Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Academic writing
  • How to write a lab report

How To Write A Lab Report | Step-by-Step Guide & Examples

Published on May 20, 2021 by Pritha Bhandari . Revised on July 23, 2023.

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper .

Lab reports are commonly used in science, technology, engineering, and mathematics (STEM) fields. This article focuses on how to structure and write a lab report.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Structuring a lab report, introduction, other interesting articles, frequently asked questions about lab reports.

The sections of a lab report can vary between scientific fields and course requirements, but they usually contain the purpose, methods, and findings of a lab experiment .

Each section of a lab report has its own purpose.

  • Title: expresses the topic of your study
  • Abstract : summarizes your research aims, methods, results, and conclusions
  • Introduction: establishes the context needed to understand the topic
  • Method: describes the materials and procedures used in the experiment
  • Results: reports all descriptive and inferential statistical analyses
  • Discussion: interprets and evaluates results and identifies limitations
  • Conclusion: sums up the main findings of your experiment
  • References: list of all sources cited using a specific style (e.g. APA )
  • Appendices : contains lengthy materials, procedures, tables or figures

Although most lab reports contain these sections, some sections can be omitted or combined with others. For example, some lab reports contain a brief section on research aims instead of an introduction, and a separate conclusion is not always required.

If you’re not sure, it’s best to check your lab report requirements with your instructor.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

how to write results and discussion in a lab report

Try for free

Your title provides the first impression of your lab report – effective titles communicate the topic and/or the findings of your study in specific terms.

Create a title that directly conveys the main focus or purpose of your study. It doesn’t need to be creative or thought-provoking, but it should be informative.

  • The effects of varying nitrogen levels on tomato plant height.
  • Testing the universality of the McGurk effect.
  • Comparing the viscosity of common liquids found in kitchens.

An abstract condenses a lab report into a brief overview of about 150–300 words. It should provide readers with a compact version of the research aims, the methods and materials used, the main results, and the final conclusion.

Think of it as a way of giving readers a preview of your full lab report. Write the abstract last, in the past tense, after you’ve drafted all the other sections of your report, so you’ll be able to succinctly summarize each section.

To write a lab report abstract, use these guiding questions:

  • What is the wider context of your study?
  • What research question were you trying to answer?
  • How did you perform the experiment?
  • What did your results show?
  • How did you interpret your results?
  • What is the importance of your findings?

Nitrogen is a necessary nutrient for high quality plants. Tomatoes, one of the most consumed fruits worldwide, rely on nitrogen for healthy leaves and stems to grow fruit. This experiment tested whether nitrogen levels affected tomato plant height in a controlled setting. It was expected that higher levels of nitrogen fertilizer would yield taller tomato plants.

Levels of nitrogen fertilizer were varied between three groups of tomato plants. The control group did not receive any nitrogen fertilizer, while one experimental group received low levels of nitrogen fertilizer, and a second experimental group received high levels of nitrogen fertilizer. All plants were grown from seeds, and heights were measured 50 days into the experiment.

The effects of nitrogen levels on plant height were tested between groups using an ANOVA. The plants with the highest level of nitrogen fertilizer were the tallest, while the plants with low levels of nitrogen exceeded the control group plants in height. In line with expectations and previous findings, the effects of nitrogen levels on plant height were statistically significant. This study strengthens the importance of nitrogen for tomato plants.

Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure:

  • Start with the broad, general research topic
  • Narrow your topic down your specific study focus
  • End with a clear research question

Begin by providing background information on your research topic and explaining why it’s important in a broad real-world or theoretical context. Describe relevant previous research on your topic and note how your study may confirm it or expand it, or fill a gap in the research field.

This lab experiment builds on previous research from Haque, Paul, and Sarker (2011), who demonstrated that tomato plant yield increased at higher levels of nitrogen. However, the present research focuses on plant height as a growth indicator and uses a lab-controlled setting instead.

Next, go into detail on the theoretical basis for your study and describe any directly relevant laws or equations that you’ll be using. State your main research aims and expectations by outlining your hypotheses .

Based on the importance of nitrogen for tomato plants, the primary hypothesis was that the plants with the high levels of nitrogen would grow the tallest. The secondary hypothesis was that plants with low levels of nitrogen would grow taller than plants with no nitrogen.

Your introduction doesn’t need to be long, but you may need to organize it into a few paragraphs or with subheadings such as “Research Context” or “Research Aims.”

A lab report Method section details the steps you took to gather and analyze data. Give enough detail so that others can follow or evaluate your procedures. Write this section in the past tense. If you need to include any long lists of procedural steps or materials, place them in the Appendices section but refer to them in the text here.

You should describe your experimental design, your subjects, materials, and specific procedures used for data collection and analysis.

Experimental design

Briefly note whether your experiment is a within-subjects  or between-subjects design, and describe how your sample units were assigned to conditions if relevant.

A between-subjects design with three groups of tomato plants was used. The control group did not receive any nitrogen fertilizer. The first experimental group received a low level of nitrogen fertilizer, while the second experimental group received a high level of nitrogen fertilizer.

Describe human subjects in terms of demographic characteristics, and animal or plant subjects in terms of genetic background. Note the total number of subjects as well as the number of subjects per condition or per group. You should also state how you recruited subjects for your study.

List the equipment or materials you used to gather data and state the model names for any specialized equipment.

List of materials

35 Tomato seeds

15 plant pots (15 cm tall)

Light lamps (50,000 lux)

Nitrogen fertilizer

Measuring tape

Describe your experimental settings and conditions in detail. You can provide labelled diagrams or images of the exact set-up necessary for experimental equipment. State how extraneous variables were controlled through restriction or by fixing them at a certain level (e.g., keeping the lab at room temperature).

Light levels were fixed throughout the experiment, and the plants were exposed to 12 hours of light a day. Temperature was restricted to between 23 and 25℃. The pH and carbon levels of the soil were also held constant throughout the experiment as these variables could influence plant height. The plants were grown in rooms free of insects or other pests, and they were spaced out adequately.

Your experimental procedure should describe the exact steps you took to gather data in chronological order. You’ll need to provide enough information so that someone else can replicate your procedure, but you should also be concise. Place detailed information in the appendices where appropriate.

In a lab experiment, you’ll often closely follow a lab manual to gather data. Some instructors will allow you to simply reference the manual and state whether you changed any steps based on practical considerations. Other instructors may want you to rewrite the lab manual procedures as complete sentences in coherent paragraphs, while noting any changes to the steps that you applied in practice.

If you’re performing extensive data analysis, be sure to state your planned analysis methods as well. This includes the types of tests you’ll perform and any programs or software you’ll use for calculations (if relevant).

First, tomato seeds were sown in wooden flats containing soil about 2 cm below the surface. Each seed was kept 3-5 cm apart. The flats were covered to keep the soil moist until germination. The seedlings were removed and transplanted to pots 8 days later, with a maximum of 2 plants to a pot. Each pot was watered once a day to keep the soil moist.

The nitrogen fertilizer treatment was applied to the plant pots 12 days after transplantation. The control group received no treatment, while the first experimental group received a low concentration, and the second experimental group received a high concentration. There were 5 pots in each group, and each plant pot was labelled to indicate the group the plants belonged to.

50 days after the start of the experiment, plant height was measured for all plants. A measuring tape was used to record the length of the plant from ground level to the top of the tallest leaf.

In your results section, you should report the results of any statistical analysis procedures that you undertook. You should clearly state how the results of statistical tests support or refute your initial hypotheses.

The main results to report include:

  • any descriptive statistics
  • statistical test results
  • the significance of the test results
  • estimates of standard error or confidence intervals

The mean heights of the plants in the control group, low nitrogen group, and high nitrogen groups were 20.3, 25.1, and 29.6 cm respectively. A one-way ANOVA was applied to calculate the effect of nitrogen fertilizer level on plant height. The results demonstrated statistically significant ( p = .03) height differences between groups.

Next, post-hoc tests were performed to assess the primary and secondary hypotheses. In support of the primary hypothesis, the high nitrogen group plants were significantly taller than the low nitrogen group and the control group plants. Similarly, the results supported the secondary hypothesis: the low nitrogen plants were taller than the control group plants.

These results can be reported in the text or in tables and figures. Use text for highlighting a few key results, but present large sets of numbers in tables, or show relationships between variables with graphs.

You should also include sample calculations in the Results section for complex experiments. For each sample calculation, provide a brief description of what it does and use clear symbols. Present your raw data in the Appendices section and refer to it to highlight any outliers or trends.

The Discussion section will help demonstrate your understanding of the experimental process and your critical thinking skills.

In this section, you can:

  • Interpret your results
  • Compare your findings with your expectations
  • Identify any sources of experimental error
  • Explain any unexpected results
  • Suggest possible improvements for further studies

Interpreting your results involves clarifying how your results help you answer your main research question. Report whether your results support your hypotheses.

  • Did you measure what you sought out to measure?
  • Were your analysis procedures appropriate for this type of data?

Compare your findings with other research and explain any key differences in findings.

  • Are your results in line with those from previous studies or your classmates’ results? Why or why not?

An effective Discussion section will also highlight the strengths and limitations of a study.

  • Did you have high internal validity or reliability?
  • How did you establish these aspects of your study?

When describing limitations, use specific examples. For example, if random error contributed substantially to the measurements in your study, state the particular sources of error (e.g., imprecise apparatus) and explain ways to improve them.

The results support the hypothesis that nitrogen levels affect plant height, with increasing levels producing taller plants. These statistically significant results are taken together with previous research to support the importance of nitrogen as a nutrient for tomato plant growth.

However, unlike previous studies, this study focused on plant height as an indicator of plant growth in the present experiment. Importantly, plant height may not always reflect plant health or fruit yield, so measuring other indicators would have strengthened the study findings.

Another limitation of the study is the plant height measurement technique, as the measuring tape was not suitable for plants with extreme curvature. Future studies may focus on measuring plant height in different ways.

The main strengths of this study were the controls for extraneous variables, such as pH and carbon levels of the soil. All other factors that could affect plant height were tightly controlled to isolate the effects of nitrogen levels, resulting in high internal validity for this study.

Your conclusion should be the final section of your lab report. Here, you’ll summarize the findings of your experiment, with a brief overview of the strengths and limitations, and implications of your study for further research.

Some lab reports may omit a Conclusion section because it overlaps with the Discussion section, but you should check with your instructor before doing so.

If you want to know more about AI for academic writing, AI tools, or fallacies make sure to check out some of our other articles with explanations and examples or go directly to our tools!

  • Ad hominem fallacy
  • Post hoc fallacy
  • Appeal to authority fallacy
  • False cause fallacy
  • Sunk cost fallacy
  • Deep learning
  • Generative AI
  • Machine learning
  • Reinforcement learning
  • Supervised vs. unsupervised learning

 (AI) Tools

  • Grammar Checker
  • Paraphrasing Tool
  • Text Summarizer
  • AI Detector
  • Plagiarism Checker
  • Citation Generator

A lab report conveys the aim, methods, results, and conclusions of a scientific experiment . Lab reports are commonly assigned in science, technology, engineering, and mathematics (STEM) fields.

The purpose of a lab report is to demonstrate your understanding of the scientific method with a hands-on lab experiment. Course instructors will often provide you with an experimental design and procedure. Your task is to write up how you actually performed the experiment and evaluate the outcome.

In contrast, a research paper requires you to independently develop an original argument. It involves more in-depth research and interpretation of sources and data.

A lab report is usually shorter than a research paper.

The sections of a lab report can vary between scientific fields and course requirements, but it usually contains the following:

  • Abstract: summarizes your research aims, methods, results, and conclusions
  • References: list of all sources cited using a specific style (e.g. APA)
  • Appendices: contains lengthy materials, procedures, tables or figures

The results chapter or section simply and objectively reports what you found, without speculating on why you found these results. The discussion interprets the meaning of the results, puts them in context, and explains why they matter.

In qualitative research , results and discussion are sometimes combined. But in quantitative research , it’s considered important to separate the objective results from your interpretation of them.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, July 23). How To Write A Lab Report | Step-by-Step Guide & Examples. Scribbr. Retrieved June 7, 2024, from https://www.scribbr.com/academic-writing/lab-report/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, how to write an apa methods section, how to write an apa results section, what is your plagiarism score.

Lab Report Format: Step-by-Step Guide & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In psychology, a lab report outlines a study’s objectives, methods, results, discussion, and conclusions, ensuring clarity and adherence to APA (or relevant) formatting guidelines.

A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion.

The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

The report should have a thread of arguments linking the prediction in the introduction to the content of the discussion.

This must indicate what the study is about. It must include the variables under investigation. It should not be written as a question.

Title pages should be formatted in APA style .

The abstract provides a concise and comprehensive summary of a research report. Your style should be brief but not use note form. Look at examples in journal articles . It should aim to explain very briefly (about 150 words) the following:

  • Start with a one/two sentence summary, providing the aim and rationale for the study.
  • Describe participants and setting: who, when, where, how many, and what groups?
  • Describe the method: what design, what experimental treatment, what questionnaires, surveys, or tests were used.
  • Describe the major findings, including a mention of the statistics used and the significance levels, or simply one sentence summing up the outcome.
  • The final sentence(s) outline the study’s “contribution to knowledge” within the literature. What does it all mean? Mention the implications of your findings if appropriate.

The abstract comes at the beginning of your report but is written at the end (as it summarises information from all the other sections of the report).

Introduction

The purpose of the introduction is to explain where your hypothesis comes from (i.e., it should provide a rationale for your research study).

Ideally, the introduction should have a funnel structure: Start broad and then become more specific. The aims should not appear out of thin air; the preceding review of psychological literature should lead logically into the aims and hypotheses.

The funnel structure of the introducion to a lab report

  • Start with general theory, briefly introducing the topic. Define the important key terms.
  • Explain the theoretical framework.
  • Summarise and synthesize previous studies – What was the purpose? Who were the participants? What did they do? What did they find? What do these results mean? How do the results relate to the theoretical framework?
  • Rationale: How does the current study address a gap in the literature? Perhaps it overcomes a limitation of previous research.
  • Aims and hypothesis. Write a paragraph explaining what you plan to investigate and make a clear and concise prediction regarding the results you expect to find.

There should be a logical progression of ideas that aids the flow of the report. This means the studies outlined should lead logically to your aims and hypotheses.

Do be concise and selective, and avoid the temptation to include anything in case it is relevant (i.e., don’t write a shopping list of studies).

USE THE FOLLOWING SUBHEADINGS:

Participants

  • How many participants were recruited?
  • Say how you obtained your sample (e.g., opportunity sample).
  • Give relevant demographic details (e.g., gender, ethnicity, age range, mean age, and standard deviation).
  • State the experimental design .
  • What were the independent and dependent variables ? Make sure the independent variable is labeled and name the different conditions/levels.
  • For example, if gender is the independent variable label, then male and female are the levels/conditions/groups.
  • How were the IV and DV operationalized?
  • Identify any controls used, e.g., counterbalancing and control of extraneous variables.
  • List all the materials and measures (e.g., what was the title of the questionnaire? Was it adapted from a study?).
  • You do not need to include wholesale replication of materials – instead, include a ‘sensible’ (illustrate) level of detail. For example, give examples of questionnaire items.
  • Include the reliability (e.g., alpha values) for the measure(s).
  • Describe the precise procedure you followed when conducting your research, i.e., exactly what you did.
  • Describe in sufficient detail to allow for replication of findings.
  • Be concise in your description and omit extraneous/trivial details, e.g., you don’t need to include details regarding instructions, debrief, record sheets, etc.
  • Assume the reader has no knowledge of what you did and ensure that he/she can replicate (i.e., copy) your study exactly by what you write in this section.
  • Write in the past tense.
  • Don’t justify or explain in the Method (e.g., why you chose a particular sampling method); just report what you did.
  • Only give enough detail for someone to replicate the experiment – be concise in your writing.
  • The results section of a paper usually presents descriptive statistics followed by inferential statistics.
  • Report the means, standard deviations, and 95% confidence intervals (CIs) for each IV level. If you have four to 20 numbers to present, a well-presented table is best, APA style.
  • Name the statistical test being used.
  • Report appropriate statistics (e.g., t-scores, p values ).
  • Report the magnitude (e.g., are the results significant or not?) as well as the direction of the results (e.g., which group performed better?).
  • It is optional to report the effect size (this does not appear on the SPSS output).
  • Avoid interpreting the results (save this for the discussion).
  • Make sure the results are presented clearly and concisely. A table can be used to display descriptive statistics if this makes the data easier to understand.
  • DO NOT include any raw data.
  • Follow APA style.

Use APA Style

  • Numbers reported to 2 d.p. (incl. 0 before the decimal if 1.00, e.g., “0.51”). The exceptions to this rule: Numbers which can never exceed 1.0 (e.g., p -values, r-values): report to 3 d.p. and do not include 0 before the decimal place, e.g., “.001”.
  • Percentages and degrees of freedom: report as whole numbers.
  • Statistical symbols that are not Greek letters should be italicized (e.g., M , SD , t , X 2 , F , p , d ).
  • Include spaces on either side of the equals sign.
  • When reporting 95%, CIs (confidence intervals), upper and lower limits are given inside square brackets, e.g., “95% CI [73.37, 102.23]”
  • Outline your findings in plain English (avoid statistical jargon) and relate your results to your hypothesis, e.g., is it supported or rejected?
  • Compare your results to background materials from the introduction section. Are your results similar or different? Discuss why/why not.
  • How confident can we be in the results? Acknowledge limitations, but only if they can explain the result obtained. If the study has found a reliable effect, be very careful suggesting limitations as you are doubting your results. Unless you can think of any c onfounding variable that can explain the results instead of the IV, it would be advisable to leave the section out.
  • Suggest constructive ways to improve your study if appropriate.
  • What are the implications of your findings? Say what your findings mean for how people behave in the real world.
  • Suggest an idea for further research triggered by your study, something in the same area but not simply an improved version of yours. Perhaps you could base this on a limitation of your study.
  • Concluding paragraph – Finish with a statement of your findings and the key points of the discussion (e.g., interpretation and implications) in no more than 3 or 4 sentences.

Reference Page

The reference section lists all the sources cited in the essay (alphabetically). It is not a bibliography (a list of the books you used).

In simple terms, every time you refer to a psychologist’s name (and date), you need to reference the original source of information.

If you have been using textbooks this is easy as the references are usually at the back of the book and you can just copy them down. If you have been using websites then you may have a problem as they might not provide a reference section for you to copy.

References need to be set out APA style :

Author, A. A. (year). Title of work . Location: Publisher.

Journal Articles

Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers

A simple way to write your reference section is to use Google scholar . Just type the name and date of the psychologist in the search box and click on the “cite” link.

google scholar search results

Next, copy and paste the APA reference into the reference section of your essay.

apa reference

Once again, remember that references need to be in alphabetical order according to surname.

Psychology Lab Report Example

Quantitative paper template.

Quantitative professional paper template: Adapted from “Fake News, Fast and Slow: Deliberation Reduces Belief in False (but Not True) News Headlines,” by B. Bago, D. G. Rand, and G. Pennycook, 2020,  Journal of Experimental Psychology: General ,  149 (8), pp. 1608–1613 ( https://doi.org/10.1037/xge0000729 ). Copyright 2020 by the American Psychological Association.

Qualitative paper template

Qualitative professional paper template: Adapted from “‘My Smartphone Is an Extension of Myself’: A Holistic Qualitative Exploration of the Impact of Using a Smartphone,” by L. J. Harkin and D. Kuss, 2020,  Psychology of Popular Media ,  10 (1), pp. 28–38 ( https://doi.org/10.1037/ppm0000278 ). Copyright 2020 by the American Psychological Association.

Print Friendly, PDF & Email

Related Articles

How To Cite A YouTube Video In APA Style – With Examples

Student Resources

How To Cite A YouTube Video In APA Style – With Examples

How to Write an Abstract APA Format

How to Write an Abstract APA Format

APA References Page Formatting and Example

APA References Page Formatting and Example

APA Title Page (Cover Page) Format, Example, & Templates

APA Title Page (Cover Page) Format, Example, & Templates

How do I Cite a Source with Multiple Authors in APA Style?

How do I Cite a Source with Multiple Authors in APA Style?

How to Write a Psychology Essay

How to Write a Psychology Essay

Home

  • Peterborough

an student standing in front of a blackboard full of physics and Math formulas.

Writing Lab Reports: Discussion

Keys to the discussion .

Purpose : Why do we care? Relative size : 40-45% of total Scope : Narrow to broad: the bottom of the hourglass Verb Tense : Use the past tense to refer to results from your experiment or from other studies (e.g., the results supported my hypothesis that). Use the present to suggest implication of your study (e.g., these results suggest that...). Use the future or conditional to suggest what you will study in the future (e.g., future studies should investigate...)

The discussion offers an analysis of the experiment.

The purpose of the discussion section is to provide a brief summary of your results, relate them to your hypotheses, and put them into context within the field of research. This is the most substantial section of your report, and where you will include your unique interpretations and ideas. The discussion must therefore address the following essential questions: 

  • Did find what you expected to?
  • How do your findings compare to those of previous studies?
  • What are the implications of your findings?
  • What should be studied next?

Remember that this section forms the bottom of the hourglass – it should mirror the introduction by first focusing on your hypotheses and interpretation of results, and then gradually expanding to make comparisons with previous research, to provide implications of your study and to pose questions for future work – and completes the cycle of the scientific method.

Discussion Section Details

Support or reject hypotheses : Begin by stating whether your results supported your hypotheses or not; remember not to say that you proved anything – you can only support or reject hypotheses. You may also briefly summarize your results.

Interpret and compare results : Do your results make sense? Why do you think you found what you did? Compare your results to those of other studies. Do they differ? If so, how and why? Use literature to support your arguments, statements, and generalizations.

Discuss factors influencing results : Were there any anomalies in your data? Discuss any errors, inconsistencies, assumptions, or other factors that may have influenced the outcome of your study. If you were to repeat your study, would you do anything differently?

Discuss implications : How do your results contribute to existing research? Why was your study important?

Propose ideas for future research : Did your research generate questions for future research? What are the next steps in this field of study?

A good discussion section should…

  • Mirror the introduction in structure and scope
  • Support or reject your hypotheses
  • Explain how your results compare with existing research
  • Discuss any issues with your study
  • Propose questions for future research

A good discussion section should NOT…

  • Repeat detailed results
  • Refer to tables, figures, or appendices
  • State that anything was “proven”
  • Extrapolate beyond the scope of the paper

Back to Writing Lab Reports

FTLOScience

Complete Guide to Writing a Lab Report (With Example)

Students tend to approach writing lab reports with confusion and dread. Whether in high school science classes or undergraduate laboratories, experiments are always fun and games until the times comes to submit a lab report. What if we didn’t need to spend hours agonizing over this piece of scientific writing? Our lives would be so much easier if we were told what information to include, what to do with all their data and how to use references. Well, here’s a guide to all the core components in a well-written lab report, complete with an example.

Things to Include in a Laboratory Report

The laboratory report is simply a way to show that you understand the link between theory and practice while communicating through clear and concise writing. As with all forms of writing, it’s not the report’s length that matters, but the quality of the information conveyed within. This article outlines the important bits that go into writing a lab report (title, abstract, introduction, method, results, discussion, conclusion, reference). At the end is an example report of reducing sugar analysis with Benedict’s reagent.

The report’s title should be short but descriptive, indicating the qualitative or quantitative nature of the practical along with the primary goal or area of focus.

Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice .

Introduction

The introduction provides context to the experiment in a couple of paragraphs and relevant diagrams. While a short preamble outlining the history of the techniques or materials used in the practical is appropriate, the bulk of the introduction should outline the experiment’s goals, creating a logical flow to the next section.

Some reports require you to write down the materials used, which can be combined with this section. The example below does not include a list of materials used. If unclear, it is best to check with your teacher or demonstrator before writing your lab report from scratch.

Step-by-step methods are usually provided in high school and undergraduate laboratory practicals, so it’s just a matter of paraphrasing them. This is usually the section that teachers and demonstrators care the least about. Any unexpected changes to the experimental setup or techniques can also be documented here.

The results section should include the raw data that has been collected in the experiment as well as calculations that are performed. It is usually appropriate to include diagrams; depending on the experiment, these can range from scatter plots to chromatograms.

The discussion is the most critical part of the lab report as it is a chance for you to show that you have a deep understanding of the practical and the theory behind it. Teachers and lecturers tend to give this section the most weightage when marking the report. It would help if you used the discussion section to address several points:

  • Explain the results gathered. Is there a particular trend? Do the results support the theory behind the experiment?
  • Highlight any unexpected results or outlying data points. What are possible sources of error?
  • Address the weaknesses of the experiment. Refer to the materials and methods used to identify improvements that would yield better results (more accurate equipment, better experimental technique, etc.)  

Finally, a short paragraph to conclude the laboratory report. It should summarize the findings and provide an objective review of the experiment.

If any external sources were used in writing the lab report, they should go here. Referencing is critical in scientific writing; it’s like giving a shout out (known as a citation) to the original provider of the information. It is good practice to have at least one source referenced, either from researching the context behind the experiment, best practices for the method used or similar industry standards.

Google Scholar is a good resource for quickly gathering references of a specific style . Searching for the article in the search bar and clicking on the ‘cite’ button opens a pop-up that allows you to copy and paste from several common referencing styles.

referencing styles from google scholar

Example: Writing a Lab Report

Title : Semi-Quantitative Analysis of Food Products using Benedict’s Reagent

Abstract : Food products (milk, chicken, bread, orange juice) were solubilized and tested for reducing sugars using Benedict’s reagent. Milk contained the highest level of reducing sugars at ~2%, while chicken contained almost no reducing sugars.

Introduction : Sugar detection has been of interest for over 100 years, with the first test for glucose using copper sulfate developed by German chemist Karl Trommer in 1841. It was used to test the urine of diabetics, where sugar was present in high amounts. However, it wasn’t until 1907 when the method was perfected by Stanley Benedict, using sodium citrate and sodium carbonate to stabilize the copper sulfate in solution. Benedict’s reagent is a bright blue because of the copper sulfate, turning green and then red as the concentration of reducing sugars increases.

Benedict’s reagent was used in this experiment to compare the amount of reducing sugars between four food items: milk, chicken solution, bread and orange juice. Following this, standardized glucose solutions (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) were tested with Benedict’s reagent to determine the color produced at those sugar levels, allowing us to perform a semi-quantitative analysis of the food items.

Method : Benedict’s reagent was prepared by mixing 1.73 g of copper (II) sulfate pentahydrate, 17.30 g of sodium citrate pentahydrate and 10.00 g of sodium carbonate anhydrous. The mixture was dissolved with stirring and made up to 100 ml using distilled water before filtration using filter paper and a funnel to remove any impurities.

4 ml of milk, chicken solution and orange juice (commercially available) were measured in test tubes, along with 4 ml of bread solution. The bread solution was prepared using 4 g of dried bread ground with mortar and pestle before diluting with distilled water up to 4 ml. Then, 4 ml of Benedict’s reagent was added to each test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Next, glucose solutions were prepared by dissolving 0.5 g, 1.0 g, 1.5 g and 2.0 g of glucose in 100 ml of distilled water to produce 0.5%, 1.0%, 1.5% and 2.0% solutions, respectively. 4 ml of each solution was added to 4 ml of Benedict’s reagent in a test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Results : Food Solutions (4 ml) with Benedict’s Reagent (4 ml)

Food SolutionsColor Observed
MilkRed
Chicken SolutionBlue
BreadGreen
Orange JuiceOrange

Glucose Solutions (4 ml) with Benedict’s Reagent (4 ml)

Glucose SolutionsColor Observed
0.0% (Control)Blue
0.5%Green
1.0%Dark Green
1.5%Orange
2.0%Red

Semi-Quantitative Analysis from Data

Food SolutionsSugar Levels
Milk2.0%
Chicken Solution0.0%
Bread0.5%
Orange Juice1.5%

Discussion : From the analysis of food solutions along with the glucose solutions of known concentrations, the semi-quantitative analysis of sugar levels in different food products was performed. Milk had the highest sugar content of 2%, with orange juice at 1.5%, bread at 0.5% and chicken with 0% sugar. These values were approximated; the standard solutions were not the exact color of the food solutions, but the closest color match was chosen.

One point of contention was using the orange juice solution, which conferred color to the starting solution, rendering it green before the reaction started. This could have led to the final color (and hence, sugar quantity) being inaccurate. Also, since comparing colors using eyesight alone is inaccurate, the experiment could be improved with a colorimeter that can accurately determine the exact wavelength of light absorbed by the solution.

Another downside of Benedict’s reagent is its inability to react with non-reducing sugars. Reducing sugars encompass all sugar types that can be oxidized from aldehydes or ketones into carboxylic acids. This means that all monosaccharides (glucose, fructose, etc.) are reducing sugars, while only select polysaccharides are. Disaccharides like sucrose and trehalose cannot be oxidized, hence are non-reducing and will not react with Benedict’s reagent. Furthermore, Benedict’s reagent cannot distinguish between different types of reducing sugars.

Conclusion : Using Benedict’s reagent, different food products were analyzed semi-quantitatively for their levels of reducing sugars. Milk contained around 2% sugar, while the chicken solution had no sugar. Overall, the experiment was a success, although the accuracy of the results could have been improved with the use of quantitative equipment and methods.

Reference :

  • Raza, S. I., Raza, S. A., Kazmi, M., Khan, S., & Hussain, I. (2021). 100 Years of Glucose Monitoring in Diabetes Management.  Journal of Diabetes Mellitus ,  11 (5), 221-233.
  • Benedict, Stanley R (1909). A Reagent for the Detection of Reducing Sugars.  Journal of Biological Chemistry ,  5 , 485-487.

Using this guide and example, writing a lab report should be a hassle-free, perhaps even enjoyable process!

About the Author

sean author

Sean is a consultant for clients in the pharmaceutical industry and is an associate lecturer at La Trobe University, where unfortunate undergrads are subject to his ramblings on chemistry and pharmacology.

You Might Also Like…

rate constant for two compartment drugs ftloscience post

How to Calculate the Rate Constant for Two-Compartment Model Drugs

Superbugs 1 humankind 0 – pharma giants abandoning antibiotics r&d.

patreon ftloscience

If our content has been helpful to you, please consider supporting our independent science publishing efforts: for just $1 a month.

© 2023 FTLOScience • All Rights Reserved

Writing Studio

Writing a lab report: introduction and discussion section guide.

In an effort to make our handouts more accessible, we have begun converting our PDF handouts to web pages. Download this page as a PDF:   Writing a Lab Report Return to Writing Studio Handouts

Part 1 (of 2): Introducing a Lab Report

The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences). Provide background theory, previous research, or formulas the reader should know. Usually, an instructor does not want you to repeat whatever the lab manual says, but to show your understanding of the problem.

Questions an Effective Lab Report Introduction Should Answer

What is the problem.

Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so that your reader can understand the experiment.

Why is it important?

Review relevant research to provide a rationale for the investigation. What conflict, unanswered question, untested population, or untried method in existing research does your experiment address? How will you challenge or extend the findings of other researchers?

What solution (or step toward a solution) do you propose?

Briefly describe your experiment : hypothesis , research question , general experimental design or method , and a justification of your method (if alternatives exist).

Tips on Composing Your Lab Report’s Introduction

  • Move from the general to the specific – from a problem in research literature to the specifics of your experiment.
  • Engage your reader – answer the questions: “What did I do?” “Why should my reader care?”
  • Clarify the links between problem and solution, between question asked and research design, and between prior research and the specifics of your experiment.
  • Be selective, not exhaustive, in choosing studies to cite and the amount of detail to include. In general, the more relevant an article is to your study, the more space it deserves and the later in the introduction it appears.
  • Ask your instructor whether or not you should summarize results and/or conclusions in the Introduction.
  • “The objective of the experiment was …”
  • “The purpose of this report is …”
  • “Bragg’s Law for diffraction is …”
  • “The scanning electron microscope produces micrographs …”

Part 2 (of 2): Writing the “Discussion” Section of a Lab Report

The discussion is the most important part of your lab report, because here you show that you have not merely completed the experiment, but that you also understand its wider implications. The discussion section is reserved for putting experimental results in the context of the larger theory. Ask yourself: “What is the significance or meaning of the results?”

Elements of an Effective Discussion Section

What do the results indicate clearly? Based on your results, explain what you know with certainty and draw conclusions.

Interpretation

What is the significance of your results? What ambiguities exist? What are logical explanations for problems in the data? What questions might you raise about the methods used or the validity of the experiment? What can be logically deduced from your analysis?

Tips on the Discussion Section

1. explain your results in terms of theoretical issues..

How well has the theory been illustrated? What are the theoretical implications and practical applications of your results?

For each major result:

  • Describe the patterns, principles, and relationships that your results show.
  • Explain how your results relate to expectations and to literature cited in your Introduction. Explain any agreements, contradictions, or exceptions.
  • Describe what additional research might resolve contradictions or explain exceptions.

2. Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, be sure that you have identified the metal and its attributes.

3. Compare expected results with those obtained.

If there were differences, how can you account for them? Were the instruments able to measure precisely? Was the sample contaminated? Did calculated values take account of friction?

4. Analyze experimental error along with the strengths and limitations of the experiment’s design.

Were any errors avoidable? Were they the result of equipment?  If the flaws resulted from the experiment design, explain how the design might be improved. Consider, as well, the precision of the instruments that were used.

5. Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not in order to change your answer, but in order to look for and to account for or analyze any anomalies between the groups. Also, consider comparing your results to published scientific literature on the topic.

The “Introducing a Lab Report” guide was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

The “Writing the Discussion Section of a Lab Report” resource was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

Last revised: 07/2008 | Adapted for web delivery: 02/2021

In order to access certain content on this page, you may need to download Adobe Acrobat Reader or an equivalent PDF viewer software.

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Lab Report Format – How to Write a Laboratory Report

A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions.

A science laboratory experiment isn’t truly complete until you’ve written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn’t the same as a lab report. The lab report format is designed to present experimental results so they can be shared with others. A well-written report explains what you did, why you did it, and what you learned. It should also generate reader interest, potentially leading to peer-reviewed publication and funding.

Sections of a Lab Report

There is no one lab report format. The format and sections might be specified by your instructor or employer. What really matters is covering all of the important information.

Label the sections (except the title). Use bold face type for the title and headings. The order is:

You may or may not be expected to provide a title page. If it is required, the title page includes the title of the experiment, the names of the researchers, the name of the institution, and the date.

The title describes the experiment. Don’t start it with an article (e.g., the, an, a) because it messes up databases and isn’t necessary. For example, a good title might be, “Effect of Increasing Glucose Concentration on Danio rerio Egg Hatching Rates.” Use title case and italicize the scientific names of any species.

Introduction

Sometimes the introduction is broken into separate sections. Otherwise, it’s written as a narrative that includes the following information:

  • State the purpose of the experiment.
  • State the hypothesis.
  • Review earlier work on the subject. Refer to previous studies. Cover the background so a reader understands what is known about a subject and what you hope to learn that is new.
  • Describe your approach to answering a question or solving a problem. Include a theory or equation, if appropriate.

This section describes experimental design. Identify the parameter you changed ( independent variable ) and the one you measured ( dependent variable ). Describe the equipment and set-up you used, materials, and methods. If a reader can’t picture the apparatus from your description, include a photograph or diagram. Sometimes this section is broken into “Materials” and “Methods.”

Your lab notebook contains all of the data you collected in the experiment. You aren’t expected to reproduce all of this in a lab report. Instead, provide labelled tables and graphs. The first figure is Figure 1, the second is Figure 2, etc. The first graph is Graph 1. Refer to figures and graphs by their figure number. For some experiments, you may need to include labelled photographs. Cite the results of any calculations you performed, such as slope and standard deviation. Discuss sources of error here, including instrument, standard, and random errors.

Discussion or Conclusions

While the “Results” section includes graphs and tables, the “Discussion” or “Conclusions” section focuses on what the results mean. This is where you state whether or not the objective of the experiment was met and what the outcome means.  Propose reasons for discrepancies between expected and actual outcomes. Finally, describe the next logical step in your research and ways you might improve on the experiment.

References or Bibliography

Did you build upon work conducted by someone else? Cite the work. Did you consult a paper relating to the experiment? Credit the author. If you’re unsure whether to cite a reference or not, a good rule of thumb is to include a reference for any fact not known to your audience. For some reports, it’s only necessary to list publications directly relating to your procedure and conclusions.

The Tone of a Lab Report

Lab reports should be informative, not entertaining. This isn’t the place for humor, sarcasm, or flowery prose. A lab report should be:

  • Concise : Cover all the key points without getting crazy with the details.
  • Objective : In the “Conclusions” section, you can propose possible explanations for your results. Otherwise, keep your opinions out of the report. Instead, present facts and an analysis based on logic and math.
  • Critical : After presenting what you did, the report focuses on what the data means. Be on the lookout for sources of error and identify them. Use your understanding of error to determine how reliable your results are and gauge confidence in your conclusions.

Related Posts

Banner

Laboratory Reports

  • Lab Report Style
  • Introduction
  • Materials and Methods

Discussion or Conclusion

  • APA Style / Academic Writer This link opens in a new window
  • Additional Resources

Once you've discussed the most important findings of your study in the Results section, you will use the Discussion section to interpret those findings and talk about why they are important (some instructors call this the "Conclusion" section). You might want to talk about how your results agree, or disagree, with the results from similar studies. Here you can also mention areas ways you could have improved your study or further research to be done on the topic. Do not just restate your results - talk about why they are significant and important.

how to write results and discussion in a lab report

Learn how to write a Discussion section, including how to report support for hypotheses, provide research context, discuss the strengths and limitations of the study with regard to internal and external validity, address the importance of the study, and provide directions for future research.

Academic Writer

© 2021 American Psychological Association.

how to write results and discussion in a lab report

Analyzing Data and Drawing Conclusions

Learn how to conduct the final phase of the research process, including how to analyze, interpret, and present data; discuss findings; and draw conclusions. This is the eighth lesson in the Introduction to Research series.

  • << Previous: Results
  • Next: APA Style / Academic Writer >>
  • Last Updated: May 17, 2022 10:16 AM
  • URL: https://goodwin.libguides.com/labreportwriting

Banner

  • Phoenix College

Lab Report Writing

  • Lab Report Style
  • Lab Report Format
  • Introduction
  • Materials and Methods

Results Section

Figures and tables, test yourself (figure title).

  • Discussion/Conclusion

You've given an introduction to the topic you studied and you've told the reader how you did your study, so you can finally start talking about the results of all your hard work! Use the Results section to summarize the findings of your study. The text of this section should focus on the major trends in the data you collected. The details can be summarized in tables and/or graphs that will accompany the text. In this section, just tell the reader the facts. Don't try to interpret the data or talk about why they are important. Save your interpretations for the Discussion/Conclusion section.

One of the best ways to represent the results of your study is by using graphs and tables (in lab reports, graphs and other images are usually known as "figures"). This is because they are easy to read and convey a lot of information to the reader in an efficient way. Here are some of the things to keep in mind when including tables and figures in your lab report:

  • Tables and figures should be self-explanatory and should include enough information to be able to "stand alone" without reading the entire paper
  • All columns in the tables and all axes on graphs should be clearly labeled, including units of measurement (cm, °C, etc.)
  • All tables and figures should be given a number and should include a caption that explains what they are trying to convey. For example, in a paper on the effects of increased phosphorus on oxygen content of pond water, you might include a graph with this caption: "Figure 1. Oxygen concentration of pond water is determined by phosphorus content."

Any time you include a figure or table, you must mention it in the text, usually in the Results section. There are two ways to cite your figure or table in the text:

  • Mention the figure directly in the text, like this: "Figure 1 shows the impact of phosphorus enrichment on pond water oxygen concentration."
  • Add a citation in parentheses at the end of a sentence, like this: "Oxygen concentration of the pond water decreased with an increase in phosphorus (Fig. 1)." In this case, Figure is abbreviated to Fig., but you would not need to abbreviate the word Table.

The following figure is from the bone fracture paper, showing how many men sustained bone fractures during the course of the study. Note how both axes are labeled, and there is a proper title underneath.

how to write results and discussion in a lab report

Figure 1. Cumulative Number of Hip Fractures and Fractures of any Type after Study Entry at Age 50 y and during Follow-up

Now compare the graph above to the table below.  Notice how the table is arranged into rows and columns and is only composed of text.

 

 

 

 

 

High

47

28.542

1.0

200

26.877

1.0

Medium

63

25.141

1.65

200

23.544

1.18

Low

24

7.217

2.65

73

6.729

1.57

Table 2. Hazard Ratios (HRs) of Hip Fractures and any Type of Fracture Associated with Time-Dependent Physical Activity Level in Leisure Time

Imagine you did an experiment in which you taught tricks to a group of dogs.  Which of the following is the best example of a title for a graph in your lab report based on this experiment?

a. Average number of tricks performed by dogs after 3 weeks of training b. Figure 1. Number of tricks c. Figure 1. Average number of tricks performed by dogs after 3 weeks of training d. Table 1. Average number of tricks performed by dogs after 3 weeks of training

C A graph should be labeled as a Figure, not a Table. The title of the figure should include enough detail that the image could "stand alone" without having to read too much of the paper.

Click on the question, to see the answer.

  • << Previous: Materials and Methods
  • Next: Discussion/Conclusion >>
  • Last Updated: Jan 13, 2022 10:50 AM
  • URL: https://phoenixcollege.libguides.com/LabReportWriting

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Discussions and Conclusions

How to Write Discussions and Conclusions

The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.

What makes an effective discussion?

When you’re ready to write your discussion, you’ve already introduced the purpose of your study and provided an in-depth description of the methodology. The discussion informs readers about the larger implications of your study based on the results. Highlighting these implications while not overstating the findings can be challenging, especially when you’re submitting to a journal that selects articles based on novelty or potential impact. Regardless of what journal you are submitting to, the discussion section always serves the same purpose: concluding what your study results actually mean.

A successful discussion section puts your findings in context. It should include:

  • the results of your research,
  • a discussion of related research, and
  • a comparison between your results and initial hypothesis.

Tip: Not all journals share the same naming conventions.

You can apply the advice in this article to the conclusion, results or discussion sections of your manuscript.

Our Early Career Researcher community tells us that the conclusion is often considered the most difficult aspect of a manuscript to write. To help, this guide provides questions to ask yourself, a basic structure to model your discussion off of and examples from published manuscripts. 

how to write results and discussion in a lab report

Questions to ask yourself:

  • Was my hypothesis correct?
  • If my hypothesis is partially correct or entirely different, what can be learned from the results? 
  • How do the conclusions reshape or add onto the existing knowledge in the field? What does previous research say about the topic? 
  • Why are the results important or relevant to your audience? Do they add further evidence to a scientific consensus or disprove prior studies? 
  • How can future research build on these observations? What are the key experiments that must be done? 
  • What is the “take-home” message you want your reader to leave with?

How to structure a discussion

Trying to fit a complete discussion into a single paragraph can add unnecessary stress to the writing process. If possible, you’ll want to give yourself two or three paragraphs to give the reader a comprehensive understanding of your study as a whole. Here’s one way to structure an effective discussion:

how to write results and discussion in a lab report

Writing Tips

While the above sections can help you brainstorm and structure your discussion, there are many common mistakes that writers revert to when having difficulties with their paper. Writing a discussion can be a delicate balance between summarizing your results, providing proper context for your research and avoiding introducing new information. Remember that your paper should be both confident and honest about the results! 

What to do

  • Read the journal’s guidelines on the discussion and conclusion sections. If possible, learn about the guidelines before writing the discussion to ensure you’re writing to meet their expectations. 
  • Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. 
  • Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and limitations of the research. 
  • State whether the results prove or disprove your hypothesis. If your hypothesis was disproved, what might be the reasons? 
  • Introduce new or expanded ways to think about the research question. Indicate what next steps can be taken to further pursue any unresolved questions. 
  • If dealing with a contemporary or ongoing problem, such as climate change, discuss possible consequences if the problem is avoided. 
  • Be concise. Adding unnecessary detail can distract from the main findings. 

What not to do

Don’t

  • Rewrite your abstract. Statements with “we investigated” or “we studied” generally do not belong in the discussion. 
  • Include new arguments or evidence not previously discussed. Necessary information and evidence should be introduced in the main body of the paper. 
  • Apologize. Even if your research contains significant limitations, don’t undermine your authority by including statements that doubt your methodology or execution. 
  • Shy away from speaking on limitations or negative results. Including limitations and negative results will give readers a complete understanding of the presented research. Potential limitations include sources of potential bias, threats to internal or external validity, barriers to implementing an intervention and other issues inherent to the study design. 
  • Overstate the importance of your findings. Making grand statements about how a study will fully resolve large questions can lead readers to doubt the success of the research. 

Snippets of Effective Discussions:

Consumer-based actions to reduce plastic pollution in rivers: A multi-criteria decision analysis approach

Identifying reliable indicators of fitness in polar bears

  • How to Write a Great Title
  • How to Write an Abstract
  • How to Write Your Methods
  • How to Report Statistics
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Mar 8, 2024 2:26 PM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

How to Write a Lab Report – with Example/Template

April 11, 2024

Perhaps you’re in the midst of your challenging AP chemistry class in high school, or perhaps college you’re enrolled in biology , chemistry , or physics at university. At some point, you will likely be asked to write a lab report. Sometimes, your teacher or professor will give you specific instructions for how to format and write your lab report, and if so, use that. In case you’re left to your own devices, here are some guidelines you might find useful. Continue reading for the main elements of a lab report, followed by a detailed description of the more writing-heavy parts (with a lab report example/lab report template). Lastly, we’ve included an outline that can help get you started.

What is a lab report?

A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

Title : The title says, in the most straightforward way possible, what you did in the experiment. Often, the title looks something like, “Effects of ____ on _____.” Sometimes, a lab report also requires a title page, which includes your name (and the names of any lab partners), your instructor’s name, and the date of the experiment.

Abstract : This is a short description of key findings of the experiment so that a potential reader could get an idea of the experiment before even beginning.

Introduction : This is comprised of one or several paragraphs summarizing the purpose of the lab. The introduction usually includes the hypothesis, as well as some background information.

Lab Report Example (Continued)

Materials : Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment.

Methods : This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study. In paragraph form, write out your methods in chronological order, though avoid excessive detail.

Data : Here, you should document what happened in the experiment, step-by-step. This section often includes graphs and tables with data, as well as descriptions of patterns and trends. You do not need to interpret all of the data in this section, but you can describe trends or patterns, and state which findings are interesting and/or significant.

Discussion of results : This is the overview of your findings from the experiment, with an explanation of how they pertain to your hypothesis, as well as any anomalies or errors.

Conclusion : Your conclusion will sum up the results of your experiment, as well as their significance. Sometimes, conclusions also suggest future studies.

Sources : Often in APA style , you should list all texts that helped you with your experiment. Make sure to include course readings, outside sources, and other experiments that you may have used to design your own.

How to write the abstract

The abstract is the experiment stated “in a nutshell”: the procedure, results, and a few key words. The purpose of the academic abstract is to help a potential reader get an idea of the experiment so they can decide whether to read the full paper. So, make sure your abstract is as clear and direct as possible, and under 200 words (though word count varies).

When writing an abstract for a scientific lab report, we recommend covering the following points:

  • Background : Why was this experiment conducted?
  • Objectives : What problem is being addressed by this experiment?
  • Methods : How was the study designed and conducted?
  • Results : What results were found and what do they mean?
  • Conclusion : Were the results expected? Is this problem better understood now than before? If so, how?

How to write the introduction

The introduction is another summary, of sorts, so it could be easy to confuse the introduction with the abstract. While the abstract tends to be around 200 words summarizing the entire study, the introduction can be longer if necessary, covering background information on the study, what you aim to accomplish, and your hypothesis. Unlike the abstract (or the conclusion), the introduction does not need to state the results of the experiment.

Here is a possible order with which you can organize your lab report introduction:

  • Intro of the intro : Plainly state what your study is doing.
  • Background : Provide a brief overview of the topic being studied. This could include key terms and definitions. This should not be an extensive literature review, but rather, a window into the most relevant topics a reader would need to understand in order to understand your research.
  • Importance : Now, what are the gaps in existing research? Given the background you just provided, what questions do you still have that led you to conduct this experiment? Are you clarifying conflicting results? Are you undertaking a new area of research altogether?
  • Prediction: The plants placed by the window will grow faster than plants placed in the dark corner.
  • Hypothesis: Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.
  • How you test your hypothesis : This is an opportunity to briefly state how you go about your experiment, but this is not the time to get into specific details about your methods (save this for your results section). Keep this part down to one sentence, and voila! You have your introduction.

How to write a discussion section

Here, we’re skipping ahead to the next writing-heavy section, which will directly follow the numeric data of your experiment. The discussion includes any calculations and interpretations based on this data. In other words, it says, “Now that we have the data, why should we care?”  This section asks, how does this data sit in relation to the hypothesis? Does it prove your hypothesis or disprove it? The discussion is also a good place to mention any mistakes that were made during the experiment, and ways you would improve the experiment if you were to repeat it. Like the other written sections, it should be as concise as possible.

Here is a list of points to cover in your lab report discussion:

  • Weaker statement: These findings prove that basil plants grow more quickly in the sunlight.
  • Stronger statement: These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.
  • Factors influencing results : This is also an opportunity to mention any anomalies, errors, or inconsistencies in your data. Perhaps when you tested the first round of basil plants, the days were sunnier than the others. Perhaps one of the basil pots broke mid-experiment so it needed to be replanted, which affected your results. If you were to repeat the study, how would you change it so that the results were more consistent?
  • Implications : How do your results contribute to existing research? Here, refer back to the gaps in research that you mentioned in your introduction. Do these results fill these gaps as you hoped?
  • Questions for future research : Based on this, how might your results contribute to future research? What are the next steps, or the next experiments on this topic? Make sure this does not become too broad—keep it to the scope of this project.

How to write a lab report conclusion

This is your opportunity to briefly remind the reader of your findings and finish strong. Your conclusion should be especially concise (avoid going into detail on findings or introducing new information).

Here are elements to include as you write your conclusion, in about 1-2 sentences each:

  • Restate your goals : What was the main question of your experiment? Refer back to your introduction—similar language is okay.
  • Restate your methods : In a sentence or so, how did you go about your experiment?
  • Key findings : Briefly summarize your main results, but avoid going into detail.
  • Limitations : What about your experiment was less-than-ideal, and how could you improve upon the experiment in future studies?
  • Significance and future research : Why is your research important? What are the logical next-steps for studying this topic?

Template for beginning your lab report

Here is a compiled outline from the bullet points in these sections above, with some examples based on the (overly-simplistic) basil growth experiment. Hopefully this will be useful as you begin your lab report.

1) Title (ex: Effects of Sunlight on Basil Plant Growth )

2) Abstract (approx. 200 words)

  • Background ( This experiment looks at… )
  • Objectives ( It aims to contribute to research on…)
  • Methods ( It does so through a process of…. )
  • Results (Findings supported the hypothesis that… )
  • Conclusion (These results contribute to a wider understanding about…)

3) Introduction (approx. 1-2 paragraphs)

  • Intro ( This experiment looks at… )
  • Background ( Past studies on basil plant growth and sunlight have found…)
  • Importance ( This experiment will contribute to these past studies by…)
  • Hypothesis ( Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.)
  • How you will test your hypothesis ( This hypothesis will be tested by a process of…)

4) Materials (list form) (ex: pots, soil, seeds, tables/stands, water, light source )

5) Methods (approx. 1-2 paragraphs) (ex: 10 basil plants were measured throughout a span of…)

6) Data (brief description and figures) (ex: These charts demonstrate a pattern that the basil plants placed in direct sunlight…)

7) Discussion (approx. 2-3 paragraphs)

  • Support or reject hypothesis ( These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.)
  • Factors that influenced your results ( Outside factors that could have altered the results include…)
  • Implications ( These results contribute to current research on basil plant growth and sunlight because…)
  • Questions for further research ( Next steps for this research could include…)
  • Restate your goals ( In summary, the goal of this experiment was to measure…)
  • Restate your methods ( This hypothesis was tested by…)
  • Key findings ( The findings supported the hypothesis because…)
  • Limitations ( Although, certain elements were overlooked, including…)
  • Significance and future research ( This experiment presents possibilities of future research contributions, such as…)
  • Sources (approx. 1 page, usually in APA style)

Final thoughts – Lab Report Example

Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences for structure and format, so make sure to double-check when you receive your assignment. All in all, make sure to keep your scientific lab report concise, focused, honest, and organized. Good luck!

For more reading on coursework success, check out the following articles:

  • How to Write the AP Lang Argument Essay (With Example)
  • How to Write the AP Lang Rhetorical Analysis Essay (With Example)
  • 49 Most Interesting Biology Research Topics
  • 50 Best Environmental Science Research Topics
  • High School Success

Sarah Mininsohn

With a BA from Wesleyan University and an MFA from the University of Illinois at Urbana-Champaign, Sarah is a writer, educator, and artist. She served as a graduate instructor at the University of Illinois, a tutor at St Peter’s School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan’s Writing Workshop.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Data Visualizations
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Homeschool Resources
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Outdoor Adventure
  • Private High School Spotlight
  • Research Programs
  • Summer Program Spotlight
  • Summer Programs
  • Teacher Tools
  • Test Prep Provider Spotlight

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

4: Formal Lab Reports

  • Last updated
  • Save as PDF
  • Page ID 126805

  • Ginger Shultz
  • University of Michigan

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

General Information

  • At the top of the report write your name, the experiment number and title, your lab section, and the names of any group members (if it was a group experiment).
  • Proofread your report before turning it in. Vocabulary used in chemical laboratory reports is rarely included in spell check programs so pay particular attention to spelling.
  • Double-space (or 1.5 space)
  • Do not use first person tense, i.e. do not use "I".
  • Write objectively, without adding personal qualifications to your analysis. Statements like "the experiment went pretty well" are not appropriate. Negative writing is not objective and should not be used. I.e. avoid making excuses for your data, rather report it as is.

The lab report should be broken into the following sections:

1. introduction.

  • Should be 1-2 paragraphs in length.
  • The introduction should be the T.V. guide version of the experiment. It should concisely explain to the reader what the purpose/goal of the experiment is, what general concepts are being covered, and mention any relevant laboratory techniques which are being used.
  • Any good introduction, whether it be in science or fiction writing, uses a "hook". That is some bit of information or sentence that makes the reader want to keep reading. In your report this could be an interesting piece of background information.

2. Reaction Scheme

  • The simple reaction scheme should include starting materials, any reagents and solvents over the reaction arrow and products.
  • A reaction scheme is different from a reaction mechanism. It is a summary of the reaction, whereas a mechanism shows step-by-step what is happening using curved arrow notation.
  • Use the Chemdraw chemistry drawing program for all structures in your report.

3. Experimental

  • Should be written in past tense and be about 1 paragraph long (for each distinct reaction).
  • Should be written in paragraph form. Do not use bulleted lists and do not include the reagents table from your lab notebook pages.
  • Use proper abbreviations for amounts like grams (g), milligrams (mg), millimoles ( mmol) and millileters (mL). Note there is a space between the number and the unit.
  • Use the degree symbol when reporting temperatures. A space is used between the number and the degrees sign, but not between the degrees sign and the "C". I.e. 70 ºC .
  • All decimal number should have a leading zero before the decimal place (0.5 rather than .5). This is true for tables and calculations in your lab notebook as well.
  • Use superscripts and subscripts appropriately.
  • Do not use too many details in your experimental section. Things that would be common knowledge for the experimenter, like using a thermometer to make temperature readings, can be left out. Things like extractions are done by chemists every day so details like what layer was aqueous vs. organic are not necessary. A simple sentence such as "the product was extracted from acidic aqueous solution into diethyl ether" is sufficient.
  • When giving TLC developing solvents, give them in ratios like 1:1 or 3:2, the actual volume is unimportant.
  • The following is an example of an experimental section:

Ethyl 4-methoxycinnamate : 4-methoxycinnamic acid (0.60 g, 3.36 mmol) was dissolved in dry N,N-dimethylformamide (10 mL) in a 25 mL round-bottomed flask. Cesium carbonate (1.65 g, 5.06 mmol) followed by iodoethane (1.0 mL, 12.5 mmol) were added. The flask was vigorously stirred and slightly heated at 50 ºC for 1 hour. The product was cooled to room temperature and extracted with a 3:1 solution of hexanes:ethyl acetate. The organic layer was washed with brine, dried with MgSO 4 , and solvent removed by rotary evaporation. The crude product was recrystallized with 95% ethanol to yield a white solid (0.41 g, 2.30 mmol, 68% yield). 1 H NMR (100 MHz, CDCl 3 ) δ7.66 (d, 1H, 3 J = 16.0 Hz), 7.49 (d, 2H, 3 J = 8.8 Hz), 6.91 (d, 2H, 3 J = 8.8 Hz) 6.31 (d, 1H, 3 J = 16.0 Hz), 4.26 (q, 2H, 3 J = 7.2 Hz), 3.84 (s, 3H), 1.35 (t, 3H, 3 J=7.2 Hz). IR (solid KBr, cm -1 ) ν 3406, 2959, 2933, 2874, 1711, 1636, 1605.

Reporting spectral data: in NMR the first character in paranthesis refers to the splitting (i.e. d = doublet, t = triplet etc.), the second character refers to the integration (.e. 2H means this signal corresponds to 2 hydrogents in the compound), and the final character refers to the coupling constant. If the coupling constant is note determined it need not be reported here. For IR spectroscopy you need only list those peaks which fall into the functional group region (i.e. 4000-1500 cm -1 ) unless a peak in the fingerprint region can be easily identified and is useful in identifying the structure.

4. Results and Discussion

  • THIS IS THE MOST IMPORTANT SECTION IN THE REPORT
  • An effective discussion should uniquely define your experiment while also demonstrating your abiility to select the appropriate data to include, to discuss your understanding of the results in the context of the overall experiment, and to think critically and write logically.
  • Should be written in past tense and be 1-2 pages in length.
  • Critically discuss your data. The majority of points in this section will be given based on your ability to write logically and to interpret your data appropriately. Talk about any data you were able to collect even if if it is just a TLC plate. If you were unable to obtain data like an IR spectrum, do not go into detail as to why it was unobtainable. A simple statement about poor yielding reaction or time constraints is sufficient. Instead, discuss what you would have expected to see if one were taken.
  • Whenever possible you should look up the IR and/or NMR spectra for your starting material and product. These literature spectra should be used in discussion to confirm that the product was made or in identifying an unknown compound (experiments 1, 2 and 5).
  • If you attach an IR spectrum, it should be labeled, referenced, and discussed in the report. Simply giving results without discussing, explaining, analyzing them is not sufficient.

5. Conclusion

  • Should be written in present or past tense and be 1 paragraph in length.
  • Highlight the important results. I.e. was the desired product was obtained and in good purity? if not, explain why.
  • How might the experiment be improved if you could do it again?

6. References

  • Any outside information that is used in the report should be appropriately cited and arranged in a bibliography at the end of the report.
  • Citations and bibliography should be formatted consistently.
  • Journals are abbreviated:
  • Last name, first initial.; last name, first intitial. Journal . Year , volume , pages.

i.e. Deno, N. C.; Richey, H.G.; Liu, J.S.; Lincoln, D.N.; Turner, J.O. J. Am. Chem. Soc. 1965 , 87 , 4533-4538.

  • J. Am. Chem. Soc. – Journal of the American Chemical Society
  • J. Phys. Chem. – Journal of Physical Chemistry
  • J. Phys. Chem. A – Journal of Physical Chemistry (A, B, or C)
  • J. Org. Chem. – Journal of Organic Chemistry
  • Org. Lett. – Organic Letters
  • Phys. Rev. Lett. – Physical Review Letters
  • Tetrahedron – Tetrahedron
  • Tetrahedron Lett. – Tetrahedron Letters
  • Acc. Chem. Res. – Accounts of Chemical Research
  • Author, if available. Title of page as listed on site. Address of page (date accessed).

i.e. SDBS: IR (Liquid Film), benzene. http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi (accessed Apr 2008).

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper.

  • Writing a lab report
  • INTRODUCTION

Writing a "good" discussion section

"discussion and conclusions checklist" from: how to write a good scientific paper. chris a. mack. spie. 2018., peer review.

  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Presentations
  • Lab Report Writing Guides on the Web

This is is usually the hardest section to write. You are trying to bring out the true meaning of your data without being too long. Do not use words to conceal your facts or reasoning. Also do not repeat your results, this is a discussion.

  • Present principles, relationships and generalizations shown by the results
  • Point out exceptions or lack of correlations. Define why you think this is so.
  • Show how your results agree or disagree with previously published works
  • Discuss the theoretical implications of your work as well as practical applications
  • State your conclusions clearly. Summarize your evidence for each conclusion.
  • Discuss the significance of the results
  •  Evidence does not explain itself; the results must be presented and then explained.
  • Typical stages in the discussion: summarizing the results, discussing whether results are expected or unexpected, comparing these results to previous work, interpreting and explaining the results (often by comparison to a theory or model), and hypothesizing about their generality.
  • Discuss any problems or shortcomings encountered during the course of the work.
  • Discuss possible alternate explanations for the results.
  • Avoid: presenting results that are never discussed; presenting discussion that does not relate to any of the results; presenting results and discussion in chronological order rather than logical order; ignoring results that do not support the conclusions; drawing conclusions from results without logical arguments to back them up. 

CONCLUSIONS

  • Provide a very brief summary of the Results and Discussion.
  • Emphasize the implications of the findings, explaining how the work is significant and providing the key message(s) the author wishes to convey.
  • Provide the most general claims that can be supported by the evidence.
  • Provide a future perspective on the work.
  • Avoid: repeating the abstract; repeating background information from the Introduction; introducing new evidence or new arguments not found in the Results and Discussion; repeating the arguments made in the Results and Discussion; failing to address all of the research questions set out in the Introduction. 

WHAT HAPPENS AFTER I COMPLETE MY PAPER?

 The peer review process is the quality control step in the publication of ideas.  Papers that are submitted to a journal for publication are sent out to several scientists (peers) who look carefully at the paper to see if it is "good science".  These reviewers then recommend to the editor of a journal whether or not a paper should be published. Most journals have publication guidelines. Ask for them and follow them exactly.    Peer reviewers examine the soundness of the materials and methods section.  Are the materials and methods used written clearly enough for another scientist to reproduce the experiment?  Other areas they look at are: originality of research, significance of research question studied, soundness of the discussion and interpretation, correct spelling and use of technical terms, and length of the article.

  • << Previous: RESULTS
  • Next: LITERATURE CITED >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

Academic Editing and Proofreading

  • Tips to Self-Edit Your Dissertation
  • Guide to Essay Editing: Methods, Tips, & Examples
  • Journal Article Proofreading: Process, Cost, & Checklist
  • The A–Z of Dissertation Editing: Standard Rates & Involved Steps
  • Research Paper Editing | Guide to a Perfect Research Paper
  • Dissertation Proofreading | Definition & Standard Rates
  • Thesis Proofreading | Definition, Importance & Standard Pricing
  • Research Paper Proofreading | Definition, Significance & Standard Rates
  • Essay Proofreading | Options, Cost & Checklist
  • Top 10 Paper Editing Services of 2024 (Costs & Features)
  • Top 10 Essay Checkers in 2024 (Free & Paid)
  • 2024’s Best Proofreaders for Authors, Students & Businesses
  • Top 10 English Correctors to Perfect Your Text in 2024
  • Top 10 Essay Editing Services of 2024

Academic Research

  • Research Paper Outline: Templates & Examples
  • How to Write a Research Paper: A Step-by-Step Guide

How to Write a Lab Report: Examples from Academic Editors

  • Research Methodology Guide: Writing Tips, Types, & Examples
  • The 10 Best Essential Resources for Academic Research
  • 100+ Useful ChatGPT Prompts for Thesis Writing in 2024
  • Best ChatGPT Prompts for Academic Writing (100+ Prompts!)
  • Sampling Methods Guide: Types, Strategies, and Examples
  • Independent vs. Dependent Variables | Meaning & Examples

Academic Writing & Publishing

  • Difference Between Paper Editing and Peer Review
  • What are the different types of peer review?
  • How to deal with rejection from a journal?
  • Editing and Proofreading Academic Papers: A Short Guide
  • How to Carry Out Secondary Research
  • The Results Section of a Dissertation
  • Checklist: Is my Article Ready for Submitting to Journals?
  • Types of Research Articles to Boost Your Research Profile
  • 8 Types of Peer Review Processes You Should Know
  • The Ethics of Academic Research
  • How does LaTeX based proofreading work?
  • How to Improve Your Scientific Writing: A Short Guide
  • Chicago Title, Cover Page & Body | Paper Format Guidelines
  • How to Write a Thesis Statement: Examples & Tips
  • Chicago Style Citation: Quick Guide & Examples
  • The A-Z Of Publishing Your Article in A Journal
  • What is Journal Article Editing? 3 Reasons You Need It
  • 5 Powerful Personal Statement Examples (Template Included)
  • Complete Guide to MLA Format (9th Edition)
  • How to Cite a Book in APA Style | Format & Examples
  • How to Start a Research Paper | Step-by-step Guide
  • APA Citations Made Easy with Our Concise Guide for 2024
  • A Step-by-Step Guide to APA Formatting Style (7th Edition)
  • Top 10 Online Dissertation Editing Services of 2024
  • Academic Writing in 2024: 5 Key Dos & Don’ts + Examples
  • What Are the Standard Book Sizes for Publishing Your Book?
  • MLA Works Cited Page: Quick Tips & Examples
  • 2024’s Top 10 Thesis Statement Generators (Free Included!)
  • Top 10 Title Page Generators for Students in 2024
  • What Is an Open Access Journal? 10 Myths Busted!
  • Primary vs. Secondary Sources: Definition, Types & Examples
  • How To Write a College Admissions Essay That Stands Out
  • How to Write a Dissertation & Thesis Conclusion (+ Examples)
  • APA Journal Citation: 7 Types, In-Text Rules, & Examples
  • What Is Predatory Publishing and How to Avoid It!
  • What Is Plagiarism? Meaning, Types & Examples
  • Additional Resources
  • Plagiarism: How to avoid it in your thesis?
  • Final Submission Checklist | Dissertation & Thesis
  • 7 Useful MS Word Formatting Tips for Dissertation Writing
  • How to Write a MEAL Paragraph: Writing Plan Explained in Detail
  • Em Dash vs. En Dash vs. Hyphen: When to Use Which
  • The 10 Best Citation Generators in 2024 | Free & Paid Plans!
  • 2024’s Top 10 Self-Help Books for Better Living
  • Citation and Referencing
  • Citing References: APA, MLA, and Chicago
  • How to Cite Sources in the MLA Format
  • MLA Citation Examples: Cite Essays, Websites, Movies & More
  • Citations and References: What Are They and Why They Matter
  • APA Headings & Subheadings | Formatting Guidelines & Examples
  • Formatting an APA Reference Page | Template & Examples
  • Research Paper Format: APA, MLA, & Chicago Style
  • How to Create an MLA Title Page | Format, Steps, & Examples
  • How to Create an MLA Header | Format Guidelines & Examples
  • MLA Annotated Bibliography | Guidelines and Examples
  • APA Website Citation (7th Edition) Guide | Format & Examples
  • APA Citation Examples: The Bible, TED Talk, PPT & More
  • APA Header Format: 5 Steps & Running Head Examples
  • APA Title Page Format Simplified | Examples + Free Template
  • How to Write an Abstract in MLA Format: Tips & Examples
  • 10 Best Free Plagiarism Checkers of 2024 [100% Free Tools]
  • 5 Reasons to Cite Your Sources Properly | Avoid Plagiarism!
  • Dissertation Writing Guide
  • Writing a Dissertation Proposal
  • The Acknowledgments Section of a Dissertation
  • The Table of Contents Page of a Dissertation
  • The Introduction Chapter of a Dissertation
  • The Literature Review of a Dissertation
  • The Only Dissertation Toolkit You’ll Ever Need!
  • 5 Thesis Writing Tips for Master Procrastinators
  • How to Write a Dissertation | 5 Tips from Academic Editors
  • The Title Page of a Dissertation
  • The 5 Things to Look for in a Dissertation Editing Service
  • Top 10 Dissertation Editing & Proofreading Services
  • Why is it important to add references to your thesis?
  • Thesis Editing | Definition, Scope & Standard Rates
  • Expert Formatting Tips on MS Word for Dissertations
  • A 7-Step Guide on How to Choose a Dissertation Topic
  • 350 Best Dissertation Topic Ideas for All Streams in 2024
  • A Guide on How to Write an Abstract for a Research Paper
  • Dissertation Defense: What to Expect and How to Prepare
  • Essay Writing Guide
  • Essential Research Tips for Essay Writing
  • What Is a Mind Map? Free Mind Map Templates & Examples
  • How to Write an Essay Outline: 5 Examples & Free Template
  • How to Write an Essay Header: MLA and APA Essay Headers
  • What Is an Essay? Structure, Parts, and Types
  • How to Write an Essay in 8 Simple Steps (Examples Included)
  • 8 Types of Essays | Quick Summary with Examples
  • Expository Essays | Step-by-Step Manual with Examples
  • Narrative Essay | Step-by-Step Guide with Examples
  • How to Write an Argumentative Essay (Examples Included)
  • Guide to a Perfect Descriptive Essay [Examples & Outline Included]
  • How to Start an Essay: 4 Introduction Paragraph Examples
  • How to Write a Conclusion for an Essay (Examples Included!)
  • How to Write an Impactful Personal Statement (Examples Included)
  • Literary Analysis Essay: 5 Steps to a Perfect Assignment
  • Compare and Contrast Essay | Quick Guide with Examples
  • Top 10 Essay Writing Tools in 2024 | Plan, Write, Get Feedback
  • Top AI Essay Writers in 2024: 10 Must-Haves
  • 100 Best College Essay Topics & How to Pick the Perfect One!
  • College Essay Format: Tips, Examples, and Free Template
  • Structure of an Essay: 5 Tips to Write an Outstanding Essay

Still have questions? Leave a comment

Add Comment

Checklist: Dissertation Proposal

Enter your email id to get the downloadable right in your inbox!

Examples: Edited Papers

Need editing and proofreading services.

calender

  • Tags: Academic Research , Academic Writing

A lab report documents the theory, methods, and results of your experiment to demonstrate your understanding of research and scientific methodology. In this article, we’ll tell you how to write a lab report with the help of some useful examples.

For many students, writing a lab report can be confusing: how to format it, what to include and not include, and so on. The questions are endless! Just remember that your lab report will allow others to reproduce your results and draw their own conclusions. This will help you write a lab report that’s well-formatted and organized.

In true Resource Center fashion, let’s start with the basics: What exactly is a lab report?

Need help creating a perfect lab report? Learn more

What is a lab report? 

A laboratory report is a document written to describe and analyze an experiment that addresses a scientific inquiry. A lab report helps you conduct an experiment and then systematically design a conclusion based on your hypothesis. 

Note: A lab report is not the same as a lab notebook. A notebook is a detailed log you keep throughout the study. A lab report is a concise summary that you submit after the study is done, usually for a final grade. 

A lab report typically follows this format:  

  • Title 

Introduction 

  • Equipment/Materials 
  • Methods 
  • Discussion 
  • References 

This is a broad list of sections you might have to include in your lab report, but by no means is this compulsory or exhaustive. You should always refer to the course or university guidelines to understand the desired format. 

How to Write a Lab Report

A lab report should be clear, concise, and well-organized, and it should include all the necessary information for others to replicate your experiment. Since the lab report format is designed to serve this purpose, you must follow it to the bone while writing your report.

Let’s start with learning how to title a lab report.

Title  

The title of your lab report should:

  • Be clear, direct, and informative.
  • Include keywords that clarify your objectives and involved variables.
  • Be under ten words (ideally).

It’s a good idea to avoid phrasing the title as a question. Remember, your title doesn’t have to be witty or clever, just descriptive and to the point. Here are a few title examples that can clarify this for you:

  • Unraveling the genetic code through gel electrophoresis.
  • Hot and cold: How temperature affects enzymes yeast cells
  • Impervious alloys of Aluminium
  • How fast does Hydrogen Peroxide decompose?
  • The speed of growth: An Analysis of bacterial growth rates in different culture media

Analysis of DNA fragment lengths using gel electrophoresis

The effects of temperature on enzyme activity in yeast cells

Investigating the corrosion resistance of Aluminum alloys

Study of chemical kinetics through the decomposition of Hydrogen Peroxide

Quantifying bacterial growth rates in different culture media

While it’s not necessary to dedicate an entire page to the title, some universities might ask for a title page. If you’ve been asked to make this, include the following details:

  • The experiment title 
  • Your name and student details 
  • Course and program details 
  • Date and year of submission 

An abstract is a brief but comprehensive overview of the purpose, findings, and larger relevance of your experiment. It communicates the essential details of your study to your readers, whether it’s evaluators or peers.

Follow these tips to write a lab report abstract:

  • Clearly state the topic of your experiment.
  • Briefly describe the conditions of your study, the variables involved, and the method(s) used to collect data.
  • Lay out the major findings of your study and your interpretations of them.
  • Mention the relevance and importance of your study in brief.

An abstract is usually only a page long (typically between 100 and 250 words), so your writing must be concise and crisp.

Bonus tip: Although the abstract is the first section of your report, it’s best to write it toward the end. Much easier to summarize the report afte r it’s been written!

Lab report abstract example

This experiment aimed to investigate the corrosion resistance of two different aluminum alloys: 6061-T6 and 7075-T6. The experiment involved exposing samples of each alloy to a 3% NaCl solution for a period of 72 hours and then measuring the weight loss of the samples. The results showed that 6061-T6 had a weight loss of 0.10 g, while 7075-T6 had a weight loss of 0.25 g, indicating that 6061-T6 was more corrosion resistant. These findings suggest that the composition of the alloy has a significant impact on its resistance to corrosion. This information is important for industries that use aluminum alloys in environments that are prone to corrosion, such as marine applications or chemical processing. Further research could explore the specific mechanisms that contribute to the corrosion resistance of different aluminum alloys and could investigate the effects of other environmental factors on corrosion.

The lab report introduction provides your readers with background information on your experiment and its significance. It should be brief and to the point, so a few paragraphs is the maximum length recommended.

You can adopt either of two modes to write your introduction:

  • Beginning with the research question and then adding context, ultimately closing with your purpose.
  • Beginning with the broad topic and narrowing it down to your research question.

Follow these steps to write your lab report introduction:

  • Begin with a brief overview of the broad research area and existing literature. 
  • Include only essential background information and cite only highly relevant sources. 
  • Clearly define any key terms or concepts that you’ll use in the report.
  • State the specific purpose and objectives of your experiment.
  • Mention the relevance and significance of your study.
  • State a clear hypothesis and expected outcomes.
  • Check with your instructor about adding the variables, results, and conclusions to the introduction.
  • Refer to the university guidelines for instructions on labeling paragraphs in your introduction.
  • Use the past tense when describing the purpose and other specifics of the experiment since it has already been carried out and is in the past. (“This experiment aimed to investigate the corrosion resistance of two different aluminum alloys.”)
  • Use the present tense when describing the report, existing theories, and established facts. (“This information is important for industries that use aluminum alloys in environments prone to corrosion.”)

Make sure you use your own words rather than following a templatized format.

Lab report introduction example

Aluminum alloys are widely used in a variety of industrial applications due to their excellent strength-to-weight ratio, good corrosion resistance, and other desirable properties. However, the corrosion resistance of aluminum alloys can vary depending on their composition, and understanding the factors that contribute to corrosion resistance is crucial for their effective use in harsh environments. In this experiment, we aim to investigate the corrosion resistance of two different aluminum alloys: 6061-T6 and 7075-T6.

These alloys were selected because they are commonly used in industrial applications and have different compositions, with 6061-T6 containing magnesium and silicon, while 7075-T6 contains zinc and copper. By exposing samples of each alloy to a 3% NaCl solution and measuring the weight loss of the samples over time, we can determine which alloy is more corrosion-resistant and gain insight into the factors that contribute to their corrosion resistance. This information is important for industries that use aluminum alloys in harsh environments, such as marine and aerospace applications, and can contribute to the development of more effective corrosion-resistant materials.

The lab report methods section documents the methods, subjects, materials, and equipment you used to collect data. This is a record of the steps you followed and not the steps as they were prescribed.

Follow these tips to write a lab report method section:

  • List all materials and equipment used in the experiment, including their material specifications such as weight or amount. (Ex: 5 ml of 3% NaCl solution)
  • In the case of elaborate lists and sets of steps, you may include them in the appendix section and refer to them in the methods section. (Check this with your instructor!)
  • Detail the procedures you used to carry out the experiment step-by-step, including apparatus setup, mixing of reagents, and other technical processes.
  • Explain how you collected and recorded the data as well as the involved analytical methods and calculations.
  • Use the past tense to write this section.
  • Discuss the limitations and margins of error and how you tried to minimize them.
  • Where relevant, mention the safety precautions and protective equipment used during the experiment.

Your methods section should be accurate enough for other researchers to follow the instructions and obtain results similar to yours.

Lab report method example

  • Two aluminum alloy samples: 6061-T6 and 7075-T6
  • 3% NaCl solution
  • Two beakers
  • Two stirring rods
  • Digital scale
  • Vernier caliper
  • Cut four aluminum alloy samples, two from each type of alloy, each with dimensions of 1 cm x 1 cm x 0.2 cm.
  • Clean the samples thoroughly using ethanol to remove any impurities or oils.
  • Weigh each sample accurately using a digital scale and record the initial weight.
  • Prepare a 3% NaCl solution by dissolving 30 g of NaCl in 1000 mL of deionized water.
  • Pour 250 mL of the 3% NaCl solution into each beaker.
  • Submerge two samples of each aluminum alloy in separate beakers containing the NaCl solution.
  • Use the stirring rods to stir the solutions gently to ensure uniformity.
  • Allow the samples to remain in the solutions for 72 hours at room temperature (25°C).
  • After 72 hours, carefully remove each sample from the solution and rinse with deionized water to remove any remaining salt.
  • Dry each sample using a lint-free cloth and measure its weight using the digital scale.
  • Record the final weight of each sample.
  • Calculate the weight loss of each sample by subtracting the final weight from the initial weight.
  • Use a Vernier caliper to measure the thickness of each sample, and record these measurements.
  • Calculate the corrosion rate for each sample by dividing the weight loss by the surface area of the sample and the time of immersion in the solution.

Data Collection:

Weight loss and thickness measurements were recorded for each sample after the 72-hour immersion period. Corrosion rates were calculated using the weight loss, surface area, and time of immersion.

The experiment was conducted in a well-ventilated area with appropriate personal protective equipment, including gloves and goggles. Care was taken when handling the NaCl solution to avoid contact with the skin or eyes.

Limitations:

The experiment was conducted under controlled conditions, which may not reflect real-world scenarios. The NaCl solution concentration used may not be representative of all environmental conditions that aluminum alloys may encounter in industrial applications. Further research could explore a wider range of environmental factors to more accurately predict the corrosion resistance of aluminum alloys.

The results section presents the findings of the experiment including the data you have collected and analyzed. In some cases, this section may be combined with the discussion section.

Put your findings into words and present relevant figures, tables, and graphs. You may also include the calculations you used to analyze the data.

Here are some guidelines on how to write a results section:

  • Begin with a concise summary of your key findings in the form of a brief paragraph or bullet points.
  • Present the data collected in the form of tables, graphs, or charts.
  • Describe important data to highlight any patterns you have observed.
  • Use descriptive statistics such as mean, median, and standard deviation, to summarize your data.

Add your raw data in the Appendices section and refer to it whenever required. Remember to use symbols and units of measurement correctly.

Lab report results example

The aluminum alloys tested have varying degrees of corrosion resistance. Table 1 shows the corrosion rates for each sample, calculated as the percentage weight loss over the duration of the experiment.

Table 1: Corrosion rates for aluminum alloy samples

Sample Corrosion rate (%)

Alloy sample Corrosion rate
A 0.12
B 0.08
C 0.02
D 0.05

As can be seen from Table 1, sample C had the lowest corrosion rate, indicating the highest resistance to corrosion among the four samples tested. Sample A had the highest corrosion rate, indicating the lowest corrosion resistance.

Figure 1 shows the corrosion morphology of the aluminum alloy samples after exposure to the saltwater solution for 7 days. The images were taken using scanning electron microscopy (SEM).

The SEM images show that sample C had the least amount of corrosion, with only small pits visible on the surface. Samples A and B showed more severe corrosion, with visible pitting and cracking. Sample D showed moderate corrosion, with some surface roughening and small pits.

In conclusion, the results of this experiment indicate that the corrosion resistance of aluminum alloys varies depending on the composition of the alloy. Sample C, which had the lowest corrosion rate and the least amount of corrosion morphology, showed the highest resistance to corrosion among the four samples tested. Further research could investigate the effect of different environmental conditions on the corrosion resistance of aluminum alloys.

The discussion section of a lab report is where you interpret and analyze the results of your experiment in the context of the research question or hypothesis. This is the most important part of the lab report because this is your contribution to your field of study.

Follow these guidelines to write your discussion section:

  • Begin with a brief summary of the main findings of the experiment.
  • Interpret the results and explain how they relate to your research question or hypothesis.
  • Compare the results to previous research in the field and analyze how they support or oppose existing theories or models.
  • Discuss any limitations or sources of error in the experiment and how they can be improved upon.
  • If applicable, include any additional analysis such as post-hoc tests or follow-up experiments.

Your discussion section shouldn’t simply repeat the results but offer a critical interpretation and analysis of them. Furthermore, it should also reflect upon the methods and procedures undertaken and take stock of whether you applied processes most favorable for your subject.

Lab report discussion example

The investigation into the corrosion resistance of aluminum alloys has provided valuable insight into the behavior of these materials under various conditions. The results of the experiment indicated that the aluminum alloys tested had varying degrees of corrosion resistance depending on the specific alloy composition and environmental conditions.

Comparing the results to previous research in the field, the findings are consistent with the general understanding that aluminum alloys are susceptible to corrosion under certain circumstances. However, the exact mechanisms of corrosion and the specific factors that influence corrosion resistance are still subject to ongoing research.

One limitation of the experiment is the relatively short duration of exposure to the corrosive environment. Longer exposure times may have provided additional insights into the behavior of the aluminum alloys over time. Additionally, the use of only one type of corrosive environment may not accurately reflect the behavior of the materials in other environments.

The unexpected finding of pitting corrosion in Alloy B warrants further investigation to determine the underlying causes and potential solutions. Future research could also explore the effects of additional factors, such as temperature and humidity, on the corrosion resistance of aluminum alloys.

Overall, the results of this experiment demonstrate the importance of considering the specific composition and environmental conditions when evaluating the corrosion resistance of aluminum alloys. The findings have implications for the development of more durable and corrosion-resistant materials for various applications in industry and engineering.

The conclusion summarizes the experiment and its significance in your field of study. It’s usually one brief paragraph, and in some cases might be omitted altogether. Check with your instructor about whether or not you need to write a lab report conclusion.

Here’s how to write a lab report conclusion:

  • State whether the experiment supported or opposed your hypothesis.
  • Reflect upon the significance and implications of your study.
  • Suggest avenues for future research.

Lab report conclusion example

The investigation into the corrosion resistance of aluminum alloys demonstrated that the aluminum alloys tested had varying degrees of corrosion resistance, depending on their specific composition and the nature of the corrosive environment. The results of the experiment are consistent with previous research in the field, and the findings support the notion that aluminum alloys are susceptible to corrosion under certain conditions.

The experiment also revealed some unexpected findings, such as the pitting corrosion observed in Alloy B. This finding warrants further investigation to determine the underlying causes and potential solutions.

The experiment was limited by the relatively short exposure time to the corrosive environment and the use of only one type of corrosive environment. Future research could explore the effects of longer exposure times and different corrosive environments on the corrosion resistance of aluminum alloys.

Overall, the results of this experiment provide important insights into the behavior of aluminum alloys and have implications for the development of more durable and corrosion-resistant materials for various applications in industry and engineering.

List all the sources you consulted while writing the lab report. Include the full bibliographic information in the appropriate format.

For lab reports in sciences and social sciences, the APA citation style is usually followed. Students of business, fine arts, and history will use Chicago style citations in their lab reports. In the rare event of a lab report under humanities, you’ll be expected to write your citations in MLA format .

Remember that failing to cite your sources is considered plagiarism and has serious consequences. Always give credit where credit is due!

Lab Report Example & Templates

A. basic lab report template, b. chemistry lab report example, c. example of good labeling.

The above examples accurately demonstrate the hallmarks of a good lab report. If you need help to perfect your lab report, you can consider taking our editing and proofreading services . Keep reading to perfect your writing skills! 

  • The Top 5 Dos & Don’ts of Academic Writing | Useful Examples
  • 10 Most Common Grammar Mistakes & How to Avoid Them
  • 14 Punctuation Marks: Examples & Free Guide on How to Use

Frequently Asked Questions

What is the primary purpose of writing a lab report, what should a lab report look like, how to write a lab report for biology, how long is a lab report, what is the longest part of a lab report.

Found this article helpful?

6 comments on “ How to Write a Lab Report: Examples from Academic Editors ”

Good info. Lucky me I came across your blog by chance. I’ve saved it for later!

Hi there, I don’t leave comments a lot but I must say, the lab report results part was quite well-written. Keep up the good work!

It’s quite well-written but you can improve the images maybe. Anyway, keep up writing.

You’ve explained each lab report section so easily! I appreciate the tips and example combination!

Honestly, the lab report examples could be better. But great work, super easy to read and informative

This information on lab report writing is so useful! Thanks for all the templates and examples, super helpful!

Leave a Comment: Cancel reply

Your email address will not be published.

Your vs. You’re: When to Use Your and You’re

Your organization needs a technical editor: here’s why, your guide to the best ebook readers in 2024, writing for the web: 7 expert tips for web content writing.

Subscribe to our Newsletter

Get carefully curated resources about writing, editing, and publishing in the comfort of your inbox.

How to Copyright Your Book?

If you’ve thought about copyrighting your book, you’re on the right path.

© 2024 All rights reserved

  • Terms of service
  • Privacy policy
  • Self Publishing Guide
  • Pre-Publishing Steps
  • Fiction Writing Tips
  • Traditional Publishing
  • Academic Writing and Publishing
  • Partner with us
  • Annual report
  • Website content
  • Marketing material
  • Job Applicant
  • Cover letter
  • Resource Center
  • Case studies

👀 Turn any prompt into captivating visuals in seconds with our AI-powered design generator ✨ Try Piktochart AI!

  • Piktochart Visual
  • Video Editor
  • AI Design Generator
  • Infographic Maker
  • Banner Maker
  • Brochure Maker
  • Diagram Maker
  • Flowchart Maker
  • Flyer Maker
  • Graph Maker
  • Invitation Maker
  • Pitch Deck Creator
  • Poster Maker
  • Presentation Maker
  • Report Maker
  • Resume Maker
  • Social Media Graphic Maker
  • Timeline Maker
  • Venn Diagram Maker
  • Screen Recorder
  • Social Media Video Maker
  • Video Cropper
  • Video to Text Converter
  • Video Views Calculator
  • AI Brochure Maker
  • AI Document Generator
  • AI Flyer Generator
  • AI Image Generator
  • AI Infographic
  • AI Instagram Post Generator
  • AI Newsletter Generator
  • AI Quote Generator
  • AI Report Generator
  • AI Timeline Generator
  • For Communications
  • For Education
  • For eLearning
  • For Financial Services
  • For Healthcare
  • For Human Resources
  • For Marketing
  • For Nonprofits
  • Brochure Templates
  • Flyer Templates
  • Infographic Templates
  • Newsletter Templates
  • Presentation Templates
  • Resume Templates
  • Business Infographics
  • Business Proposals
  • Education Templates
  • Health Posters
  • HR Templates
  • Sales Presentations
  • Community Template
  • Explore all free templates on Piktochart
  • Course: What is Visual Storytelling?
  • The Business Storyteller Podcast
  • User Stories
  • Video Tutorials
  • Need help? Check out our Help Center
  • Earn money as a Piktochart Affiliate Partner
  • Compare prices and features across Free, Pro, and Enterprise plans.
  • For professionals and small teams looking for better brand management.
  • For organizations seeking enterprise-grade onboarding, support, and SSO.
  • Discounted plan for students, teachers, and education staff.
  • Great causes deserve great pricing. Registered nonprofits pay less.

AI-Powered Report Generator

Transform your data into visually stunning, professional-looking reports in seconds. Say goodbye to spending hours crafting an effective report—let our intelligent tool do the heavy lifting for you.

The new way of creating reports

Redefine Your Efficiency

Prompt to report in 10 seconds

Piktochart AI delivers a ready-made report in a matter of seconds. Simply provide a brief description of your desired report, whether it’s visualizing survey results, creating a performance review, crafting a marketing overview, or analyzing healthcare data.

Simplified Design Process

Instant creation with your own text content

Have a text-heavy report and don’t know where to start? Paste your own text content and let Piktochart AI generate professional-looking reports that are customized for you in seconds.

generate reports with piktochart ai document generator

Captivate Your Audience

Professional report templates for every need

For survey reports, performance reviews, marketing overviews, or analyses, our AI report generator has you covered with a wide range of customizable templates.

branding features with piktochart ai report generator

Easy to Customize

Personalized report designed for you

Experience the ease of report design with Piktochart AI’s user-friendly editor. Customize your report with our extensive library of design elements, fonts, and color schemes to stay on-brand.

Trusted by Industry Leaders

marketer

  • Visualize marketing campaign results, customer demographics, and market trends, facilitating data-driven decision-making.
  • Engaging, easy-to-understand reports for clients, showcasing campaign performance, ROI, and key marketing metrics.
  • Identify emerging trends and forecasting future market movements.

SMEs and enterprises persona

HR and Learning and Development Reports

  • Highlight progress, identify areas for improvement, and facilitate effective performance reviews.
  • Visually represent the impact and effectiveness of training programs.
  • Compile and interpret data on workforce diversity, employee satisfaction, and organizational culture.

NGOs and government persona

NGOs and Government Organizations

  • Illustrate impact on communities by showcasing progress on projects, beneficiary stories, and fund utilization, essential for donor reports and stakeholder updates.
  • Reports on donation usage, program effectiveness, and organizational financial health.
  • Analyze program data, helping to assess effectiveness, identify areas for improvement, and inform future project planning and resource allocation.

business owner

Researchers

  • Transform complex datasets into clear, comprehensible visuals, aiding in the presentation of research findings.
  • Easy sharing and editing of reports, essential for multi-author studies and publications.
  • Prepare reports for academic journals or conferences, aligning with publication standards.

Reports created using Piktochart’s AI-powered report generator

how to write results and discussion in a lab report

How to Generate AI Reports

1. Describe Your Report

Briefly describe (within 120 characters) the intent of your report. Whether it’s for visualizing a survey, performance review, marketing overview, or analysis. 

2. Choose from Our Report Templates

Select from a diverse range of professionally designed templates tailored for various industries and report types.

3. Customize Your Design in Piktochart Editor

Personalize your report by adjusting colors, fonts, and layout to match your brand or preferences. Piktochart provides an array of design elements, icons, and images to enhance the visual appeal of your report. 

4. Publish and Promote

Once you’re satisfied with the result, you can export your report in various formats like JPG, PNG, or PDF, making it easy to distribute your report to stakeholders.

AI-Powered Visualization for Any Topic

What kinds of reports can be generated using this AI tool?

Survey report.

A survey report is a comprehensive analysis that distills valuable insights gathered through systematic data collection such as customer satisfaction, employee engagement, or market trends. This report type transforms raw data into actionable information to guide informed decision-making for organizations and stakeholders.

Performance review

A performance review report is a structured evaluation process that provides a holistic assessment of an individual’s professional accomplishments, skills, and contributions within a specific timeframe. This report type is crucial for professional development and aligning individual performance with organizational objectives.

Marketing overview

A marketing overview report is a concise yet comprehensive document that captures the essence of a company’s marketing performance over a specific period. This report provides a strategic snapshot, highlighting key marketing initiatives, campaign effectiveness, and performance metrics. It helps equip decision-makers with actionable insights to refine strategies, optimize budgets, and drive future marketing success.

Healthcare analysis

A healthcare analysis report is a detailed examination of critical aspects within the healthcare domain aimed to provide a comprehensive understanding of trends, performance metrics, and key indicators. This report delves into various data points such as patient outcomes, resource utilization, financial efficiency, and adherence to regulatory standards.

Ready to use AI to create professional and engaging reports?

Join more than 11 million people who already use Piktochart to craft amazing visual stories.

Can I customize my report with my own photos and diagrams?

How many reports can i generate, how can i improve the quality of my reports, do i have to sign up for a piktochart account, what else can you create with piktochart ai.

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock Locked padlock icon ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

National Institutes of Health

  • Health Topics
  • Drugs & Supplements
  • Medical Tests
  • Medical Encyclopedia
  • About MedlinePlus
  • Customer Support

How to Understand Your Lab Results

What is a laboratory test.

A laboratory (lab) test checks a sample of your blood , urine (pee), or other body fluid or tissue to learn about your health. The sample is sent to a lab where health care professionals test it to see if it contains certain substances and, if so, how much.

Some lab tests can clearly show whether you do or don't have a specific health condition. For example, a pregnancy test can show whether or not a person is pregnant.

Other lab tests provide more general information about your health and possible problems. Test results that aren't normal give your health care provider clues about the type of health problems you may have. The results help your provider decide whether you need more tests and which ones will be most useful for diagnosing or ruling out certain conditions.

Lab tests are an important part of your health care. But they don't provide a complete picture of your health. Even though you may get your test results in your electronic health record (EHR), it's still important to talk with your provider to find out what your results really mean for you .

To get a full picture of your health, your provider will use your test results along with information from your physical exam, health history, family health history , and sometimes imaging tests, such as x-rays . In most cases, combining that information leads to a more accurate diagnosis than the results from any one lab test.

Why do I need a lab test?

Lab tests are used in different ways, including to help:

Diagnose or rule out a specific disease or condition. Tests to diagnose health problems are done when you have signs or symptoms of a certain disease or condition. Sometimes more than one test is needed to confirm a diagnosis.

A strep A test is an example of a diagnostic test. If you're sick with a bad sore throat and other symptoms, this test can show you whether you're infected with the bacteria that causes strep throat .

  • Tell you if you have a high risk for getting a specific disease. This alerts you to take steps to lower your risk. For example, a cholesterol test measures the amount of cholesterol in a sample of your blood. The results can help you understand your risk for heart disease .

Suggest whether you need more testing to check for a condition or disease. These screening tests look for signs that you may have a health problem so that you can have more testing to find out for sure. For example, one type of screening test for colon cancer looks for blood in your stool (poop). If blood is found, it could be a sign of cancer. So, your provider may order a colonoscopy to find out for sure whether you have cancer.

Monitor a disease and/or treatment. If you've already been diagnosed with a disease, you may need lab tests to see if your condition is getting better, worse, or staying the same. Tests can also show if your treatment is working.

A blood glucose test is an example of a monitoring test. It's used to monitor diabetes and diabetes treatment. It may also be used to diagnose the disease.

Plan your treatment. Certain tests can help show which treatments are likely to be most effective for a specific disease.

Tumor marker tests are an example of testing to find out which treatments are likely to work to fight certain types of cancer.

What is a reference range?

Lab test results are reported in different ways. Some results are a number. But how do you know what that number means?

To answer that question, your lab report tells you whether your test result is in a normal range called a reference range or "normal values."

A reference range is a set of numbers that are the high and low ends of the range of results that's considered to be normal. The ranges are based on the test results from large groups of healthy people. A test may have different reference ranges for different groups of people. For example, there may be separate ranges for children and adults.

Reference ranges are a general guide to "normal." If your test result is higher or lower than the range that applies to you, it may be a sign of a health problem, but not always. It's common for healthy people to sometimes have results outside the reference range. And people with health problems can have results in the normal range, too.

If your results are outside of the reference range, your provider will look at other information about your health to understand what may have affected your results. You may need more testing if your result is higher or lower than the reference range, or if you have a normal result even though you have symptoms.

When looking at your lab test results, it's helpful to know that:

  • To find out how your test results compare with the normal range, you need to check the reference range listed on your lab report. You can't compare your results to references ranges that you might find elsewhere. This is why our Medical Test information cannot provide normal reference ranges for most tests.
  • You can't compare test results from different labs.
  • If you're looking for trends in your test results over time, it's important to try to use the same lab for testing.
  • Mcg/dL = micrograms per deciliter
  • Micromole/L = micromoles per liter
  • Pg/mL = picograms per milliliter

What do negative, positive, and inconclusive results mean?

Some test results tell you whether a certain substance, germ, type of cell, or gene was or wasn't found in your test sample. On your test report, you may see these terms:

  • Negative or normal. This means "No, the test didn't find what it was looking for." So, you're unlikely to have the health problem you were tested for. But you may need more tests.
  • Positive or abnormal. This means, "Yes, the test found what it was looking for." The germ, substance, or gene being tested was in your sample. So, you may have a disease or infection. In certain cases, you may need more tests to confirm a diagnosis.
  • Inconclusive or uncertain. This means "not sure." Your test wasn't clearly positive or negative. There are many reasons why this may happen. If you get an uncertain result, you will probably be tested again.

Tests for the COVID-19 virus are an example of tests that tell you whether or not a specific germ was found in your sample.

What are false positive and false negative results?

Tests results are usually accurate, but no test is perfect.

  • A false positive result means your test shows you have a disease or condition, but you don't really have it.
  • A false negative result means your test shows you don't have a disease or condition, but you really do.

These incorrect results don't happen often, but they are more likely with certain of types tests, or if testing wasn't done right. If your provider thinks your test result may be inaccurate, you may need to have another test.

What can affect my results?

The accuracy of certain test results may be affected by what you eat, medicines you take, and even how your feel when you provide your test sample. Common things that affect tests include:

  • Eating and drinking certain foods and drinks
  • Taking certain medicines or supplements
  • Exercising hard before your test
  • Having a menstrual period at the time of your tested

Your provider will let you know if you need to prepare for your test. Follow your provider's instructions carefully. That will help make sure your test results are as accurate as possible. Before your test, let your provider know about all the prescription and over-the-counter medicines you take as well as vitamins and other supplements.

What if I do a home test?

At-home test kits are available for many types of lab tests. The kits provide everything you need to collect a sample of body fluid or cells to send to a lab. At-home tests should never replace testing that your provider orders. Ask your provider or pharmacist to recommend a test you can trust. And talk with your provider about your results, even if they're normal.

  • AARP [Internet]. Washington D.C.: AARP. Your Lab Results Decoded; [cited 2022 Jul 25]; [about 9 screens]. Available from: https://www.aarp.org/health/doctors-hospitals/info-02-2012/understanding-lab-test-results.html
  • FDA: U.S. Food and Drug Administration [Internet]. Silver Spring (MD): U.S. Department of Health and Human Services; Tests Used In Clinical Care; [updated 2018 Sep 27; cited 2022 Jul 25]; [about 2 screens]. Available from: https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/InVitroDiagnostics/LabTest/default.htm
  • MyHealthfinder.gov. [Internet]. Washington D.C.: Office of Disease Prevention and Health Promotion; National Health Information Center; Doctor Visits: Get Screened; [updated 2022 Jul 28; cited 2022 Jul 28]; [about 3 screens]. Available from: https://health.gov/myhealthfinder/doctor-visits/screening-tests/get-screened
  • Middlesex Hospital [Internet]. Middletown (CT): Middlesex Hospital c2022. Common Lab Tests; [cited 2022 Jul 25]; [about 5 screens]. Available from: https://middlesexhealth.org/laboratory-services/common-lab-tests
  • National Cancer Institute [Internet]. Bethesda (MD): U.S. Department of Health and Human Services; Understanding Laboratory Tests; [updated 2013 Dec 11; cited 2022 Jul 25]; [about 6 screens]. Available from: https://www.cancer.gov/about-cancer/diagnosis-staging/understanding-lab-tests-fact-sheet#q1
  • National Heart, Lung, and Blood Institute [Internet]. Bethesda (MD): U.S. Department of Health and Human Services; Blood Tests; [updated 2022 Mar 24; cited 2022 Jul 25]; [about 7 screens]. Available from: https://www.nhlbi.nih.gov/health/blood-tests
  • O'Kane MJ, Lopez B. Explaining laboratory test results to patients: what the clinician needs to know. BMJ [Internet]. 2015 Dec 3 [cited 2022 Jul 25]; 351(h):5552. Available from: https://www.bmj.com/content/351/bmj.h5552
  • Testing.com [Internet]. Seattle (WA): OneCare Media; c2022. Deciphering Your Lab Report; [modified 2021 Jan 27; cited 2022 Jul 25]; [about 7 screens]. Available from: https://www.testing.com/articles/how-to-read-your-laboratory-report/
  • Testing.com [Internet]. Seattle (WA): OneCare Media; c2022. Reference Ranges and What They Mean; [modified 2021 Nov 9; cited 2022 Jul 25]; [about 13 screens]. Available from: https://www.testing.com/articles/laboratory-test-reference-ranges/
  • UW Health [Internet]. Madison (WI): University of Wisconsin Hospitals and Clinics Authority; c2022. Health Information: Understanding Lab Test Results; [current 2021 Dec 27; cited 2022 Jul 26]; [about 5 screens]. Available from: https://patient.uwhealth.org/healthwise/article/en-us/zp3409
  • UW Health [Internet]. Madison (WI): University of Wisconsin Hospitals and Clinics Authority; c2022. Lab Test Results: Units of Measurement [updated 2021 Dec 27; cited 2022 Jul 25]; [about 5 screens]. Available from: https://patient.uwhealth.org/healthwise/article/en-us/zd1440

The information on this site should not be used as a substitute for professional medical care or advice. Contact a health care provider if you have questions about your health.

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

APA Sample Paper

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

Note:  This page reflects the latest version of the APA Publication Manual (i.e., APA 7), which released in October 2019. The equivalent resource for the older APA 6 style  can be found here .

Media Files: APA Sample Student Paper  ,  APA Sample Professional Paper

This resource is enhanced by Acrobat PDF files. Download the free Acrobat Reader

Note: The APA Publication Manual, 7 th Edition specifies different formatting conventions for student  and  professional  papers (i.e., papers written for credit in a course and papers intended for scholarly publication). These differences mostly extend to the title page and running head. Crucially, citation practices do not differ between the two styles of paper.

However, for your convenience, we have provided two versions of our APA 7 sample paper below: one in  student style and one in  professional  style.

Note: For accessibility purposes, we have used "Track Changes" to make comments along the margins of these samples. Those authored by [AF] denote explanations of formatting and [AWC] denote directions for writing and citing in APA 7. 

APA 7 Student Paper:

Apa 7 professional paper:.

how to write results and discussion in a lab report

Microsoft Teams help & learning

New to microsoft teams.

Start here with the first things to know about the essential Microsoft Teams features.

Notifications

a close up view of the toggle to switch to the new Teams

Meet Microsoft Copilot

Copilot works alongside you to catch you up on chats, create meeting agendas, and much more.

Learn about Copilot in Teams

Where can I get Copilot?

Immersive spaces in Teams

Connect like never before in a 3D immersive space, helping virtual meetings and events feel more like face-to-face connections.

Make it immersive

When to use immersive space

Dive deeper into Teams​

A productivity guide full of tips, tricks, and answers when using Microsoft Teams at work.

Tips from the experts

Learn through videos​

Browse the basics or explore more with these training courses consisting of short how-to videos.

Explore more videos

Featured topics

Sign in to Teams

What's new in Teams

Record a meeting

Delete a chat

Find and join a team

Change your status

Manage your notifications

Change your meeting background

Reduce background noise in a meeting

More resources

About Teams

Get Teams Premium ​​​​​​

Use Teams for free

Accessibility in Teams

Teams features by platform

Feature release roadmap ​​​​​​

Connect and learn

Community forum ​​​​​​

Tech community blog ​​​​​​

Instructor-led training ​​​​​​

For admins and IT pros ​​​​​​

Apps and services

Manage your apps

Use LinkedIn in Teams

IMAGES

  1. ️ Discussion of results lab report. poLab : Guide to Writing a Partial

    how to write results and discussion in a lab report

  2. Write My Lab Report: Expert Assistance for Accurate Documentation

    how to write results and discussion in a lab report

  3. Formal Lab Report

    how to write results and discussion in a lab report

  4. How To Write A Conclusion For A Lab

    how to write results and discussion in a lab report

  5. How to Write A Discussion For A Lab Report

    how to write results and discussion in a lab report

  6. 40 Lab Report Templates & Format Examples

    how to write results and discussion in a lab report

VIDEO

  1. Writing an Academic Report

  2. Writing and understanding how to write a lab report

  3. How to write a lab report

  4. HOW TO WRITE A LAB REPORT w/ Dr. B

  5. Science Lab Report/Report Writing/How to Write Science Report?

  6. How to Write the Results and Discussion in A Research Paper

COMMENTS

  1. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  2. How to Write a Lab Report: Step-by-Step Guide & Examples

    A typical lab report would include the following sections: title, abstract, introduction, method, results, and discussion. The title page, abstract, references, and appendices are started on separate pages (subsections from the main body of the report are not). Use double-line spacing of text, font size 12, and include page numbers.

  3. Writing Lab Reports: Discussion

    The purpose of the discussion section is to provide a brief summary of your results, relate them to your hypotheses, and put them into context within the field of research. This is the most substantial section of your report, and where you will include your unique interpretations and ideas. The discussion must therefore address the following ...

  4. Complete Guide to Writing a Lab Report (With Example)

    Abstract. Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice.

  5. LibGuides: Lab Report Writing: Discussion/Conclusion

    Discussion or Conclusion. Once you've discussed the most important findings of your study in the Results section, you will use the Discussion section to interpret those findings and talk about why they are important (some instructors call this the Conclusion section). You might want to talk about how your results agree, or disagree, with the ...

  6. PDF A Basic Guide to Writing a Successful Laboratory Report

    2 Discussion 2.1 Coherence of a Report The discussion in a laboratory report should flow smoothly so the reader does not have to stop and question what the intent of the author is, or purpose of a particular set of data. There are several ways to ensure that the report will concisely lead the reader through a discussion. First, the report ...

  7. Writing a Lab Report: Introduction and Discussion Section Guide

    Download this page as a PDF: Writing a Lab Report. Return to Writing Studio Handouts. Part 1 (of 2): Introducing a Lab Report. The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences).

  8. Lab Report Format

    A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions. A science laboratory experiment isn't truly complete until you've written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn't the same as a lab report. The lab report format is designed to ...

  9. LibGuides: Laboratory Reports: Discussion or Conclusion

    Discussion or Conclusion. Once you've discussed the most important findings of your study in the Results section, you will use the Discussion section to interpret those findings and talk about why they are important (some instructors call this the "Conclusion" section). You might want to talk about how your results agree, or disagree, with the ...

  10. RESULTS

    Present the results of the paper, in logical order, using tables and graphs as necessary. Explain the results and show how they help to answer the research questions posed in the Introduction. Evidence does not explain itself; the results must be presented and then explained. Avoid: presenting results that are never discussed; presenting ...

  11. Results

    Results Section. You've given an introduction to the topic you studied and you've told the reader how you did your study, so you can finally start talking about the results of all your hard work! Use the Results section to summarize the findings of your study. The text of this section should focus on the major trends in the data you collected.

  12. How to Write Discussions and Conclusions

    Begin with a clear statement of the principal findings. This will reinforce the main take-away for the reader and set up the rest of the discussion. Explain why the outcomes of your study are important to the reader. Discuss the implications of your findings realistically based on previous literature, highlighting both the strengths and ...

  13. PDF Writing Chemistry Lab Reports: Results and Discussion Lesson

    Writing Chemistry Lab Reports: Results and Discussion Lesson. The format of a scientific report can vary from course to course and journal to journal. Results and discussion sections may be combined or separated depending on the requested format of a journal or course. Importantly, when presenting results separately from the discussion, we must ...

  14. Library Research Guides: STEM: How To Write A Lab Report

    Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. Title.

  15. How to Write a Lab Report

    Here is a possible order with which you can organize your lab report introduction: Intro of the intro: Plainly state what your study is doing. Background: Provide a brief overview of the topic being studied. This could include key terms and definitions.

  16. Report writing: Results & Discussion

    Here in this demo, we will write the final two sections of a physics lab report:- Analysis and results- Discussion and conclusionAs a student in this course ...

  17. PDF The Complete Guide to Writing a Report for a Scientific ...

    Remove unwanted data or labels on the figure such as legent boxes showing "data 6", "data 7". The data identifiers are good to keep in your lab notebook but are clumsy for a lab report. 5. When a plot is saved from any software such as MATLAB or LabVIEW, make sure it is saved in the PDF format or as a vector graphic.

  18. 4: Formal Lab Reports

    4. Results and Discussion. THIS IS THE MOST IMPORTANT SECTION IN THE REPORT; An effective discussion should uniquely define your experiment while also demonstrating your abiility to select the appropriate data to include, to discuss your understanding of the results in the context of the overall experiment, and to think critically and write logically.

  19. Research Guides: Writing a Scientific Paper: DISCUSSION

    Papers that are submitted to a journal for publication are sent out to several scientists (peers) who look carefully at the paper to see if it is "good science". These reviewers then recommend to the editor of a journal whether or not a paper should be published. Most journals have publication guidelines. Ask for them and follow them exactly.

  20. How to Write a Lab Report: Examples from Academic Editors

    Clean the samples thoroughly using ethanol to remove any impurities or oils. Weigh each sample accurately using a digital scale and record the initial weight. Prepare a 3% NaCl solution by dissolving 30 g of NaCl in 1000 mL of deionized water. Pour 250 mL of the 3% NaCl solution into each beaker.

  21. APA Style (7th Edition)

    Learn how to format and cite your paper in APA style with Purdue OWL's comprehensive guide on general guidelines, major sections, and resources.

  22. Free AI Report Generator—Piktochart AI

    Redefine Your Efficiency. Prompt to report in 10 seconds. Piktochart AI delivers a ready-made report in a matter of seconds. Simply provide a brief description of your desired report, whether it's visualizing survey results, creating a performance review, crafting a marketing overview, or analyzing healthcare data.

  23. PDF Writing Chemistry Lab Reports: Results and Discussion

    Writing Chemistry Lab Reports: Results and Discussion. The format of a scientific report can vary from course to course and journal to journal. Results and discussion sections may be combined or separated depending on the requested format of a journal or course. Importantly, when presenting results separately from the discussion, we must merely ...

  24. How to Understand Your Lab Results

    Labs use different reference ranges to describe normal results. That's because they often use different testing methods. This means that: To find out how your test results compare with the normal range, you need to check the reference range listed on your lab report. You can't compare your results to references ranges that you might find elsewhere.

  25. APA Sample Paper

    Media Files: APA Sample Student Paper , APA Sample Professional Paper This resource is enhanced by Acrobat PDF files. Download the free Acrobat Reader. Note: The APA Publication Manual, 7 th Edition specifies different formatting conventions for student and professional papers (i.e., papers written for credit in a course and papers intended for scholarly publication).

  26. Microsoft Teams help & learning

    Get help with your questions about Microsoft Teams from our how-to articles, tutorials, and support content.

  27. Takeaways from Fauci's testimony at contentious House hearing on Covid

    Dr. Anthony Fauci, the former director of the National Institute of Allergy and Infectious Diseases, testified on Monday at a House subcommittee hearing about the US response to the Covid-19 ...