Are you seeking one-on-one college counseling and/or essay support? Limited spots are now available. Click here to learn more.

How to Write a Lab Report – with Example/Template

April 11, 2024

how to write a lab report template

Perhaps you’re in the midst of your challenging AP chemistry class in high school, or perhaps college you’re enrolled in biology , chemistry , or physics at university. At some point, you will likely be asked to write a lab report. Sometimes, your teacher or professor will give you specific instructions for how to format and write your lab report, and if so, use that. In case you’re left to your own devices, here are some guidelines you might find useful. Continue reading for the main elements of a lab report, followed by a detailed description of the more writing-heavy parts (with a lab report example/lab report template). Lastly, we’ve included an outline that can help get you started.

What is a lab report?

A lab report is an overview of your experiment. Essentially, it explains what you did in the experiment and how it went. Most lab reports end up being 5-10 pages long (graphs or other images included), though the length depends on the experiment. Here are some brief explanations of the essential parts of a lab report:

Title : The title says, in the most straightforward way possible, what you did in the experiment. Often, the title looks something like, “Effects of ____ on _____.” Sometimes, a lab report also requires a title page, which includes your name (and the names of any lab partners), your instructor’s name, and the date of the experiment.

Abstract : This is a short description of key findings of the experiment so that a potential reader could get an idea of the experiment before even beginning.

Introduction : This is comprised of one or several paragraphs summarizing the purpose of the lab. The introduction usually includes the hypothesis, as well as some background information.

Lab Report Example (Continued)

Materials : Perhaps the simplest part of your lab report, this is where you list everything needed for the completion of your experiment.

Methods : This is where you describe your experimental procedure. The section provides necessary information for someone who would want to replicate your study. In paragraph form, write out your methods in chronological order, though avoid excessive detail.

Data : Here, you should document what happened in the experiment, step-by-step. This section often includes graphs and tables with data, as well as descriptions of patterns and trends. You do not need to interpret all of the data in this section, but you can describe trends or patterns, and state which findings are interesting and/or significant.

Discussion of results : This is the overview of your findings from the experiment, with an explanation of how they pertain to your hypothesis, as well as any anomalies or errors.

Conclusion : Your conclusion will sum up the results of your experiment, as well as their significance. Sometimes, conclusions also suggest future studies.

Sources : Often in APA style , you should list all texts that helped you with your experiment. Make sure to include course readings, outside sources, and other experiments that you may have used to design your own.

How to write the abstract

The abstract is the experiment stated “in a nutshell”: the procedure, results, and a few key words. The purpose of the academic abstract is to help a potential reader get an idea of the experiment so they can decide whether to read the full paper. So, make sure your abstract is as clear and direct as possible, and under 200 words (though word count varies).

When writing an abstract for a scientific lab report, we recommend covering the following points:

  • Background : Why was this experiment conducted?
  • Objectives : What problem is being addressed by this experiment?
  • Methods : How was the study designed and conducted?
  • Results : What results were found and what do they mean?
  • Conclusion : Were the results expected? Is this problem better understood now than before? If so, how?

How to write the introduction

The introduction is another summary, of sorts, so it could be easy to confuse the introduction with the abstract. While the abstract tends to be around 200 words summarizing the entire study, the introduction can be longer if necessary, covering background information on the study, what you aim to accomplish, and your hypothesis. Unlike the abstract (or the conclusion), the introduction does not need to state the results of the experiment.

Here is a possible order with which you can organize your lab report introduction:

  • Intro of the intro : Plainly state what your study is doing.
  • Background : Provide a brief overview of the topic being studied. This could include key terms and definitions. This should not be an extensive literature review, but rather, a window into the most relevant topics a reader would need to understand in order to understand your research.
  • Importance : Now, what are the gaps in existing research? Given the background you just provided, what questions do you still have that led you to conduct this experiment? Are you clarifying conflicting results? Are you undertaking a new area of research altogether?
  • Prediction: The plants placed by the window will grow faster than plants placed in the dark corner.
  • Hypothesis: Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.
  • How you test your hypothesis : This is an opportunity to briefly state how you go about your experiment, but this is not the time to get into specific details about your methods (save this for your results section). Keep this part down to one sentence, and voila! You have your introduction.

How to write a discussion section

Here, we’re skipping ahead to the next writing-heavy section, which will directly follow the numeric data of your experiment. The discussion includes any calculations and interpretations based on this data. In other words, it says, “Now that we have the data, why should we care?”  This section asks, how does this data sit in relation to the hypothesis? Does it prove your hypothesis or disprove it? The discussion is also a good place to mention any mistakes that were made during the experiment, and ways you would improve the experiment if you were to repeat it. Like the other written sections, it should be as concise as possible.

Here is a list of points to cover in your lab report discussion:

  • Weaker statement: These findings prove that basil plants grow more quickly in the sunlight.
  • Stronger statement: These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.
  • Factors influencing results : This is also an opportunity to mention any anomalies, errors, or inconsistencies in your data. Perhaps when you tested the first round of basil plants, the days were sunnier than the others. Perhaps one of the basil pots broke mid-experiment so it needed to be replanted, which affected your results. If you were to repeat the study, how would you change it so that the results were more consistent?
  • Implications : How do your results contribute to existing research? Here, refer back to the gaps in research that you mentioned in your introduction. Do these results fill these gaps as you hoped?
  • Questions for future research : Based on this, how might your results contribute to future research? What are the next steps, or the next experiments on this topic? Make sure this does not become too broad—keep it to the scope of this project.

How to write a lab report conclusion

This is your opportunity to briefly remind the reader of your findings and finish strong. Your conclusion should be especially concise (avoid going into detail on findings or introducing new information).

Here are elements to include as you write your conclusion, in about 1-2 sentences each:

  • Restate your goals : What was the main question of your experiment? Refer back to your introduction—similar language is okay.
  • Restate your methods : In a sentence or so, how did you go about your experiment?
  • Key findings : Briefly summarize your main results, but avoid going into detail.
  • Limitations : What about your experiment was less-than-ideal, and how could you improve upon the experiment in future studies?
  • Significance and future research : Why is your research important? What are the logical next-steps for studying this topic?

Template for beginning your lab report

Here is a compiled outline from the bullet points in these sections above, with some examples based on the (overly-simplistic) basil growth experiment. Hopefully this will be useful as you begin your lab report.

1) Title (ex: Effects of Sunlight on Basil Plant Growth )

2) Abstract (approx. 200 words)

  • Background ( This experiment looks at… )
  • Objectives ( It aims to contribute to research on…)
  • Methods ( It does so through a process of…. )
  • Results (Findings supported the hypothesis that… )
  • Conclusion (These results contribute to a wider understanding about…)

3) Introduction (approx. 1-2 paragraphs)

  • Intro ( This experiment looks at… )
  • Background ( Past studies on basil plant growth and sunlight have found…)
  • Importance ( This experiment will contribute to these past studies by…)
  • Hypothesis ( Basil plants placed in direct sunlight for 2 hours per day grow at a higher rate than basil plants placed in direct sunlight for 30 minutes per day.)
  • How you will test your hypothesis ( This hypothesis will be tested by a process of…)

4) Materials (list form) (ex: pots, soil, seeds, tables/stands, water, light source )

5) Methods (approx. 1-2 paragraphs) (ex: 10 basil plants were measured throughout a span of…)

6) Data (brief description and figures) (ex: These charts demonstrate a pattern that the basil plants placed in direct sunlight…)

7) Discussion (approx. 2-3 paragraphs)

  • Support or reject hypothesis ( These findings support the hypothesis that basil plants placed in direct sunlight grow at a higher rate than basil plants given less direct sunlight.)
  • Factors that influenced your results ( Outside factors that could have altered the results include…)
  • Implications ( These results contribute to current research on basil plant growth and sunlight because…)
  • Questions for further research ( Next steps for this research could include…)
  • Restate your goals ( In summary, the goal of this experiment was to measure…)
  • Restate your methods ( This hypothesis was tested by…)
  • Key findings ( The findings supported the hypothesis because…)
  • Limitations ( Although, certain elements were overlooked, including…)
  • Significance and future research ( This experiment presents possibilities of future research contributions, such as…)
  • Sources (approx. 1 page, usually in APA style)

Final thoughts – Lab Report Example

Hopefully, these descriptions have helped as you write your next lab report. Remember that different instructors may have different preferences for structure and format, so make sure to double-check when you receive your assignment. All in all, make sure to keep your scientific lab report concise, focused, honest, and organized. Good luck!

For more reading on coursework success, check out the following articles:

  • How to Write the AP Lang Argument Essay (With Example)
  • How to Write the AP Lang Rhetorical Analysis Essay (With Example)
  • 49 Most Interesting Biology Research Topics
  • 50 Best Environmental Science Research Topics
  • High School Success

' src=

Sarah Mininsohn

With a BA from Wesleyan University and an MFA from the University of Illinois at Urbana-Champaign, Sarah is a writer, educator, and artist. She served as a graduate instructor at the University of Illinois, a tutor at St Peter’s School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan’s Writing Workshop.

  • 2-Year Colleges
  • Application Strategies
  • Best Colleges by Major
  • Best Colleges by State
  • Big Picture
  • Career & Personality Assessment
  • College Essay
  • College Search/Knowledge
  • College Success
  • Costs & Financial Aid
  • Dental School Admissions
  • Extracurricular Activities
  • Graduate School Admissions
  • High Schools
  • Law School Admissions
  • Medical School Admissions
  • Navigating the Admissions Process
  • Online Learning
  • Private High School Spotlight
  • Summer Program Spotlight
  • Summer Programs
  • Test Prep Provider Spotlight

College Transitions Sidebar Block Image

“Innovative and invaluable…use this book as your college lifeline.”

— Lynn O'Shaughnessy

Nationally Recognized College Expert

College Planning in Your Inbox

Join our information-packed monthly newsletter.

I am a... Student Student Parent Counselor Educator Other First Name Last Name Email Address Zip Code Area of Interest Business Computer Science Engineering Fine/Performing Arts Humanities Mathematics STEM Pre-Med Psychology Social Studies/Sciences Submit

How to Write a Lab Report

Lab Reports Describe Your Experiment

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

Lab reports are an essential part of all laboratory courses and usually a significant part of your grade. If your instructor gives you an outline for how to write a lab report, use that. Some instructors require a lab report to be included in a lab notebook , while others will request a separate report. Here's a format for a lab report you can use if you aren't sure what to write or need an explanation of what to include in the different parts of the report.

A lab report is how you explain what you did in ​your experiment, what you learned, and what the results meant.

Lab Report Essentials

Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states:​

  • The title of the experiment.
  • Your name and the names of any lab partners.
  • Your instructor's name.
  • The date the lab was performed or the date the report was submitted.

The title says what you did. It should be brief (aim for ten words or less) and describe the main point of the experiment or investigation. An example of a title would be: "Effects of Ultraviolet Light on Borax Crystal Growth Rate". If you can, begin your title using a keyword rather than an article like "The" or "A".

Introduction or Purpose

Usually, the introduction is one paragraph that explains the objectives or purpose of the lab. In one sentence, state the hypothesis. Sometimes an introduction may contain background information, briefly summarize how the experiment was performed, state the findings of the experiment, and list the conclusions of the investigation. Even if you don't write a whole introduction, you need to state the purpose of the experiment, or why you did it. This would be where you state your hypothesis .

List everything needed to complete your experiment.

Describe the steps you completed during your investigation. This is your procedure. Be sufficiently detailed that anyone could read this section and duplicate your experiment. Write it as if you were giving direction for someone else to do the lab. It may be helpful to provide a figure to diagram your experimental setup.

Numerical data obtained from your procedure usually presented as a table. Data encompasses what you recorded when you conducted the experiment. It's just the facts, not any interpretation of what they mean.

Describe in words what the data means. Sometimes the Results section is combined with the Discussion.

Discussion or Analysis

The Data section contains numbers; the Analysis section contains any calculations you made based on those numbers. This is where you interpret the data and determine whether or not a hypothesis was accepted. This is also where you would discuss any mistakes you might have made while conducting the investigation. You may wish to describe ways the study might have been improved.

Conclusions

Most of the time the conclusion is a single paragraph that sums up what happened in the experiment, whether your hypothesis was accepted or rejected, and what this means.

Figures and Graphs

Graphs and figures must both be labeled with a descriptive title. Label the axes on a graph, being sure to include units of measurement. The independent variable is on the X-axis, the dependent variable (the one you are measuring) is on the Y-axis. Be sure to refer to figures and graphs in the text of your report: the first figure is Figure 1, the second figure is Figure 2, etc.

If your research was based on someone else's work or if you cited facts that require documentation, then you should list these references.

  • How to Format a Biology Lab Report
  • Science Lab Report Template - Fill in the Blanks
  • How to Write a Science Fair Project Report
  • How to Write an Abstract for a Scientific Paper
  • Six Steps of the Scientific Method
  • How To Design a Science Fair Experiment
  • Understanding Simple vs Controlled Experiments
  • Make a Science Fair Poster or Display
  • What Is an Experiment? Definition and Design
  • How to Organize Your Science Fair Poster
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Lesson Plan
  • How to Write a Film Review
  • The 10 Most Important Lab Safety Rules
  • 6 Steps to Writing the Perfect Personal Essay
  • How To Find Articles with Databases
  • How To Evaluate Articles
  • How To Read A Scientific Paper
  • How To Interpret Data
  • How To Write A Lab Report
  • How To Write A Scientific Paper
  • Get More Help
  • Reference: Encyclopedia, Handbooks & Dictionaries
  • Research Tools: Databases, Protocols & Citation Locators
  • E-Journal Lists by Subject
  • Scholarly vs Popular
  • Search Tips
  • Open Resources
  • E-Journal lists by subject
  • Develop a Research Question

Writing Lab Reports

Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. 

  • Ex: "Determining the Free Chlorine Content of Pool Water"
  • Abstracts are a summary of the experiment as a whole and should familiarize the reader with the purpose of the research. 
  • Abstracts will always be written last, even though they are the first paragraph of a lab report. 
  • Not all lab reports will require an abstract. However, they are often included in upper-level lab reports and should be studied carefully. 
  • Why was the research done or experiment conducted?
  • What problem is being addressed?
  • What results were found?
  • What are the meaning of the results?
  • How is the problem better understood now than before, if at all?

Introduction

  • The introduction of a lab report discusses the problem being studied and other theory that is relevant to understanding the findings. 
  • The hypothesis of the experiment and the motivation for the research are stated in this section. 
  • Write the introduction in your own words. Try not to copy from a lab manual or other guidelines. Instead, show comprehension of the experiment by briefly explaining the problem.

Methods and Materials

  • Ex: pipette, graduated cylinder, 1.13mg of Na, 0.67mg Ag
  • List the steps taken as they actually happened during the experiment, not as they were supposed to happen. 
  • If written correctly, another researcher should be able to duplicate the experiment and get the same or very similar results. 
  • The results show the data that was collected or found during the experiment. 
  • Explain in words the data that was collected.
  • Tables should be labeled numerically, as "Table 1", "Table 2", etc. Other figures should be labeled numerically as "Figure 1", "Figure 2", etc. 
  • Calculations to understand the data can also be presented in the results. 
  • The discussion section is one of the most important parts of the lab report. It analyzes the results of the experiment and is a discussion of the data. 
  • If any results are unexpected, explain why they are unexpected and how they did or did not effect the data obtained. 
  • Analyze the strengths and weaknesses of the design of the experiment and compare your results to other similar experiments.
  • If there are any experimental errors, analyze them.
  • Explain your results and discuss them using relevant terms and theories.
  • What do the results indicate?
  • What is the significance of the results?
  • Are there any gaps in knowledge?
  • Are there any new questions that have been raised?
  • The conclusion is a summation of the experiment. It should clearly and concisely state what was learned and its importance.
  • If there is future work that needs to be done, it can be explained in the conclusion.
  • If using any outside sources to support a claim or explain background information, those sources must be cited in the references section of the lab report. 
  • In the event that no outside sources are used, the references section may be left out. 

Other Useful Sources

  • The Lab Report
  • Sample Laboratory Report #2
  • Some Tips on Writing Lab Reports
  • Writing a Science Lab Report
  • << Previous: How To Interpret Data
  • Next: How To Write A Scientific Paper >>
  • Last Updated: Mar 8, 2024 2:26 PM
  • URL: https://guides.libraries.indiana.edu/STEM

Social media

  • Instagram for Herman B Wells Library
  • Facebook for IU Libraries

Additional resources

Featured databases.

  • Resource available to authorized IU Bloomington users (on or off campus) OneSearch@IU
  • Resource available to authorized IU Bloomington users (on or off campus) Academic Search (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) ERIC (EBSCO)
  • Resource available to authorized IU Bloomington users (on or off campus) Nexis Uni
  • Resource available without restriction HathiTrust Digital Library
  • Databases A-Z
  • Resource available to authorized IU Bloomington users (on or off campus) Google Scholar
  • Resource available to authorized IU Bloomington users (on or off campus) JSTOR
  • Resource available to authorized IU Bloomington users (on or off campus) Web of Science
  • Resource available to authorized IU Bloomington users (on or off campus) Scopus
  • Resource available to authorized IU Bloomington users (on or off campus) WorldCat

IU Libraries

  • Diversity Resources
  • About IU Libraries
  • Alumni & Friends
  • Departments & Staff
  • Jobs & Libraries HR
  • Intranet (Staff)
  • IUL site admin

FTLOScience

Complete Guide to Writing a Lab Report (With Example)

Students tend to approach writing lab reports with confusion and dread. Whether in high school science classes or undergraduate laboratories, experiments are always fun and games until the times comes to submit a lab report. What if we didn’t need to spend hours agonizing over this piece of scientific writing? Our lives would be so much easier if we were told what information to include, what to do with all their data and how to use references. Well, here’s a guide to all the core components in a well-written lab report, complete with an example.

Things to Include in a Laboratory Report

The laboratory report is simply a way to show that you understand the link between theory and practice while communicating through clear and concise writing. As with all forms of writing, it’s not the report’s length that matters, but the quality of the information conveyed within. This article outlines the important bits that go into writing a lab report (title, abstract, introduction, method, results, discussion, conclusion, reference). At the end is an example report of reducing sugar analysis with Benedict’s reagent.

The report’s title should be short but descriptive, indicating the qualitative or quantitative nature of the practical along with the primary goal or area of focus.

Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice .

Introduction

The introduction provides context to the experiment in a couple of paragraphs and relevant diagrams. While a short preamble outlining the history of the techniques or materials used in the practical is appropriate, the bulk of the introduction should outline the experiment’s goals, creating a logical flow to the next section.

Some reports require you to write down the materials used, which can be combined with this section. The example below does not include a list of materials used. If unclear, it is best to check with your teacher or demonstrator before writing your lab report from scratch.

Step-by-step methods are usually provided in high school and undergraduate laboratory practicals, so it’s just a matter of paraphrasing them. This is usually the section that teachers and demonstrators care the least about. Any unexpected changes to the experimental setup or techniques can also be documented here.

The results section should include the raw data that has been collected in the experiment as well as calculations that are performed. It is usually appropriate to include diagrams; depending on the experiment, these can range from scatter plots to chromatograms.

The discussion is the most critical part of the lab report as it is a chance for you to show that you have a deep understanding of the practical and the theory behind it. Teachers and lecturers tend to give this section the most weightage when marking the report. It would help if you used the discussion section to address several points:

  • Explain the results gathered. Is there a particular trend? Do the results support the theory behind the experiment?
  • Highlight any unexpected results or outlying data points. What are possible sources of error?
  • Address the weaknesses of the experiment. Refer to the materials and methods used to identify improvements that would yield better results (more accurate equipment, better experimental technique, etc.)  

Finally, a short paragraph to conclude the laboratory report. It should summarize the findings and provide an objective review of the experiment.

If any external sources were used in writing the lab report, they should go here. Referencing is critical in scientific writing; it’s like giving a shout out (known as a citation) to the original provider of the information. It is good practice to have at least one source referenced, either from researching the context behind the experiment, best practices for the method used or similar industry standards.

Google Scholar is a good resource for quickly gathering references of a specific style . Searching for the article in the search bar and clicking on the ‘cite’ button opens a pop-up that allows you to copy and paste from several common referencing styles.

referencing styles from google scholar

Example: Writing a Lab Report

Title : Semi-Quantitative Analysis of Food Products using Benedict’s Reagent

Abstract : Food products (milk, chicken, bread, orange juice) were solubilized and tested for reducing sugars using Benedict’s reagent. Milk contained the highest level of reducing sugars at ~2%, while chicken contained almost no reducing sugars.

Introduction : Sugar detection has been of interest for over 100 years, with the first test for glucose using copper sulfate developed by German chemist Karl Trommer in 1841. It was used to test the urine of diabetics, where sugar was present in high amounts. However, it wasn’t until 1907 when the method was perfected by Stanley Benedict, using sodium citrate and sodium carbonate to stabilize the copper sulfate in solution. Benedict’s reagent is a bright blue because of the copper sulfate, turning green and then red as the concentration of reducing sugars increases.

Benedict’s reagent was used in this experiment to compare the amount of reducing sugars between four food items: milk, chicken solution, bread and orange juice. Following this, standardized glucose solutions (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) were tested with Benedict’s reagent to determine the color produced at those sugar levels, allowing us to perform a semi-quantitative analysis of the food items.

Method : Benedict’s reagent was prepared by mixing 1.73 g of copper (II) sulfate pentahydrate, 17.30 g of sodium citrate pentahydrate and 10.00 g of sodium carbonate anhydrous. The mixture was dissolved with stirring and made up to 100 ml using distilled water before filtration using filter paper and a funnel to remove any impurities.

4 ml of milk, chicken solution and orange juice (commercially available) were measured in test tubes, along with 4 ml of bread solution. The bread solution was prepared using 4 g of dried bread ground with mortar and pestle before diluting with distilled water up to 4 ml. Then, 4 ml of Benedict’s reagent was added to each test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Next, glucose solutions were prepared by dissolving 0.5 g, 1.0 g, 1.5 g and 2.0 g of glucose in 100 ml of distilled water to produce 0.5%, 1.0%, 1.5% and 2.0% solutions, respectively. 4 ml of each solution was added to 4 ml of Benedict’s reagent in a test tube and placed in a boiling water bath for 5 minutes, then each test tube was observed.

Results : Food Solutions (4 ml) with Benedict’s Reagent (4 ml)

Glucose Solutions (4 ml) with Benedict’s Reagent (4 ml)

Semi-Quantitative Analysis from Data

Discussion : From the analysis of food solutions along with the glucose solutions of known concentrations, the semi-quantitative analysis of sugar levels in different food products was performed. Milk had the highest sugar content of 2%, with orange juice at 1.5%, bread at 0.5% and chicken with 0% sugar. These values were approximated; the standard solutions were not the exact color of the food solutions, but the closest color match was chosen.

One point of contention was using the orange juice solution, which conferred color to the starting solution, rendering it green before the reaction started. This could have led to the final color (and hence, sugar quantity) being inaccurate. Also, since comparing colors using eyesight alone is inaccurate, the experiment could be improved with a colorimeter that can accurately determine the exact wavelength of light absorbed by the solution.

Another downside of Benedict’s reagent is its inability to react with non-reducing sugars. Reducing sugars encompass all sugar types that can be oxidized from aldehydes or ketones into carboxylic acids. This means that all monosaccharides (glucose, fructose, etc.) are reducing sugars, while only select polysaccharides are. Disaccharides like sucrose and trehalose cannot be oxidized, hence are non-reducing and will not react with Benedict’s reagent. Furthermore, Benedict’s reagent cannot distinguish between different types of reducing sugars.

Conclusion : Using Benedict’s reagent, different food products were analyzed semi-quantitatively for their levels of reducing sugars. Milk contained around 2% sugar, while the chicken solution had no sugar. Overall, the experiment was a success, although the accuracy of the results could have been improved with the use of quantitative equipment and methods.

Reference :

  • Raza, S. I., Raza, S. A., Kazmi, M., Khan, S., & Hussain, I. (2021). 100 Years of Glucose Monitoring in Diabetes Management.  Journal of Diabetes Mellitus ,  11 (5), 221-233.
  • Benedict, Stanley R (1909). A Reagent for the Detection of Reducing Sugars.  Journal of Biological Chemistry ,  5 , 485-487.

Using this guide and example, writing a lab report should be a hassle-free, perhaps even enjoyable process!

About the Author

sean author

Sean is a consultant for clients in the pharmaceutical industry and is an associate lecturer at La Trobe University, where unfortunate undergrads are subject to his ramblings on chemistry and pharmacology.

You Might Also Like…

Organize your lab with the 5s method.

extended release drugs ftloscience post

Pros and Cons of Extended-Release Drug Products

patreon ftloscience

If our content has been helpful to you, please consider supporting our independent science publishing efforts: for just $1 a month.

© 2023 FTLOScience • All Rights Reserved

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Lab Report Format – How to Write a Laboratory Report

A typical lab report format includes a title, introduction, procedure, results, discussion, and conclusions.

A science laboratory experiment isn’t truly complete until you’ve written the lab report. You may have taken excellent notes in your laboratory notebook, but it isn’t the same as a lab report. The lab report format is designed to present experimental results so they can be shared with others. A well-written report explains what you did, why you did it, and what you learned. It should also generate reader interest, potentially leading to peer-reviewed publication and funding.

Sections of a Lab Report

There is no one lab report format. The format and sections might be specified by your instructor or employer. What really matters is covering all of the important information.

Label the sections (except the title). Use bold face type for the title and headings. The order is:

You may or may not be expected to provide a title page. If it is required, the title page includes the title of the experiment, the names of the researchers, the name of the institution, and the date.

The title describes the experiment. Don’t start it with an article (e.g., the, an, a) because it messes up databases and isn’t necessary. For example, a good title might be, “Effect of Increasing Glucose Concentration on Danio rerio Egg Hatching Rates.” Use title case and italicize the scientific names of any species.

Introduction

Sometimes the introduction is broken into separate sections. Otherwise, it’s written as a narrative that includes the following information:

  • State the purpose of the experiment.
  • State the hypothesis.
  • Review earlier work on the subject. Refer to previous studies. Cover the background so a reader understands what is known about a subject and what you hope to learn that is new.
  • Describe your approach to answering a question or solving a problem. Include a theory or equation, if appropriate.

This section describes experimental design. Identify the parameter you changed ( independent variable ) and the one you measured ( dependent variable ). Describe the equipment and set-up you used, materials, and methods. If a reader can’t picture the apparatus from your description, include a photograph or diagram. Sometimes this section is broken into “Materials” and “Methods.”

Your lab notebook contains all of the data you collected in the experiment. You aren’t expected to reproduce all of this in a lab report. Instead, provide labelled tables and graphs. The first figure is Figure 1, the second is Figure 2, etc. The first graph is Graph 1. Refer to figures and graphs by their figure number. For some experiments, you may need to include labelled photographs. Cite the results of any calculations you performed, such as slope and standard deviation. Discuss sources of error here, including instrument, standard, and random errors.

Discussion or Conclusions

While the “Results” section includes graphs and tables, the “Discussion” or “Conclusions” section focuses on what the results mean. This is where you state whether or not the objective of the experiment was met and what the outcome means.  Propose reasons for discrepancies between expected and actual outcomes. Finally, describe the next logical step in your research and ways you might improve on the experiment.

References or Bibliography

Did you build upon work conducted by someone else? Cite the work. Did you consult a paper relating to the experiment? Credit the author. If you’re unsure whether to cite a reference or not, a good rule of thumb is to include a reference for any fact not known to your audience. For some reports, it’s only necessary to list publications directly relating to your procedure and conclusions.

The Tone of a Lab Report

Lab reports should be informative, not entertaining. This isn’t the place for humor, sarcasm, or flowery prose. A lab report should be:

  • Concise : Cover all the key points without getting crazy with the details.
  • Objective : In the “Conclusions” section, you can propose possible explanations for your results. Otherwise, keep your opinions out of the report. Instead, present facts and an analysis based on logic and math.
  • Critical : After presenting what you did, the report focuses on what the data means. Be on the lookout for sources of error and identify them. Use your understanding of error to determine how reliable your results are and gauge confidence in your conclusions.

Related Posts

Writing Studio

Writing a lab report: introduction and discussion section guide.

In an effort to make our handouts more accessible, we have begun converting our PDF handouts to web pages. Download this page as a PDF:   Writing a Lab Report Return to Writing Studio Handouts

Part 1 (of 2): Introducing a Lab Report

The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences). Provide background theory, previous research, or formulas the reader should know. Usually, an instructor does not want you to repeat whatever the lab manual says, but to show your understanding of the problem.

Questions an Effective Lab Report Introduction Should Answer

What is the problem.

Describe the problem investigated. Summarize relevant research to provide context, key terms, and concepts so that your reader can understand the experiment.

Why is it important?

Review relevant research to provide a rationale for the investigation. What conflict, unanswered question, untested population, or untried method in existing research does your experiment address? How will you challenge or extend the findings of other researchers?

What solution (or step toward a solution) do you propose?

Briefly describe your experiment : hypothesis , research question , general experimental design or method , and a justification of your method (if alternatives exist).

Tips on Composing Your Lab Report’s Introduction

  • Move from the general to the specific – from a problem in research literature to the specifics of your experiment.
  • Engage your reader – answer the questions: “What did I do?” “Why should my reader care?”
  • Clarify the links between problem and solution, between question asked and research design, and between prior research and the specifics of your experiment.
  • Be selective, not exhaustive, in choosing studies to cite and the amount of detail to include. In general, the more relevant an article is to your study, the more space it deserves and the later in the introduction it appears.
  • Ask your instructor whether or not you should summarize results and/or conclusions in the Introduction.
  • “The objective of the experiment was …”
  • “The purpose of this report is …”
  • “Bragg’s Law for diffraction is …”
  • “The scanning electron microscope produces micrographs …”

Part 2 (of 2): Writing the “Discussion” Section of a Lab Report

The discussion is the most important part of your lab report, because here you show that you have not merely completed the experiment, but that you also understand its wider implications. The discussion section is reserved for putting experimental results in the context of the larger theory. Ask yourself: “What is the significance or meaning of the results?”

Elements of an Effective Discussion Section

What do the results indicate clearly? Based on your results, explain what you know with certainty and draw conclusions.

Interpretation

What is the significance of your results? What ambiguities exist? What are logical explanations for problems in the data? What questions might you raise about the methods used or the validity of the experiment? What can be logically deduced from your analysis?

Tips on the Discussion Section

1. explain your results in terms of theoretical issues..

How well has the theory been illustrated? What are the theoretical implications and practical applications of your results?

For each major result:

  • Describe the patterns, principles, and relationships that your results show.
  • Explain how your results relate to expectations and to literature cited in your Introduction. Explain any agreements, contradictions, or exceptions.
  • Describe what additional research might resolve contradictions or explain exceptions.

2. Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, be sure that you have identified the metal and its attributes.

3. Compare expected results with those obtained.

If there were differences, how can you account for them? Were the instruments able to measure precisely? Was the sample contaminated? Did calculated values take account of friction?

4. Analyze experimental error along with the strengths and limitations of the experiment’s design.

Were any errors avoidable? Were they the result of equipment?  If the flaws resulted from the experiment design, explain how the design might be improved. Consider, as well, the precision of the instruments that were used.

5. Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not in order to change your answer, but in order to look for and to account for or analyze any anomalies between the groups. Also, consider comparing your results to published scientific literature on the topic.

The “Introducing a Lab Report” guide was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

The “Writing the Discussion Section of a Lab Report” resource was adapted from the University of Toronto Engineering Communications Centre and University of Wisconsin-Madison Writing Center.

Last revised: 07/2008 | Adapted for web delivery: 02/2021

In order to access certain content on this page, you may need to download Adobe Acrobat Reader or an equivalent PDF viewer software.

UCI Libraries Mobile Site

  • Langson Library
  • Science Library
  • Grunigen Medical Library
  • Law Library
  • Connect From Off-Campus
  • Accessibility
  • Gateway Study Center

Libaries home page

Email this link

Writing a scientific paper, the scientific paper,   scientific communication, guides from other universities and professional societies.

  • INTRODUCTION
  • LITERATURE CITED
  • Bibliography of guides to scientific writing and presenting
  • Peer Review
  • Presentations
  • Lab Report Writing Guides on the Web

Profile Photo

Dear Novice Writer,

When I was in your shoes and preparing my first paper, I consulted a book on how to write. I found there a sentence encouraging the reader to do the following:

" After standing in boiling water for an hour, examine the contents of the flask."

I had a pretty good idea what was wrong with the sentence but, at the time I couldn't figure out how to revise it, and the author didn't tell me.

From: How to write and Illustrate a Scientific Paper (2nd ed.) Bjorn Gustavii.

No one knows how to write a scientific paper without practice and help.  Many science students practice this skill when they are asked to write lab reports. This guide will describe some best practices for scientific writing and give you some additional sources to explore.

If you have read scientific papers, you will have noticed that a standard format is frequently used. This format allows a researcher to present information clearly and concisely. Scientists communicate new ideas by publishing their research in a specialized format called the journal article . 

This form usually includes 6 parts:

1) abstract (a summary of the article)

2) introduction (a brief review of why they chose this experiment)

3) materials and methods (what organisms and equipment were used)

4) results (what was found)

5) discussion (what it means)

6) references (the list of journal articles and books that the scientist referred to in the paper).

  • George Mason University Guide
  • Bates College Guide
  • Writing Resources on the World Wide Web
  • University of Toronto Engineering Communication Centre Online Writing Handbook
  • North Carolina State University Guide to Writing Lab Reports (LABWRITE)
  • Next: TITLE >>
  • Last Updated: Aug 4, 2023 9:33 AM
  • URL: https://guides.lib.uci.edu/scientificwriting

Off-campus? Please use the Software VPN and choose the group UCIFull to access licensed content. For more information, please Click here

Software VPN is not available for guests, so they may not have access to some content when connecting from off-campus.

how to write an lab report

Princeton Correspondents on Undergraduate Research

How to Write An Effective Lab Report

how to write an lab report

Whether you are in lab for general chemistry, independent work, or senior thesis, almost all lab experiments will be followed up with a lab report or paper. Although it should be relatively easy to write about an experiment you completed, this is often the most difficult part of lab work, especially when the results are unexpected. In this post, I will outline the components of a lab report while offering tips on how to write one.

Understand Your Experiments Thoroughly

Before you begin writing your draft, it is important that you understand your experiment, as this will help you decide what to include in your paper. When I wrote my first organic chemistry lab report, I rushed to begin answering the discussion questions only to realize halfway through that I had a major conceptual error. Because of this, I had to revise most of what I had written so far, which cost me a lot of time. Know what the purpose of the lab is, formulate the hypothesis, and begin to think about the results you are expecting. At this point, it is helpful to check in with your Lab TA, mentor, or principal investigator (PI) to ensure that you thoroughly understand your project. 

The abstract of your lab report will generally consist of a short summary of your entire report, typically in the same order as your report. Although this is the first section of your lab report, this should be the last section you write. Rather than trying to follow your entire report based on your abstract, it is easier if you write your report first before trying to summarize it.

Introduction and Background

The introduction and background of your report should establish the purpose of your experiment (what principles you are examining), your hypothesis (what you expect to see and why), and relevant findings from others in the field. You have likely done extensive reading about the project from textbooks, lecture notes, or scholarly articles. But as you write, only include background information that is relevant to your specific experiments. For instance, over the summer when I was still learning about metabolic engineering and its role in yeast cells, I read several articles detailing this process. However, a lot of this information was a very broad introduction to the field and not directly related to my project, so I decided not to include most of it. 

This section of the lab report should not contain a step-by-step procedure of your experiments, but rather enough details should be included so that someone else can understand and replicate what you did. From this section, the reader should understand how you tested your hypothesis and why you chose that method. Explain the different parts of your project, the variables being tested, and controls in your experiments. This section will validate the data presented by confirming that variables are being tested in a proper way.

You cannot change the data you collect from your experiments; thus the results section will be written for you. Your job is to present these results in appropriate tables and charts. Depending on the length of your project, you may have months of data from experiments or just a three-hour lab period worth of results. For example, for in-class lab reports, there is usually only one major experiment, so I include most of the data I collect in my lab report. But for longer projects such as summer internships, there are various preliminary experiments throughout, so I select the data to include. Although you cannot change the data, you must choose what is relevant to include in your report. Determine what is included in your report based on the goals and purpose of your project.

Discussion and Conclusion

In this section, you should analyze your results and relate your data back to your hypothesis. You should mention whether the results you obtained matched what was expected and the conclusions that can be drawn from this. For this section, you should talk about your data and conclusions with your lab mentors or TAs before you begin writing. As I mentioned above, by consulting with your mentors, you will avoid making large conceptual error that may take a long time to address.

There is no correct order for how to write a report, but it is generally easier to write some sections before others. For instance, because your results cannot be changed, it is easier to write the results section first. Likewise, because you also cannot change the methods you used in your experiment, it is helpful to write this section after writing your results. Although there are multiple ways to write and format a lab report or research paper, the goals of every report are the same: to describe what you did, your results, and why they are significant. As you write, keep your audience and these goals in mind.

— Saira Reyes, Engineering Correspondent

Share this:

  • Share on Tumblr

how to write an lab report

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Writing Home
  • Writing Advice Home

The Lab Report

  • Printable PDF Version
  • Fair-Use Policy

This document describes a general format for lab reports that you can adapt as needed. Lab reports are the most frequent kind of document written in engineering and can count for as much as 25% of a course yet little time or attention is devoted to how to write them well. Worse yet, each professor wants something a little different. Regardless of variations, however, the goal of lab reports remains the same: document your findings and communicate their significance. With that in mind, we can describe the report’s format and basic components. Knowing the pieces and purpose, you can adapt to the particular needs of a course or professor.

A good lab report does more than present data; it demonstrates the writer’s comprehension of the concepts behind the data. Merely recording the expected and observed results is not sufficient; you should also identify how and why differences occurred, explain how they affected your experiment, and show your understanding of the principles the experiment was designed to examine. Bear in mind that a format, however helpful, cannot replace clear thinking and organized writing. You still need to organize your ideas carefully and express them coherently.

Typical Components

  • Introduction
  • Methods and Materials (or Equipment)
  • Experimental Procedure
  • Further Reading

1. The Title Page needs to contain the name of the experiment, the names of lab partners, and the date. Titles should be straightforward, informative, and less than ten words (i.e. Not “Lab #4” but “Lab #4: Sample Analysis using the Debye-Sherrer Method”). 2. The Abstract summarizes four essential aspects of the report: the purpose of the experiment (sometimes expressed as the purpose of the report), key findings, significance and major conclusions. The abstract often also includes a brief reference to theory or methodology. The information should clearly enable readers to decide whether they need to read your whole report. The abstract should be one paragraph of 100-200 words (the sample below is 191 words).

Quick Abstract Reference

  • Key result(s)
  • Most significant point of discussion
  • Major conclusion

May Include:

  • Brief method
  • Brief theory

Restrictions:

ONE page 200 words MAX.

Sample Abstract

This experiment examined the effect of line orientation and arrowhead angle on a subject’s ability to perceive line length, thereby testing the Müller-Lyer illusion. The Müller-Lyer illusion is the classic visual illustration of the effect of the surrounding on the perceived length of a line. The test was to determine the point of subjective equality by having subjects adjust line segments to equal the length of a standard line. Twenty-three subjects were tested in a repeated measures design with four different arrowhead angles and four line orientations. Each condition was tested in six randomized trials. The lines to be adjusted were tipped with outward pointing arrows of varying degrees of pointedness, whereas the standard lines had inward pointing arrows of the same degree. Results showed that line lengths were overestimated in all cases. The size of error increased with decreasing arrowhead angles. For line orientation, overestimation was greatest when the lines were horizontal. This last is contrary to our expectations. Further, the two factors functioned independently in their effects on subjects’ point of subjective equality. These results have important implications for human factors design applications such as graphical display interfaces.

3. The introduction is more narrowly focussed than the abstract. It states the objective of the experiment and provides the reader with background to the experiment. State the topic of your report clearly and concisely, in one or two sentences:

Quick Intro Reference

  • Purpose of the experiment
  • Important background and/or theory

May include:

  • Description of specialized equipment
  • Justification of experiment’s importance
Example: The purpose of this experiment was to identify the specific element in a metal powder sample by determining its crystal structure and atomic radius. These were determined using the Debye-Sherrer (powder camera) method of X-ray diffraction.

A good introduction also provides whatever background theory, previous research, or formulas the reader needs to know. Usually, an instructor does not want you to repeat the lab manual, but to show your own comprehension of the problem. For example, the introduction that followed the example above might describe the Debye-Sherrer method, and explain that from the diffraction angles the crystal structure can be found by applying Bragg’s law. If the amount of introductory material seems to be a lot, consider adding subheadings such as: Theoretical Principles or Background.

Note on Verb Tense

Introductions often create difficulties for students who struggle with keeping verb tenses straight. These two points should help you navigate the introduction:

“The objective of the experiment was…”
“The purpose of this report is…” “Bragg’s Law for diffraction is …” “The scanning electron microscope produces micrographs …”

4. Methods and Materials (or Equipment) can usually be a simple list, but make sure it is accurate and complete. In some cases, you can simply direct the reader to a lab manual or standard procedure: “Equipment was set up as in CHE 276 manual.” 5. Experimental Procedure describes the process in chronological order. Using clear paragraph structure, explain all steps in the order they actually happened, not as they were supposed to happen. If your professor says you can simply state that you followed the procedure in the manual, be sure you still document occasions when you did not follow that exactly (e.g. “At step 4 we performed four repetitions instead of three, and ignored the data from the second repetition”). If you’ve done it right, another researcher should be able to duplicate your experiment. 6. Results are usually dominated by calculations, tables and figures; however, you still need to state all significant results explicitly in verbal form, for example:

Quick Results Reference

  • Number and Title tables and graphs
  • Use a sentence or two to draw attention to key points in tables or graphs
  • Provide sample calculation only
  • State key result in sentence form
Using the calculated lattice parameter gives, then, R = 0.1244nm.

Graphics need to be clear, easily read, and well labeled (e.g. Figure 1: Input Frequency and Capacitor Value). An important strategy for making your results effective is to draw the reader’s attention to them with a sentence or two, so the reader has a focus when reading the graph.

In most cases, providing a sample calculation is sufficient in the report. Leave the remainder in an appendix. Likewise, your raw data can be placed in an appendix. Refer to appendices as necessary, pointing out trends and identifying special features. 7. Discussion is the most important part of your report, because here, you show that you understand the experiment beyond the simple level of completing it. Explain. Analyse. Interpret. Some people like to think of this as the “subjective” part of the report. By that, they mean this is what is not readily observable. This part of the lab focuses on a question of understanding “What is the significance or meaning of the results?” To answer this question, use both aspects of discussion:

More particularly, focus your discussion with strategies like these:

Compare expected results with those obtained.

If there were differences, how can you account for them? Saying “human error” implies you’re incompetent. Be specific; for example, the instruments could not measure precisely, the sample was not pure or was contaminated, or calculated values did not take account of friction.

Analyze experimental error.

Was it avoidable? Was it a result of equipment? If an experiment was within the tolerances, you can still account for the difference from the ideal. If the flaws result from the experimental design explain how the design might be improved.

Explain your results in terms of theoretical issues.

Often undergraduate labs are intended to illustrate important physical laws, such as Kirchhoff’s voltage law, or the Müller-Lyer illusion. Usually you will have discussed these in the introduction. In this section move from the results to the theory. How well has the theory been illustrated?

Relate results to your experimental objective(s).

If you set out to identify an unknown metal by finding its lattice parameter and its atomic structure, you’d better know the metal and its attributes.

Compare your results to similar investigations.

In some cases, it is legitimate to compare outcomes with classmates, not to change your answer, but to look for any anomalies between the groups and discuss those.

Analyze the strengths and limitations of your experimental design.

This is particularly useful if you designed the thing you’re testing (e.g. a circuit). 8. Conclusion can be very short in most undergraduate laboratories. Simply state what you know now for sure, as a result of the lab:

Quick Conclusion Reference

  • State what’s known
  • State significance
  • Suggest further research
Example: The Debye-Sherrer method identified the sample material as nickel due to the measured crystal structure (fcc) and atomic radius (approximately 0.124nm).

Notice that, after the material is identified in the example above, the writer provides a justification. We know it is nickel because of its structure and size. This makes a sound and sufficient conclusion. Generally, this is enough; however, the conclusion might also be a place to discuss weaknesses of experimental design, what future work needs to be done to extend your conclusions, or what the implications of your conclusion are. 9. References include your lab manual and any outside reading you have done. Check this site’s documentation page to help you organize references in a way appropriate to your field. 10. Appendices typically include such elements as raw data, calculations, graphs pictures or tables that have not been included in the report itself. Each kind of item should be contained in a separate appendix. Make sure you refer to each appendix at least once in your report. For example, the results section might begin by noting: “Micrographs printed from the Scanning Electron Microscope are contained in Appendix A.”

To learn more about writing science papers, visit our handout on writing in the sciences .

Chemistry Hall

Chemistry hall – from cutting-edge research highlights to educational resources.

Chemistry Hall From Cutting-Edge Research Highlights to Home Chemistry Experiments

How to Write the Perfect Chemistry Lab Report: A Definitive Guide

February 11, 2020 By Guest Posts Leave a Comment

Students have to deal with multiple academic tasks, and writing lab reports (lots of them!) is one of them. Its main purpose is to explain what you did in your experiment, what you learned and what the results meant.

Performing experiments and reporting them properly is a cornerstone of on your way into learning chemistry .

But how do you write a chemistry lab report properly?

It’s now time to find out!

writing a chemistry lab report for an experiment

Our ultimate guide sheds light on the main parts of lab report writing. You ought to be aware of every section and understand how to complete them properly. Therefore, we have divided our guide into three major sections that are:

  • Parts of the lab report;
  • A step-by-step review;
  • Writing your project.

General Information

It’s necessary to begin with an overview of the main sections that should be present on a laboratory report for chemistry.

Mind that sometimes these sections are called differently but have the same purpose. Some of the sections may be missing, but the general structure should be close to this. Everything depends on the educational institution.

It is important to know that usually lab reports are written after the lab session is finished . This means that you need to have everything previously recorded in your lab notebook . You are supposed to keep track of everything you do in the lab in your laboratory notebook, and then using that notebook to write down your lab report, not the other way around.

Reviewing Every Step

Now, we’d like to go through the main stages of a chemistry lab report. It’s necessary to add brief comments concerning each of them. Your laboratory report begins with a title page. You already know what it consists of. Let’s check how to compose it correctly. The information must be presented on the upper right-hand side of the page. All the points (the title, your name, collaborators, etc.) should be mentioned on the separate line.

Afterward comes the second part, which includes:

  • The course title
  • Title of the experiment
  • Title of the parts within the experiment
  • Semester, year, etc. (optional)

This data appears in the middle of the title page.

The next section is the Introduction and it begins with this word in the left upper corner of your report. It should consist of no more than a couple of paragraphs and end with at least one hypothesis.

The body of your project consists of the procedure, materials and methods employed; data; results and observations.  The section Procedure commonly consists of several steps that were followed for the proper conduction of the experiment(s). They could be divided in different parts, and those would describe your actions.

The section Data contains the numerical facts and Observations that provide the changes that took place. Afterwards, you move to the Discussions, in which you ought to plainly explain all the numbers, observations and collected data. Your conclusions provide an overall summary of the entire lab report, and the whole experimental session itself.

Writing a Chemistry Lab Report

The last lap in our “race” is to write a laboratory report . We have already mentioned the main constituents of the title page. Therefore, we can hit the text of your project. Your abstract appears soon after the title page. An abstract is a quick summary that sums up the whole thing (hypothesis to be proven, and conclusions that are reached). Nonetheless, you should leave some space and skip it until the entire project is finished. It is recommended to write the abstract last. The main point is that this section provides a brief review of what your lab report is about and what you’ve managed to achieve.

Main Sections

The introductory part tells your readers what to expect from the project. Write a couple o paragraphs and explain the purpose of your experiment. Including references here is also highly encouraged. The last sentence of your introduction is called a hypothesis or a thesis statement. It shows what you hope to achieve at the end of your research.

The main body consists of several parts and of course, each has its purpose. You should introduce the materials and methods you need to conduct the research. Explain your choice and how your choice helps to conduct a safe and accurate study.

Take instant records of everything that happens during the experiment in your lab notebook . Never rely on your memory!

Afterwards, you’ll interpret the data and explain it using plain words. Don’t draw any conclusions when you record data and don’t explain it in the section called Results. This function should be fulfilled in the sections Discussions or Analysis sections, which should come right afterwards.

Your conclusion makes a brief summary. It should consist of 3-4 sentences, not many more. Restate your hypothesis in other words. Mention whether you’ve achieved your initial goal and explain its value.

Importantly, do realize that if a hypothesis cannot be proven, or an experiment doesn’t give you the results you expected, it doesn’t mean that your experiment and lab session was a failure. It is extremely common in chemistry to find yourself on this kind of situations! You only need to be able to explain why you got the results that you got, and how would you go around to fix them!

Further Sections on Your Report

Don’t forget about the contributors (labmates, supervisiors…) to your research.

You should also obligatorily use some secondary sources to support your theory. Therefore, you have to cite and make references according to the assigned writing format. You can reference other articles all over your manuscript (especially in the introduction and discussion sections), but don’t forget to put them together (or at the bottom of each page), and cite them properly.

The final step is to proofread your lab report. You’re free to use reading aloud and in your head, reading everything again, and using special grammar and spelling checking applications.

To sum up, keep in mind all these guidelines when you’re assigned to write a lab report. Thus, you’ll never miss something important, which can cost you essential grades. Write each section properly to receive the highest grades for your experiment. Always be clear, cite the appropriate references, and be objective with your analysis and conclusions!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

AFFILIATE DISCLAIMER

Privacy overview.

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Science Writing

How to Write a Scientific Lab Report: Basic Format & Key Parts

Last Updated: March 12, 2024 Fact Checked

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. This article has been fact-checked, ensuring the accuracy of any cited facts and confirming the authority of its sources. This article has been viewed 153,705 times.

If you've just finished an experiment in your physics class, you might have to write a report about it. This may sound intimidating, but it's actually a simple process that helps you explain your experiment and your results to your teacher and anyone else who is interested in learning about it. Once you know what sections to include in your report and what writing techniques to use, you'll be able to write a great physics lab report in no time.

Including the Proper Sections

Step 1 Start with a cover sheet.

  • Your name and the name of your partner(s)
  • The title of your experiment
  • The date you conducted the experiment
  • Your teacher's name
  • Information that identifies which class you are in

Step 2 Include an abstract.

  • Keep your abstract brief and note the purpose of the experiment, the hypothesis, and any major findings.

Step 3 Consider adding an introduction.

  • If a diagram will help your audience understand your procedure, include it in this section.
  • You may be tempted to write this as a list, but it's best to stick to paragraph form.
  • Some teachers may require a separate section on the materials and apparatuses that were used to conduct the experiment.
  • If you are following instructions from a lab book, do not just copy the steps from the book. Explain the procedure in your own words to demonstrate that you understand how and why you are collecting each piece of data.

Step 6 Include your raw data.

  • You may include graphs or charts that highlight the most important pieces of data here as well, but do not begin to analyze the data quite yet.
  • Explain any reasonable uncertainties that may appear in your data. No experiment is completely free of uncertainties, so ask your teacher if you're not sure what to include.
  • Always include uncertainty bars in your graphs if the uncertainties of the data are known.
  • Also discuss any potential sources of error and how those errors may have affected your experiment.

Step 7 Provide sample calculations.

  • Some teachers may allow you to include your calculations in the data section of our report.

Step 8 Analyze your data and state your conclusion.

  • Include information about how your results compare to your expectations or hypothesis, what implications these results have for the world of physics, and what further experiments could be conducted to learn more about your results.
  • You can also include your own ideas for improving upon the experiment.
  • Be sure to include any graphs that would be appropriate to illustrate your analysis of the data and help your readers better understand it. [8] X Research source
  • Some teachers may request that you create two separate analysis and conclusion sections.

Using the Correct Writing Techniques

Step 1 Use full sentences and proper grammar.

  • Bullet pointed lists are not appropriate for most sections of your report. You may be able to use them for short sections like your materials and apparatuses list.
  • Keep in mind that one of the main objectives of your lab report is to guide others in recreating your experiment. If you can't clearly explain what you did and how you did it, no one will ever be able to reproduce your results.

Step 2 Focus on clarity.

  • Active sentences are usually easier to understand than passive sentences, so try to minimize your use of the passive voice whenever possible. For example, if you wrote, "These results are easily reproducible by anyone who has the correct equipment," try changing it to "Anyone who has the correct equipment should be able to reproduce these results." The passive voice is not always wrong, so don't be afraid to leave a sentence in the passive voice if you think it makes more sense that way.

Step 3 Stay on topic.

  • Don't jump ahead and discuss the results of the experiment before you get to that section. Just because you understand everything that happened with your experiment, does not mean your readers will. You need to walk them through it step by step.
  • Cut out any sentences that don't add anything of substance to your report. Your readers will only get frustrated if they have to read through a bunch of fluff in order to find your main point.

Step 4 Stick to the third person.

  • For example, instead of writing, "I noticed that the data we gathered was not consistent with our previous results," write, "The data is not consistent with the previous results."
  • It may be tricky to maintain active voice when writing in third person, so it’s okay to use passive voice if it makes more sense to do so.

Step 5 Write in the present tense.

  • The past tense is appropriate for discussing your procedure and the results of past experiments.

Step 6 Include headings and labels.

Community Q&A

Community Answer

  • Try not to make your sentences too long or difficult. Even complex information can be written out in a way that is easy to understand. Thanks Helpful 8 Not Helpful 0
  • Your teacher may have a slightly different way of breaking up the sections, so it's always a good idea to ask. Be sure to include any additional sections that your teacher specifically requests. Thanks Helpful 5 Not Helpful 0
  • If there were multiple parts to your experiment, you might want to consider doing a mini report for each section so your readers can easily follow along with your data and results for each part before moving on to the next one. Thanks Helpful 1 Not Helpful 0

how to write an lab report

You Might Also Like

Write a Good Lab Conclusion in Science

  • ↑ https://www.baylor.edu/content/services/document.php/110769.pdf
  • ↑ https://centers.njit.edu/introphysics/physics-lab-report-guidelines/
  • ↑ https://physics.unc.edu/undergraduate/courses-credits-placement/sample-report/
  • ↑ https://ruby.fgcu.edu/courses/mfauerba/Physics_Procedure_for_Writing_a_Physics_Lab_Report.htm
  • ↑ https://guides.lib.purdue.edu/c.php?g=352816&p=2377936
  • ↑ https://academicguides.waldenu.edu/writingcenter/writingprocess/proofreading

About This Article

Bess Ruff, MA

To write a physics lab report, start by putting together a cover sheet with your name, and the title and date of the experiment. Then, include an abstract, or summary of your report, followed by your objective, procedures, and methods. After you’ve talked about how the experiment was conducted, present your raw data, and provide any important calculations used with the data. Next, write an analysis of your data, and a conclusion to explain what you've learned. Finally, complete the report by writing up your references. For tips from our Science reviewer on how to make your report sound as professional as possible, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

Aisha Awwal

Aisha Awwal

Jan 8, 2022

Did this article help you?

Aisha Awwal

Mandila Noah

Sep 27, 2017

Martin A.

Apr 25, 2017

Kia Sparkle

Kia Sparkle

Sep 20, 2017

Emmanuel Sirmah

Emmanuel Sirmah

Nov 1, 2017

Am I a Narcissist or an Empath Quiz

Featured Articles

Take Better Care of Yourself

Trending Articles

Confront a Cheater

Watch Articles

Make Sugar Cookies

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Don’t miss out! Sign up for

wikiHow’s newsletter

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Physics LibreTexts

27.5: Guide for writing a lab report

  • Last updated
  • Save as PDF
  • Page ID 19582

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Write a few short sentences briefly summarizing what you did, how you did it, what you found and whether anything went wrong in your experiment.

Describe relevant theories that relate to your experiment here, and the steps to carry out your procedure.

Consider the following questions:

  • What are the relevant theories/principles that you used?
  • What equations did you use? Show how you modeled your experiment.
  • What materials, equipment and/or tools were necessary in making your measurements?
  • Where was this experiment conducted?
  • How did you make your measurements? How many times did you make them?
  • How did you record your measurements?
  • How did you determine and minimize the uncertainties in your measurements? Why did you choose to measure a specific quantity in a certain way?

It can be useful to predict the value (and uncertainty) that you expect to measure before conducting the measurement. You should report on this initial prediction in order to help you better understand the data from your experiment.

  • Predict your measured values and uncertainties. How precise do you expect your measurements to be?
  • What assumptions did you have to make to predict your results?
  • Have these predictions influenced how you should approach your procedure? Make relevant adjustments to the procedure based on your predictions.

Data and Analysis

Present your data. Include relevant tables/graphs. Describe in detail how you analysed the data, including how you propagated uncertainties. If the data do not agree with your model prediction (or the prediction from your proposal), examine whether you can improve your model.

  • How did you obtain the “final” measurement/value from your collected data?
  • How did you propagate uncertainties? Why did you do it that way?
  • What is the relative uncertainty on your value(s)?

Discussion and Conclusion

Summarize your findings, and address whether or not your model described the data. Discuss possible reasons why your measured value is not consisted with your model expectation (is it the model? is it the data?).

  • Were there any systematic errors that you didn’t consider?
  • Did you learn anything that you didn’t previously know? (eg. about the subject of your experiment, about the scientific method in general)
  • If you could redo this experiment, what would you change (if anything)?

Guide for reviewing a lab report

Summarize your overall evaluation of the report in 2-3 sentences. Focus on the experiment’s method and its result. For example, “The authors dropped balls from different heights to determine the value of g”. You don’t need to go into the specific details, just give a high level summary of the report. If the report is unclear, specify this.

  • Is the the procedure well thought-out, clearly and concisely described?
  • Do you have sufficient information that you could repeat this experiment?
  • Does the report clearly describe how different quantities were measured and how the uncertainties were determined?
  • Does the report motivate why the specific procedure was chosen? (e.g. to minimize uncertainties).
  • Does the experiment clearly state how uncertainties were propagated and how the data were analyzed?
  • Do you believe their result to be scientifically valid?

Overall Rating of the Experiment

Give the report an overall score, based on the criteria described above. Use one of the following to rate the proposal and include a sentence to justify your choice.

  • Satisfactory
  • 301 Academic Skills Centre
  • Study skills online

Scientific writing and lab reports

Information on how to structure and format a lab report, also known as a scientific report.

Chemical and Biological Engineering postgraduate in lab wearing goggles

What is a lab report?

Lab reports, or scientific reports, are the primary vehicle used to disseminate and communicate scientific research methods across science and engineering disciplines.

They are structured and formulaic, to make it as easy as possible for a reader to understand the background, aims, methodology and findings of a particular experiment or technique.

Lab reports usually follow very closely prescribed formats. It's essential that you  pay very careful attention to the specific guidelines issued with your experimental brief.

Typically, a lab report is broken down into discrete sections, separated by subheadings. These will include the following:

  • an abstract, outlining in brief what was done and what was found
  • a point-by-point description of the experimental method followed (a bit like following a recipe)
  • a clear presentation of all of the results observed, some of which may be placed in an appendix to the main report
  • a discussion of those results
  • a brief conclusion and references

Lab reports are written in a neutral and objective tone and are kept as short, concise and to the point as possible.

They are not the place to experiment with elaborate language, which might impact on the clarity of their information.

301 Recommends:

Our Scientific Writing and Lab Report workshop provides a practical guide to communicating your findings with a focus on the scientific lab report as a model. You will learn why it is important to record experiments in this way and gain a detailed understanding of how to structure your reports based on the IMRaD format (Introduction, Methods, Results and Discussion). This interactive session is packed with top tips and best practice to enhance your report writing skills.

Introduction

Establish the reason or context for doing the experiment. It might help to think of your introduction as a funnel.

Start broad and focus down to the specifics of your research including the aims/objectives and hypothesis for testing.

Provides a descriptive protocol of your experiment so it could be replicated by another researcher.

Your methods section should be written avoiding the first person and using the passive voice where possible (ie a sample was taken...). Reproducibility of methods is the foundation for evidence-based science.

Present your data using tables or graphical representations as appropriate.

Interpret the results and explain their significance.

Reverse the funnel: put the specific results from your experiment back into a wider context, ie

  • what do they mean?
  • what applications do they have?
  • what recommendations can you make?
  • what are the limitations?
  • what gaps remain for further research?

Restate your main findings and key points from the discussion.

Strengthen your arguments with support from existing literature.

Summary of the entire report: Interesting, easy to read, concise. This will usually be the last part of the report that you write.

Title, appendix and acknowledgements

Guidance for Writing Lab Reports by Faculty of Engineering (pdf. 1677 kb)

Lab Reports Writing Template (pdf. 662 kb)

Proofreading Your Work

Writing numbers and presenting data

Consider the best way to present your data clearly. If this is best done using a table or chart, then consider what format makes things clearest.

Make sure all important aspects of the data are included in your chart or table, including units where relevant. Don't include charts just for the sake of it – data display should help the reader understand the data.

Report the results of any statistical tests using the appropriate conventions for your subject.

Data display

Displaying Data in Tables

Displaying Data in Graphs

Hypothesis tests

Writing Numbers in Standard Form

Library resources

Library workshops.

The  Come Together, Write Now  sessions are now open to all students. These virtual sessions for academic reading and writing will help you focus on your work, providing the time and space to come together as a reading and writing community and support each other.

You can  view our upcoming sessions and book a place here .

Online guidance

Reading other publications can help you to become familiar with the structure, tone and language of scientific writing.

Take a look at the Library resources on scientific literature:

Evaluating the Scientific Literature

Finding Scientific Journal Papers

Types of Scientific Paper

Always read the guidance notes

Methods • Use past tense • Write in the third person • Include detailed materials • State the study design • Cite/reference the lab protocol

Results • Organise your data in a logical order • Include tables and graphs • Label clearly and include units • Include figure legends and titles • State statistical tests and p-values • Refer to all tables and figures in the text

Leave it until the last minute

Methods • Copy the lab protocol • Forget to include statistics and calculation methods • Write a set of instructions (cookbook!) • Interpret your results

Results • Include raw data • Present same data in a graph and table • Overcomplicate the results section • Interpret your results • Copy other people’s data or exclude unexpected results

Academic Skills Certificate

The 301 Academic Skills Certificate  gives you an opportunity to gain recognition for developing your skills and reflecting on this experience.

Through this reflection, you will be able to identify changes and improvements to your academic skills that will lead to long-term benefits to your studies.

The 301 Academic Skills Certificate acknowledges your commitment to enhancing your academic and employability skills and personal development.

Related information

The conventions of academic writing

Dissertation planning

Image advertising the 301 Academic Skills Centre newsletter

Be the first to hear about our new and upcoming workshops!

The 301 Academic Skills Centre newsletter is a fortnightly email for study skills, mathematics and statistics.

Be the first to find out about our:

  • new and upcoming workshops,
  • special events and programmes, and
  • new and relevant online materials and resources.

Sheffield is a research university with a global reputation for excellence. We're a member of the Russell Group: one of the 24 leading UK universities for research and teaching.

Illustration

  • Other Guides
  • How to Write a Lab Report: Definition, Outline & Template Examples
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Research Paper Topics
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Research Paper Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

How to Write a Lab Report: Definition, Outline & Template Examples

Lab_report

Table of contents

Illustration

Use our free Readability checker

A lab report  is a document that provides a detailed description of a scientific experiment or study. The purpose of a lab report is to communicate the results of experimentation in a clear and objective manner. It typically includes sections such as introduction, methods, results, discussion, conclusion, and references.

In this blog post, you can find lots of helpful information on writing a lab report and its basics, including such questions:

  • What are lab reports?
  • Howto create an outline and structure reports?
  • How to write a lab report?
  • How to format your report?
  • Some extra tips and best practices to take into account.

Several exemplary laboratory report samples are also offered in this article. You are welcome to use them as an inspiration or reference material.  Need expert help? Contact our academic service in case you are looking for someone who can “ write my lab report .”

What Is a Lab Report?

Let’s start with the lab report definition and then dive deeper into details. A lab report is a document in which you present results of a laboratory experiment. Your audience may include your tutor or professor, your colleagues, a commission monitoring your progress, and so on. It’s usually shorter than a research paper and shows your ability to conduct and analyze scientific experiments.

Lab Report Definition

The purpose of a laboratory report is to fully share the results and the supporting data with whoever needs to see them. Thus, your laboratory report should be consistent, concise, and properly formatted. Both college and scientific lab reports must follow certain strict rules, particularly:

  • Use valid research data and relevant sources
  • Include enough information to support assumptions
  • Use formal wording appropriate for scientific discussions.

Let’s talk about these rules in more detail.

Lab Report Main Features

Wondering how to write a lab report ? First of all, such documents must be descriptive and formal. An average scientific lab report is expected to:

  • Display your own research results
  • Contain assumptions, proving or disproving some hypotheses
  • Present the evidence (lab data, statistics, and calculations) in a comprehensive manner
  • Be logical and concise.

Additionally, your school or institution may have its own very specific requirements, so make sure to check them before creating a report.

How Long Should a Lab Report Be?

First of all, lab reports need to be informative, so there is no need for making your writing too wordy. That being said, your paper’s volume will be defined by the specifics of your research. If its results are complicated and require much explaining, your paper isn’t going to be brief. Recommended lab report length varies between 5 and 10 pages, which should include all appendices such as tables or diagrams. You should also confirm such requirements with your tutor prior to planning your report.

Lab Report Structure

Plan ahead before writing your lab report. It is useful to keep its structure in mind from the very beginning. 

Lab Report Structure

Here is our detailed list of what to include in a lab report:

  • Title Page The first page must only include the experiment’s title along with its date, your name, your school’s name, and your professor’s name. All further descriptions and explanations should appear on the next pages.
  • Title Give a meaningful heading to your lab paper, so that it would help readers understand the basic purpose of your experiment and its background. However, don’t make it longer than 10 words.
  • Abstract This part is a formal summary of your lab experiment report. Provide all essential details here: what was the purpose of your research, why it was important, and what has been found and proven as a result of your controlled experiment . Keep it short, from 100 to 200 words.
  • Introduction Here you should provide more details about the purpose and the meaning of your research, as well as the problem definition. Related theories or previous findings can also be mentioned here. Particularly, you can refer to your previous lab reports on the same subject.
  • Methods An approach to solving selected problems is a critical part of a science lab report. You need to explain what methods you use and why they are optimal in this specific situation.
  • Procedure Provide a detailed explanation of all steps, measurements, and calculations you’ve performed while researching. Don’t forget about the chronology of these actions because this can be of crucial importance.
  • Results After you’ve described all the steps of your research process, present its results in an orderly fashion. It should be clear from your laboratory report how exactly they were obtained and what their meaning is.
  • Discussion In most cases any data derived from experiments can be interpreted differently and thus varying conclusions can be drawn. A scientific lab report must address such nuances and explain all assumptions its author has made.
  • Conclusion The lab report is expected either to confirm or to refute some hypotheses. Conclude your paper with clearly showing what has been proven or disproven based on your research results.
  • References As a scholarly work, your report must use valid sources for analysis and discussion of the results. You should provide proper references for these sources each time you are using certain data taken from them.
  • Graphs, Tables and Figures It is important to illustrate your findings when writing lab reports. The data you’ve obtained may be obvious for you, but not for your readers. Organize it into tables,  flow chart , or schemas and put these illustrative materials at the end of your lab report paper as appendices.

You should shape the structure of a lab report before writing its complete text by preparing a brief write-up, i.e. an outline. Below we’ll explain how it is done.

Lab Report Outline & Template

Preparing lab report outlines is useful for extra proofreading: you can review such a sketch and quickly find some gaps or inconsistencies before you’ve written the complete text. A good laboratory report outline must reflect the entire structure of your paper. After designing such a draft, you can use it as a lab report template for your next papers. It is highly advisable not to ignore this approach since it can boost your general academic performance in multiple other areas. Here is an example of a science lab report template:

Lab Report Outline Example

How to Write a Lab Report Step-By-Step?

Now, let’s discuss how to write a scientific lab report. You already know what elements it contains, so get ready for detailed laboratory report guidelines. We’ve collected helpful information for each step of this guide and broke it down into comprehensive sections. So, scroll down and learn how to write a good lab report without experiencing extra pains and making unnecessary mistakes.

How to Write a Lab Report in 9 Steps

1. Create a Strong Title

Before you write your lab report, think about a good title. It should help understand the direction and the intent of your research at the start, while not being too wordy. Make sure it is comprehensible for your tutor or peers, there is no need to explain certain specific terms because others are expected to know them. Here are several examples that could give you some ideas on how to name your own lab write up:

•  Effects of temperature decrease on Drosophila Melanogaster lifespan •  IV 2022 marketing data sample analysis using the Bayesian method •  Lab #5: measurement of fluctuation in 5 GHz radio signal strength •  Specific behavioral traits of arctic subspecies of mammals.

Also, check our downloadable samples for more great title suggestions or use our Title Generator to create one. 

2. Introduce Your Experiment

A good scientific lab report should contain some explanations of what is the meaning of your experiment and why you conduct it in the first place. Provide some context and show why it is relevant. While your professor would be well aware of it, others who might read your laboratory report, may not know its purpose. Mention similar experiments if necessary. As usual, keep it short but informative. One paragraph (100 – 150 words) would suffice. Don’t provide too many details because this might distract your readers. Here is an example of how a science lab report should be introduced:

Lower temperatures decrease the drosophila flies’ activity but also increase their lifespan. It is important to understand what temperature range is optimal, allowing them to feed and multiply and at the same time, increasing their lifespan to maximum. For this purpose, a strain of Drosophila Melanogaster has been observed for 3 months in an isolated lab under varying temperatures.

3. State the Hypothesis

When learning how to make a lab report, pay a special attention to the hypothesis part. This statement will be the cornerstone of your lab writing, as the entire paper will be built around it. Make it interesting, relevant, and unusual, don’t use well-researched topic or state obvious facts - exploring something really new is what makes your work worth time and effort. Here is an example of statement for your lab report sample:

The temperature of 75 degrees Fahrenheit is optimal for Drosophila Melanogaster longevity and ability to multiply while being at a lower border of their normal zone of comfort.

4. Present the Methods and Materials

One of the key parts of a lab report is the section where you describe your assets and starting conditions. This allows any reviewers to understand the quality of your work and thus contributes to the credibility of your scientific lab write up. The following elements must be mentioned:

  • Research subjects E.g. raw data samples you analyze or people you interview.
  • Conditions Your experiment must be limited to certain space, time period or domain; and the factors influencing your independent and dependent variables need to be mentioned as well.
  • Methods You are expected to follow specific rules (e.g. from your lab manual) when analyzing your subjects and calculating your analysis results.
  • Materials Mention all tools and instruments employed to collect data and name each item model.

More lab report writing tips available below, so let’s keep on!

5. Explain Procedures

The core part of a lab report is describing the course of the experiment. This is where you explain how exactly the experiment has been conducted. Give all necessary information about each step you’ve taken, arranging all the steps in proper chronological order so that readers could clearly understand the meaning behind each action. The following procedure elements may be present in an experimental report:

  • Processing raw data
  • Observing processes
  • Taking measurements
  • Making calculations
  • Observing trends
  • Comparing calculation results to other researchers’ results or to some reference values, etc.

After you have finished describing your actions, it is time to summarize them, answer all remaining questions, and present your findings. Check out other tips on how to write lab reports in a few sections below and you’ll learn more about that. Need professional help? Buy lab reports at our writing service to get efficient solutions in a timely manner.

6. Share Your Results

After all the lab steps have been properly described, it is time to present the outcomes in your results section . Writing a good lab report means that it will be quite transparent for your reviewers how you’ve come to your results. So, make sure there is a clear connection between this part and the previous one. Don’t leave any gaps in your explanations, e.g. mention limitations if there are any. Tell if the captured statistical analysis data falls in line with the experiment's initial purpose. Describe sample calculations using clear symbols. Where necessary, include graphs and images. Your raw data may be extensive, so present it in the Appendix and provide a reference to it. Here’s an example of how to share the results when you create a lab report:

Average lifespan and average birth rate was measured for each group subjected to a different temperature range. Additionally, statistical methods have been applied to confirm the correctness of the results and to minimize potential errors. Lifespan and birth rate values corresponding to each temperature range can be found in the table below. Optimal combination of lifespan and birth rate corresponds to the range between 75 and 76 degrees Fahrenheit, as demonstrated by the figure (see Appendix A).

7. Discuss and Interpret Your Outcomes

When you write an experiment report, your main purpose is to confirm whether your thesis  (hypothesis) is true. That’s why you should give a clear explanation on how useful your results were for the problem investigation. Next, make sure to explain any dubious or controversial parts, if there are any. Science lab reports often contain contradictions to popular theories or unexpected findings. This may be caused by missing important factors, uncovering facts which have previously been overlooked, or just by fluctuations in experimental data. In any case, you need to study and address them in your lab report for the sake of clarity. If you need some data interpretation in a science lab report example, here’s an excerpt from a discussion section :

According to the research results, the optimal temperature for Drosophila Melanogaster appears to be at the low border of the comfortable range which is considered normal for this species. It contradicts existing theories about Drosophila Melanogaster. However, this discrepancy may be caused by the longevity factor not taken into account by previous researchers. Additional experiments with larger sample size and extended timeline are needed in order to further investigate the temperature effect on the longevity of Drosophila Melanogaster.

8. Wrap Up Your Lab Report

Final step of your laboratory report is to make a proper conclusion. Here you just summarize your results and state that your hypothesis has been confirmed (or disproven). Keep it short and don’t repeat any descriptions from the previous section. However, you may add some notes about the significance of your work. After finishing to write your lab report, don’t forget to read it again and check whether all its parts are logically connected with each other. Here is an example of a lab report last section:

As confirmed by the experiment conducted in an isolated laboratory on a limited population of Drosophila Melanogaster, the optimal temperature for both its longevity and activity is 75 and 76 degrees Fahrenheit. Certain contradictions with the existing theories can be explained by the longevity factor being overlooked during previous research. Hopefully, this experiment will pave the way for further exploration of the temperature effect on the lifespan of Drosophila Melanogaster.

9. Write Your Abstract

Another stage of lab report writing is composing its abstract. This part should be placed at the beginning of your paper in order to get your audience familiar with its contents. Make it brief, up to 200 words long, but make sure you’ve included the following information:

  • Problem statement description
  • Overview of materials, methods, and procedures

Abstracts of laboratory reports are delivered on separate pages. So, you can compose one after writing the entire text. This is another good chance to review your work while you are briefly describing its key parts. Check our detailed guide to get more information on how to write an abstract . Check below for more tips and hints on how to write a science lab report.

Lab Report Format

Learning how to format a lab report is crucial for its success. As all other scholarly papers, such reports must follow strict rules of presenting information. Make sure to find out which laboratory report format is required for your assignment. If there are no specific requirements, you may choose from the usual lab format styles, namely:

Depending on the scientific domain of your experiment, you might want to choose one or another lab write up format from that list. Particularly, the APA style paper is typically required in Humanities , while MLA style can be used for papers in Technologies or Applied Science . In any case, pay close attention to citation and reference rules, as each of these styles has strict requirements for that. A real lab report format example can be found below – note that it follows the APA guidelines.

Lab Report Examples

Need some good examples of lab reports in addition to all these guidelines? We’ve got some for you! Each sample lab report that can be found below is available for free and can be downloaded if needed. Feel free to use them as an inspiration for your own work or borrow some ideas, styles, or sources from them. Pick a laboratory reports sample from this list below: Lab report example 1

Example of lab report 2

Scientific lab report example 3

Please avoid copying anything from them into your paper as that would be considered plagiarism . Make sure you submit 100% original text for your assignments.

Tips on Writing a Lab Report

We hope this detailed information on how do you write a lab report will be useful. In addition, to make our guide even more convenient, here are some quick lab report writing tips:

  • Think things through before starting your research. Do you have enough data for it and can you organize appropriate conditions and equipment for conducting experiments?
  • Don’t skip writing the sketch version first. Outlines help to form lab reports layout and avoid logical gaps.
  • Take notes while conducting your experiment – unfortunately, it’s very easy to forget important details when you describe it later.
  • Double check yourself when making calculations. The more complicated they are, the more error-prone your entire report is.
  • Pick your sources carefully. You should only use valid and peer-reviewed scientific materials to retrieve empirical and theoretical information from.
  • Properly refer to each and every source you’ve used. Your lab writeup format is very important for your grades.
  • Pay attention to discussing weak points of your report. Try refuting your own results and hypothesis and see how you can counter that using actual data.
  • Maintain a formal tone and keep it straightforward. Don’t be too wordy and avoid providing irrelevant details.
  • Review your completed report several times, paying attention to layouts of different sections. If possible, ask some peer students or colleagues to do it for you – they might notice some missing details or weak assumptions.

Don’t forget to check our laboratory report example for more useful ideas.

Lab Report Checklist

Let’s summarize all the above information on how to do a lab report. We’ve prepared a short checklist for you. So, here’s what you should do in order to compose a great science lab report:

Bottom Line on Lab Report Writing

In this article, we have prepared all necessary information on how to write a lab report. This should help you with your own research or studies, especially when it comes to complicated tasks, such as composing lab reports outline. Several lab reports examples are also available here. They are provided by real researchers and may help you a lot with ideas for your own work. Feel free to check them online or download them. Just remember that you should only submit 100% original content for your assignments.

Illustration

Connect with our academic writing service and say ‘ write my college paper .’ With our help, you will receive papers of great quality and will never miss your deadline.

FAQ About Lab Reports

1. what is the difference between a lab report and a research paper.

A lab report should showcase your ability to conduct experiments and properly describe your actions and findings. It is focused on specific data and methods used to analyze it. A research paper is expected to reflect your investigation of a problem, including asking correct questions and finding relevant information about it.

2. Should I continue to write a lab report if an experiment failed?

It depends on your assignment. If your primary goal is to display your ability to document your steps and results, then you may report on a failed experiment too. Particularly, analyze the integrity of your data or conditions that were set and make an assumption about factors which led to the failure.

4. Should lab reports be written in the third person?

Yes, laboratory experiment reports usually present information in third person. The reason is that you are expected to focus on the data, methods, and findings, rather than on yourself or your audience. Check the samples available here and see what writing style is followed there.

3. What tense should a lab report be written in?

You should mostly use past tense in your paper, since your science experiment has already been conducted. But you can also speak in present tense when describing the context of problems which still exist. Check any template available here to get more clarity on this issue.

5. Where do I put calculations in a lab report?

Remember to follow our layout guidelines and put your calculations in the analysis section. This is where you process the results collected during your experiments. You can also make brief write ups about your calculations in the abstract paragraph or discussion section, but make sure they precede the description of outcomes.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

How to Write a Process Analysis Essay

  • checkbox I completed all calculations on the experimental data and properly analyze my results.
  • checkbox I sketched my lab report layout by preparing its outline.
  • checkbox My thesis statement is strong.
  • checkbox I provided enough context in my intro.
  • checkbox I described methods, materials, and procedures in detail.
  • checkbox I conducted proper analysis, including all my calculations and assumptions in it.
  • checkbox I created illustrative materials if needed: tables, charts, figures etc.
  • checkbox All outcomes are discussed without omitting any of their weaknesses.
  • checkbox I wrote a brief but informative conclusion and show how the initial hypothesis has been confirmed or rejected.
  • checkbox I reviewed my laboratory report once again and wrote an abstract.
  • checkbox The title page and appendices are added.

Illustration

  • My Allegheny
  • Student Resources
  • Office of the President
  • Give to Allegheny

Laboratory Reports

Note: All students are expected to read and understand the following guidelines.

The lab report presents pertinent data, procedure(s) used, conclusions drawn, and a discussion explaining and defending these conclusions. It must be written with care. Its intended audience is anyone who might have an interest in the outcome of the particular experiment. A report, as with scientific writing in general, is brief, but complete with no superfluous information or words. The report should be as compact as possible, well written (grammatically, at least), and must use the language of the discipline.

(i) Title: The title should describe the chemical reaction(s) or study that you performed. It should be specific, but without unnecessary verbiage.

(ii) Abstract: In two or three sentences, describe what was done in the experiment. Briefly state the problem involved and type of reaction or techniques used, summarize the principal findings, and note the major conclusions.

(iii) Chemical Equation: Present the chemistry occurring during the experiment. You must use ChemDraw (available on all Doane Hall computers), or another chemical drawing program.

(iv) Narrative Experimental: The experimental procedure written in paragraph form (do not write as commands). This part of the report is complete and detailed so that an experienced chemist could repeat your experiments exactly. However, you can be too detailed. Therefore, you need not explain the procedure for conducting standard techniques–extraction, distillation, etc.–but merely state that the technique was employed.

Be sure to identify materials and give the chemical names of all compounds used. Although raw data is included in this section, do not bother to include trivial things such as the mass of glassware, the separate pieces of equipment in a standard apparatus, or simple calculations. Include observations only if relevant to the experiment.

(v) Results and Discussion: This is one section, not two separate sections. Summarize the pertinent data you have collected. Use tables and graphs as necessary for clarity (eg. large amounts of data). Tables and other figures should be numbered and appropriately titled. The purpose of the discussion is to interpret, compare, and contrast the results. Interpret the data and draw conclusions. Conclusions should be based on the evidence presented. This is the place to discuss % yields, purity (spectra and melting pt. information), and sources of error. Also, general theory may be included here if it is relevant to the results being discussed. But, be brief! This section must be written with great care.

Answer such questions as: Is the product pure? How do you know? Spectra should be fully analyzed. Is the yield high or low? If it is low, why? “Experimental error” is not an acceptable reason! Observations may be noted if pertinent.

General Information

The general form of the lab report is journal style. All data, conclusions, observations, etc. must be presented in paragraph form. Data must be coupled with procedures or conclusions, not listed separately. All writing must be past tense, passive voice. For example:

(correct) Three fractions were collected.

(incorrect) I collected three fractions; or, Collect three fractions.

Lab reports are graded both on the quality of results you obtain and the manner in which you communicate these to others. A good resource for the latter is the ACS Style Guide. A portion of this is available on the Web. Your instructor may provide more specific requirements or expectations.

Honor Code Considerations

You are expected to keep your own lab notebook and write your own lab report. If you work with a partner, that person must be acknowledged in your notebook and on the cover page of your report. Even though you may be using data collected by a partner, all conclusions must be your own. You should not work on reports together. Texts and tables of constants (i.e., CRC) must be referenced.

Purdue Online Writing Lab Purdue OWL® College of Liberal Arts

Welcome to the Purdue Online Writing Lab

OWL logo

Welcome to the Purdue OWL

This page is brought to you by the OWL at Purdue University. When printing this page, you must include the entire legal notice.

Copyright ©1995-2018 by The Writing Lab & The OWL at Purdue and Purdue University. All rights reserved. This material may not be published, reproduced, broadcast, rewritten, or redistributed without permission. Use of this site constitutes acceptance of our terms and conditions of fair use.

The Online Writing Lab at Purdue University houses writing resources and instructional material, and we provide these as a free service of the Writing Lab at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out-of-class instruction.

The Purdue On-Campus Writing Lab and Purdue Online Writing Lab assist clients in their development as writers—no matter what their skill level—with on-campus consultations, online participation, and community engagement. The Purdue Writing Lab serves the Purdue, West Lafayette, campus and coordinates with local literacy initiatives. The Purdue OWL offers global support through online reference materials and services.

A Message From the Assistant Director of Content Development 

The Purdue OWL® is committed to supporting  students, instructors, and writers by offering a wide range of resources that are developed and revised with them in mind. To do this, the OWL team is always exploring possibilties for a better design, allowing accessibility and user experience to guide our process. As the OWL undergoes some changes, we welcome your feedback and suggestions by email at any time.

Please don't hesitate to contact us via our contact page  if you have any questions or comments.

All the best,

Social Media

Facebook twitter.

IMAGES

  1. Lab Report Example Chemistry

    how to write an lab report

  2. Lab Report Expectation Guide

    how to write an lab report

  3. Best Tips on Writing a Lab Report

    how to write an lab report

  4. (DOC) Formal Laboratory Report

    how to write an lab report

  5. A Guide To Writing An Engineering Laboratory (Lab) Report For

    how to write an lab report

  6. 40 Lab Report Templates & Format Examples ᐅ TemplateLab

    how to write an lab report

VIDEO

  1. How to write a lab report

  2. How to Write a Lab Report

  3. How to Lab report for Implementation

  4. Lab Report Writing Instructions EEE 1102/EEE 1104

  5. Video How to Write Lab Report Part1 Title, Objectives & Theory

  6. Science Lab Report/Report Writing/How to Write Science Report?

COMMENTS

  1. How To Write A Lab Report

    Introduction. Your lab report introduction should set the scene for your experiment. One way to write your introduction is with a funnel (an inverted triangle) structure: Start with the broad, general research topic. Narrow your topic down your specific study focus. End with a clear research question.

  2. How to Write a Lab Report

    She served as a graduate instructor at the University of Illinois, a tutor at St Peter's School in Philadelphia, and an academic writing tutor and thesis mentor at Wesleyan's Writing Workshop. How to Write a Lab Report - We of a lab report example as well as a template and suggested format to get you started.

  3. How to Write a Lab Report

    Title Page. Not all lab reports have title pages, but if your instructor wants one, it would be a single page that states: . The title of the experiment. Your name and the names of any lab partners. Your instructor's name. The date the lab was performed or the date the report was submitted.

  4. Library Research Guides: STEM: How To Write A Lab Report

    Writing lab reports follows a straightforward and structured procedure. It is important to recognize that each part of a lab report is important, so take the time to complete each carefully. A lab report is broken down into eight sections: title, abstract, introduction, methods and materials, results, discussion, conclusion, and references. Title.

  5. How to Write a Lab Report: Step-by-Step Guide & Examples

    Author, A. A., Author, B. B., & Author, C. C. (year). Article title. Journal Title, volume number (issue number), page numbers. A simple way to write your reference section is to use Google scholar. Just type the name and date of the psychologist in the search box and click on the "cite" link. Next, copy and paste the APA reference into the ...

  6. Complete Guide to Writing a Lab Report (With Example)

    Abstract. Following this should be the abstract, 2-3 sentences summarizing the practical. The abstract shows the reader the main results of the practical and helps them decide quickly whether the rest of the report is relevant to their use. Remember that the whole report should be written in a passive voice.

  7. How to Write a Science Lab Report (with Pictures)

    Most lab reports are organized, first to last: background information, problem, hypothesis, materials, procedure, data, and your interpretation of what happened as a conclusion. 5. Break sections of your report into subsections, if necessary. Technical aspects of your paper might require significant explanation.

  8. PDF A Basic Guide to Writing a Successful Laboratory Report

    The ability to convey information in a clear and concise manner is equally important. This document provides a guideline to writing meaningful reports that communicate data obtained in an experimental setting. Specifically, it presents several ideas for maintaining coherence, formatting suggestions, and good laboratory practices.

  9. Lab Report Format

    A lab report should be: Concise: Cover all the key points without getting crazy with the details. Objective: In the "Conclusions" section, you can propose possible explanations for your results. Otherwise, keep your opinions out of the report. Instead, present facts and an analysis based on logic and math.

  10. Writing a Lab Report: Introduction and Discussion Section Guide

    Download this page as a PDF: Writing a Lab Report. Return to Writing Studio Handouts. Part 1 (of 2): Introducing a Lab Report. The introduction of a lab report states the objective of the experiment and provides the reader with background information. State the topic of your report clearly and concisely (in one or two sentences).

  11. Writing a lab report

    From: How to write and Illustrate a Scientific Paper (2nd ed.) Bjorn Gustavii. No one knows how to write a scientific paper without practice and help. Many science students practice this skill when they are asked to write lab reports. This guide will describe some best practices for scientific writing and give you some additional sources to ...

  12. How to Write An Effective Lab Report

    Explain the different parts of your project, the variables being tested, and controls in your experiments. This section will validate the data presented by confirming that variables are being tested in a proper way. Results. You cannot change the data you collect from your experiments; thus the results section will be written for you.

  13. How to Write a Lab Report

    For any lab report, use a professional font and size. For example, 12-point Times New Roman. Double-space the report. Include a page number, usually either in the top or bottom right corner of each page. Clearly separate specific sections of the report with headings and subheadings.

  14. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  15. The Lab Report

    Overview. This document describes a general format for lab reports that you can adapt as needed. Lab reports are the most frequent kind of document written in engineering and can count for as much as 25% of a course yet little time or attention is devoted to how to write them well. Worse yet, each professor wants something a little different.

  16. How to Write a Lab Report: Examples from Academic Editors

    Clean the samples thoroughly using ethanol to remove any impurities or oils. Weigh each sample accurately using a digital scale and record the initial weight. Prepare a 3% NaCl solution by dissolving 30 g of NaCl in 1000 mL of deionized water. Pour 250 mL of the 3% NaCl solution into each beaker.

  17. PDF The Complete Guide to Writing a Report for a Scientific ...

    All forms of technical writing are equally significant, but this article categorically emphasizes the skills and techniques required for writing a comprehensive experimental lab report. Since several tips discussed in the guide come from the personal experience of experimental physicists, there is room for adaptation and exercising personal ...

  18. How to Write the Perfect Chemistry Lab Report: A Definitive Guide

    The next section is the Introduction and it begins with this word in the left upper corner of your report. It should consist of no more than a couple of paragraphs and end with at least one hypothesis. The body of your project consists of the procedure, materials and methods employed; data; results and observations.

  19. How to Write a Physics Lab Report: Essential Tips & Tricks

    To write a physics lab report, start by putting together a cover sheet with your name, and the title and date of the experiment. Then, include an abstract, or summary of your report, followed by your objective, procedures, and methods. After you've talked about how the experiment was conducted, present your raw data, and provide any important ...

  20. 27.5: Guide for writing a lab report

    Summary. Summarize your overall evaluation of the report in 2-3 sentences. Focus on the experiment's method and its result. For example, "The authors dropped balls from different heights to determine the value of g". You don't need to go into the specific details, just give a high level summary of the report.

  21. PDF Lab Report Guide: How to Write in the Format of a Scientific Paper

    The purpose of this guide is to help you write lab reports in biology. It is designed to make the writing process clear, and should help protect you from unnecessary frustration. Before beginning your first report, read "The Fundamentals" below. Then read the brief "Overview" for each section of the lab report; the

  22. Scientific writing and lab reports

    301 Recommends: Our Scientific Writing and Lab Report workshop provides a practical guide to communicating your findings with a focus on the scientific lab report as a model. You will learn why it is important to record experiments in this way and gain a detailed understanding of how to structure your reports based on the IMRaD format (Introduction, Methods, Results and Discussion).

  23. How to Write a Lab Report: Writing Steps, Format & Examples

    We've collected helpful information for each step of this guide and broke it down into comprehensive sections. So, scroll down and learn how to write a good lab report without experiencing extra pains and making unnecessary mistakes. 1. Create a Strong Title. Before you write your lab report, think about a good title.

  24. Laboratory Reports

    The lab report presents pertinent data, procedure (s) used, conclusions drawn, and a discussion explaining and defending these conclusions. It must be written with care. Its intended audience is anyone who might have an interest in the outcome of the particular experiment. A report, as with scientific writing in general, is brief, but complete ...

  25. how-to-write-a-lab-report-7.pdf

    Lab report structure varies by field; however, the goals of a lab report remain consistent: identify an area to explore, conduct an experiment, document your findings, and communicate the significance of your results. A well-written lab report demonstrates the researchers' understanding of the concepts behind the data collected.

  26. Welcome to the Purdue Online Writing Lab

    The Online Writing Lab at Purdue University houses writing resources and instructional material, and we provide these as a free service of the Writing Lab at Purdue. Students, members of the community, and users worldwide will find information to assist with many writing projects. Teachers and trainers may use this material for in-class and out ...

  27. The art of how to write a personal statement fabulously

    This part should include how you plan to use the knowledge you gain as you graduate. Offer thanks and discuss your hopes, intentions, and dreams. Make it memorable, but don't boast too much! If you already have a personal statement prompt to follow, this personal statement outline will help you see what to include.