 2.0

Understanding an organization’s digital assets and systems in the ever-changing cybersecurity landscape is crucial to ensure effective security. The “Identify” function of the National Institute

5120 Woodway Dr. Suite 9003 Houston, TX 77056

SecurityGate c/o Talent Garden Calabiana Via Arcivescovo Calabiana, 6, 20139 Milano, Italy

  • Privacy Policy
  • Terms of Service
  • Support Terms

Platform Tour

Channel program, case studies, the business of cyber series.

IMAGES

  1. Presentation Layer

    presentation layer functions

  2. OSI Model Layers

    presentation layer functions

  3. A Guide to the Presentation Layer

    presentation layer functions

  4. presentation layer definition

    presentation layer functions

  5. PPT

    presentation layer functions

  6. Presentation Layer: What It Is, Design Issues, Functionalities

    presentation layer functions

VIDEO

  1. OSI model

  2. Part 1.16

  3. A/L ICT

  4. Presentation Layer Details OSI model in Hindi With Free Class Notes Presentation Layer Functionality

  5. Design issues of presentation layer

  6. Steps to Create Presentation Layer and RPD Testing 03: By RR ITEC, Hyderabad, India

COMMENTS

  1. Presentation Layer in OSI model

    Functions of Presentation Layer : Data from Application Layer <=> Presentation layer <=> Data from Session Layer. The presentation layer, being the 6th layer in the OSI model, performs several types of functions, which are described below-Presentation layer format and encrypts data to be sent across the network.

  2. Presentation Layer

    Learn about the presentation layer, the lowest layer at which data is formatted and exchanged between different systems. Find out how the presentation layer deals with data conversion, compression, encryption, decryption and more.

  3. Presentation layer

    The presentation layer ensures the information that the application layer of one system sends out is readable by the application layer of another system. On the sending system it is responsible for conversion to standard, transmittable formats. [7] On the receiving system it is responsible for the translation, formatting, and delivery of ...

  4. Presentation Layer in OSI Model

    The presentation layer is the 6th layer from the bottom in the OSI model that translates one data format into another data format. It deals with the semantics and syntax of the data, such as encryption, compression, and conversion. It has two sublayers: CASE and SASE, and several protocols, such as ICA, NDR, AFP, NCP, PAD, XDR, and LPP.

  5. Presentation Layer of the OSI Model: Definition and Function

    Functions of the presentation layer The presentation layer is the residing layer of a computer's operating system. It communicates with the application layer, from which it receives data inputted by the user. This layer performs three important functions in the transmission of data between computers. These are:

  6. What is presentation layer?

    The presentation layer is located at Layer 6 of the OSI model. The tool that manages Hypertext Transfer Protocol ( HTTP) is an example of a program that loosely adheres to the presentation layer of OSI. Although it's technically considered an application-layer protocol per the TCP/IP model, HTTP includes presentation layer services within it.

  7. The OSI Model

    The Session Layer initiates, maintains, and terminates connections between two end-user applications. It responds to requests from the presentation layer and issues requests to the transport layer. OSI Layer 6. Layer 6 is the presentation layer. This layer is responsible for data formatting, such as character encoding and conversions, and data ...

  8. Presentation layer and Session layer of the OSI model

    The presentation layer is the sixth layer of the OSI Reference model. It defines how data and information is transmitted and presented to the user. It translates data and format code in such a way that it is correctly used by the application layer. It identifies the syntaxes that different applications use and formats data using those syntaxes.

  9. Presentation Layer

    Presentation Layer functions. Translation: Before being transmitted, information in the form of characters and numbers should be changed to bit streams. Layer 6 is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the network requires and the ...

  10. The TCP/IP Guide

    Presentation Layer Functions. Here are some of the specific types of data handling issues that the presentation layer handles: Translation: Networks can connect very different types of computers together: PCs, Macintoshes, UNIX systems, AS/400 servers and mainframes can all exist on the same network. These systems have many distinct ...

  11. Presentation Layer of the OSI Model

    The presentation layer of the OSI also functions in data conversion through bit order reversals. It converts integers to floating point numbers, and byte code for a carriage return (CR) to byte ...

  12. Presentation Layer: What It Is, Design Issues, Functionalities

    The Presentation layer is responsible for compatibility between these encoding methods. The Presentation layer at the sender's side changes the information from its sender dependent format. The Presentation layer at the receiving machine changes the common format into its receivers dependent format. Example: Convert ASCII code to EBCDIC code. 2.

  13. What is Presentation Layer in the OSI Model?

    Key functions of the Presentation Layer in the OSI model include: Data Encryption: It securely encrypts data to prevent unauthorized access during transmission. Data Compression: It reduces data ...

  14. Presentation Layer in OSI Model

    The Presentation Layer is a crucial component of the OSI model, responsible for ensuring that data exchanged between systems is in a format that can be understood and used. By performing functions such as data translation, formatting, compression, and encryption, the Presentation Layer plays a vital role in maintaining data integrity ...

  15. OSI Seven Layers Model Explained with Examples

    Conversion, compression, and encryption are the main functions that the Presentation layer performs on the sending computer while on the receiving computer these functions are reconversion, decompression, and decryption. ASCII, BMP, GIF, JPEG, WAV, AVI, and MPEG are examples of standards and protocols that work in this layer.

  16. Presentation Layer: Protocols, Examples, Services

    What is Presentation Layer? Definition: Presentation layer is 6th layer in the OSI model, and its main objective is to present all messages to upper layer as a standardized format.It is also known as the "Translation layer". This layer takes care of syntax and semantics of messages exchanged in between two communication systems. Presentation layer has responsible that receiver can ...

  17. Presentation Layer

    Functions of Presentation Layer. Translation: Before being transmitted, the information in the form of characters and numbers should be changed to bitstreams. The presentation layer is responsible for interoperability between encoding methods as different computers use different encoding methods. It translates data between the formats the ...

  18. The Presentation Layer of OSI Model

    The Presentation Layer of OSI Model. The presentation layer (Layer 6) ensures that the message is presented to the upper layer in a standardized format. It deals with the syntax and the semantics of the messages. The main functions of the presentation layer are as follows −. It encodes the messages from the user dependent format to the common ...

  19. A Guide to the Presentation Layer

    Functions of the presentation layer. As the sixth layer in the OSI model, the presentation layer is thus responsible for three general functions: translation, compression, and encryption and decryption. Translation. Layer 6 translates data based on the host's needs. Different hosts represent data in diverse manners, especially when dealing ...

  20. Presentation Layer of OSI Reference Model

    The presentation layer manages these abstract data structures and allows higher-level data structures(eg: banking records), to be defined and exchanged. Functions of Presentation Layer. Translation: Before being transmitted, information in the form of characters and numbers should be changed to bit streams. The presentation layer is responsible ...

  21. Unveiling the Interpreter: Fortifying the Presentation Layer's Role in

    Welcome back to Tea with C. As we navigate deeper into the OSI model, today's spotlight shines on Layer 6: the Presentation Layer. The Presentation Layer, often likened to an adept interpreter in the digital realm, plays a pivotal role in the seamless transmission and reception of data across the network. At its essence, the Presentation ...