40 problem-solving techniques and processes

Problem solving workshop

All teams and organizations encounter challenges. Approaching those challenges without a structured problem solving process can end up making things worse.

Proven problem solving techniques such as those outlined below can guide your group through a process of identifying problems and challenges , ideating on possible solutions , and then evaluating and implementing the most suitable .

In this post, you'll find problem-solving tools you can use to develop effective solutions. You'll also find some tips for facilitating the problem solving process and solving complex problems.

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

54 great online tools for workshops and meetings, how to create an unforgettable training session in 8 simple steps, a step-by-step guide to planning a workshop.

  • 18 Free Facilitation Resources We Think You’ll Love

What is problem solving?

Problem solving is a process of finding and implementing a solution to a challenge or obstacle. In most contexts, this means going through a problem solving process that begins with identifying the issue, exploring its root causes, ideating and refining possible solutions before implementing and measuring the impact of that solution.

For simple or small problems, it can be tempting to skip straight to implementing what you believe is the right solution. The danger with this approach is that without exploring the true causes of the issue, it might just occur again or your chosen solution may cause other issues.

Particularly in the world of work, good problem solving means using data to back up each step of the process, bringing in new perspectives and effectively measuring the impact of your solution.

Effective problem solving can help ensure that your team or organization is well positioned to overcome challenges, be resilient to change and create innovation. In my experience, problem solving is a combination of skillset, mindset and process, and it’s especially vital for leaders to cultivate this skill.

A group of people looking at a poster with notes on it

What is the seven step problem solving process?

A problem solving process is a step-by-step framework from going from discovering a problem all the way through to implementing a solution.

With practice, this framework can become intuitive, and innovative companies tend to have a consistent and ongoing ability to discover and tackle challenges when they come up.

You might see everything from a four step problem solving process through to seven steps. While all these processes cover roughly the same ground, I’ve found a seven step problem solving process is helpful for making all key steps legible.

We’ll outline that process here and then follow with techniques you can use to explore and work on that step of the problem solving process with a group.

The seven-step problem solving process is:

1. Problem identification 

The first stage of any problem solving process is to identify the problem(s) you need to solve. This often looks like using group discussions and activities to help a group surface and effectively articulate the challenges they’re facing and wish to resolve.

Be sure to align with your team on the exact definition and nature of the problem you’re solving. An effective process is one where everyone is pulling in the same direction – ensure clarity and alignment now to help avoid misunderstandings later.

2. Problem analysis and refinement

The process of problem analysis means ensuring that the problem you are seeking to solve is  the   right problem . Choosing the right problem to solve means you are on the right path to creating the right solution.

At this stage, you may look deeper at the problem you identified to try and discover the root cause at the level of people or process. You may also spend some time sourcing data, consulting relevant parties and creating and refining a problem statement.

Problem refinement means adjusting scope or focus of the problem you will be aiming to solve based on what comes up during your analysis. As you analyze data sources, you might discover that the root cause means you need to adjust your problem statement. Alternatively, you might find that your original problem statement is too big to be meaningful approached within your current project.

Remember that the goal of any problem refinement is to help set the stage for effective solution development and deployment. Set the right focus and get buy-in from your team here and you’ll be well positioned to move forward with confidence.

3. Solution generation

Once your group has nailed down the particulars of the problem you wish to solve, you want to encourage a free flow of ideas connecting to solving that problem. This can take the form of problem solving games that encourage creative thinking or techniquess designed to produce working prototypes of possible solutions. 

The key to ensuring the success of this stage of the problem solving process is to encourage quick, creative thinking and create an open space where all ideas are considered. The best solutions can often come from unlikely places and by using problem solving techniques that celebrate invention, you might come up with solution gold. 

mention any two computer problem solving techniques

4. Solution development

No solution is perfect right out of the gate. It’s important to discuss and develop the solutions your group has come up with over the course of following the previous problem solving steps in order to arrive at the best possible solution. Problem solving games used in this stage involve lots of critical thinking, measuring potential effort and impact, and looking at possible solutions analytically. 

During this stage, you will often ask your team to iterate and improve upon your front-running solutions and develop them further. Remember that problem solving strategies always benefit from a multitude of voices and opinions, and not to let ego get involved when it comes to choosing which solutions to develop and take further.

Finding the best solution is the goal of all problem solving workshops and here is the place to ensure that your solution is well thought out, sufficiently robust and fit for purpose. 

5. Decision making and planning

Nearly there! Once you’ve got a set of possible, you’ll need to make a decision on which to implement. This can be a consensus-based group decision or it might be for a leader or major stakeholder to decide. You’ll find a set of effective decision making methods below.

Once your group has reached consensus and selected a solution, there are some additional actions that also need to be decided upon. You’ll want to work on allocating ownership of the project, figure out who will do what, how the success of the solution will be measured and decide the next course of action.

Set clear accountabilities, actions, timeframes, and follow-ups for your chosen solution. Make these decisions and set clear next-steps in the problem solving workshop so that everyone is aligned and you can move forward effectively as a group. 

Ensuring that you plan for the roll-out of a solution is one of the most important problem solving steps. Without adequate planning or oversight, it can prove impossible to measure success or iterate further if the problem was not solved. 

6. Solution implementation 

This is what we were waiting for! All problem solving processes have the end goal of implementing an effective and impactful solution that your group has confidence in.

Project management and communication skills are key here – your solution may need to adjust when out in the wild or you might discover new challenges along the way. For some solutions, you might also implement a test with a small group and monitor results before rolling it out to an entire company.

You should have a clear owner for your solution who will oversee the plans you made together and help ensure they’re put into place. This person will often coordinate the implementation team and set-up processes to measure the efficacy of your solution too.

7. Solution evaluation 

So you and your team developed a great solution to a problem and have a gut feeling it’s been solved. Work done, right? Wrong. All problem solving strategies benefit from evaluation, consideration, and feedback.

You might find that the solution does not work for everyone, might create new problems, or is potentially so successful that you will want to roll it out to larger teams or as part of other initiatives. 

None of that is possible without taking the time to evaluate the success of the solution you developed in your problem solving model and adjust if necessary.

Remember that the problem solving process is often iterative and it can be common to not solve complex issues on the first try. Even when this is the case, you and your team will have generated learning that will be important for future problem solving workshops or in other parts of the organization. 

It’s also worth underlining how important record keeping is throughout the problem solving process. If a solution didn’t work, you need to have the data and records to see why that was the case. If you go back to the drawing board, notes from the previous workshop can help save time.

What does an effective problem solving process look like?

Every effective problem solving process begins with an agenda . In our experience, a well-structured problem solving workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

The format of a workshop ensures that you can get buy-in from your group, encourage free-thinking and solution exploration before making a decision on what to implement following the session.

This Design Sprint 2.0 template is an effective problem solving process from top agency AJ&Smart. It’s a great format for the entire problem solving process, with four-days of workshops designed to surface issues, explore solutions and even test a solution.

Check it for an example of how you might structure and run a problem solving process and feel free to copy and adjust it your needs!

For a shorter process you can run in a single afternoon, this remote problem solving agenda will guide you effectively in just a couple of hours.

Whatever the length of your workshop, by using SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

mention any two computer problem solving techniques

Complete problem-solving methods

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

The Six Thinking Hats   #creative thinking   #meeting facilitation   #problem solving   #issue resolution   #idea generation   #conflict resolution   The Six Thinking Hats are used by individuals and groups to separate out conflicting styles of thinking. They enable and encourage a group of people to think constructively together in exploring and implementing change, rather than using argument to fight over who is right and who is wrong.

Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   It doesn’t matter where you work and what your job role is, if you work with other people together as a team, you will always encounter the same challenges: Unclear goals and miscommunication that cause busy work and overtime Unstructured meetings that leave attendants tired, confused and without clear outcomes. Frustration builds up because internal challenges to productivity are not addressed Sudden changes in priorities lead to a loss of focus and momentum Muddled compromise takes the place of clear decision- making, leaving everybody to come up with their own interpretation. In short, a lack of structure leads to a waste of time and effort, projects that drag on for too long and frustrated, burnt out teams. AJ&Smart has worked with some of the most innovative, productive companies in the world. What sets their teams apart from others is not better tools, bigger talent or more beautiful offices. The secret sauce to becoming a more productive, more creative and happier team is simple: Replace all open discussion or brainstorming with a structured process that leads to more ideas, clearer decisions and better outcomes. When a good process provides guardrails and a clear path to follow, it becomes easier to come up with ideas, make decisions and solve problems. This is why AJ&Smart created Lightning Decision Jam (LDJ). It’s a simple and short, but powerful group exercise that can be run either in-person, in the same room, or remotely with distributed teams.

Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.
Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for brainstorming solutions

Now you have the context and background of the problem you are trying to solving, now comes the time to start ideating and thinking about how you’ll solve the issue.

Here, you’ll want to encourage creative, free thinking and speed. Get as many ideas out as possible and explore different perspectives so you have the raw material for the next step.

Looking at a problem from a new angle can be one of the most effective ways of creating an effective solution. TRIZ is a problem-solving tool that asks the group to consider what they must not do in order to solve a challenge.

By reversing the discussion, new topics and taboo subjects often emerge, allowing the group to think more deeply and create ideas that confront the status quo in a safe and meaningful way. If you’re working on a problem that you’ve tried to solve before, TRIZ is a great problem-solving method to help your team get unblocked.

Making Space with TRIZ   #issue analysis   #liberating structures   #issue resolution   You can clear space for innovation by helping a group let go of what it knows (but rarely admits) limits its success and by inviting creative destruction. TRIZ makes it possible to challenge sacred cows safely and encourages heretical thinking. The question “What must we stop doing to make progress on our deepest purpose?” induces seriously fun yet very courageous conversations. Since laughter often erupts, issues that are otherwise taboo get a chance to be aired and confronted. With creative destruction come opportunities for renewal as local action and innovation rush in to fill the vacuum. Whoosh!

Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

Idea and Concept Development

Brainstorming without structure can quickly become chaotic or frustrating. In a problem-solving context, having an ideation framework to follow can help ensure your team is both creative and disciplined.

In this method, you’ll find an idea generation process that encourages your group to brainstorm effectively before developing their ideas and begin clustering them together. By using concepts such as Yes and…, more is more and postponing judgement, you can create the ideal conditions for brainstorming with ease.

Idea & Concept Development   #hyperisland   #innovation   #idea generation   Ideation and Concept Development is a process for groups to work creatively and collaboratively to generate creative ideas. It’s a general approach that can be adapted and customized to suit many different scenarios. It includes basic principles for idea generation and several steps for groups to work with. It also includes steps for idea selection and development.

Problem-solving techniques for developing and refining solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to develop and refine your ideas in order to bring them closer to a solution that actually solves the problem.

Use these problem-solving techniques when you want to help your team think through their ideas and refine them as part of your problem solving process.

Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

Ensuring that everyone in a group is able to contribute to a discussion is vital during any problem solving process. Not only does this ensure all bases are covered, but its then easier to get buy-in and accountability when people have been able to contribute to the process.

1-2-4-All is a tried and tested facilitation technique where participants are asked to first brainstorm on a topic on their own. Next, they discuss and share ideas in a pair before moving into a small group. Those groups are then asked to present the best idea from their discussion to the rest of the team.

This method can be used in many different contexts effectively, though I find it particularly shines in the idea development stage of the process. Giving each participant time to concretize their ideas and develop them in progressively larger groups can create a great space for both innovation and psychological safety.

1-2-4-All   #idea generation   #liberating structures   #issue analysis   With this facilitation technique you can immediately include everyone regardless of how large the group is. You can generate better ideas and more of them faster than ever before. You can tap the know-how and imagination that is distributed widely in places not known in advance. Open, generative conversation unfolds. Ideas and solutions are sifted in rapid fashion. Most importantly, participants own the ideas, so follow-up and implementation is simplified. No buy-in strategies needed! Simple and elegant!

15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

Problem-solving techniques for making decisions and planning

After your group is happy with the possible solutions you’ve developed, now comes the time to choose which to implement. There’s more than one way to make a decision and the best option is often dependant on the needs and set-up of your group.

Sometimes, it’s the case that you’ll want to vote as a group on what is likely to be the most impactful solution. Other times, it might be down to a decision maker or major stakeholder to make the final decision. Whatever your process, here’s some techniques you can use to help you make a decision during your problem solving process.

How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

Straddling the gap between decision making and planning, MoSCoW is a simple and effective method that allows a group team to easily prioritize a set of possible options.

Use this method in a problem solving process by collecting and summarizing all your possible solutions and then categorize them into 4 sections: “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”.

This method is particularly useful when its less about choosing one possible solution and more about prioritorizing which to do first and which may not fit in the scope of your project. In my experience, complex challenges often require multiple small fixes, and this method can be a great way to move from a pile of things you’d all like to do to a structured plan.

MoSCoW   #define intentions   #create   #design   #action   #remote-friendly   MoSCoW is a method that allows the team to prioritize the different features that they will work on. Features are then categorized into “Must have”, “Should have”, “Could have”, or “Would like but won‘t get”. To be used at the beginning of a timeslot (for example during Sprint planning) and when planning is needed.

When it comes to managing the rollout of a solution, clarity and accountability are key factors in ensuring the success of the project. The RAACI chart is a simple but effective model for setting roles and responsibilities as part of a planning session.

Start by listing each person involved in the project and put them into the following groups in order to make it clear who is responsible for what during the rollout of your solution.

  • Responsibility  (Which person and/or team will be taking action?)
  • Authority  (At what “point” must the responsible person check in before going further?)
  • Accountability  (Who must the responsible person check in with?)
  • Consultation  (Who must be consulted by the responsible person before decisions are made?)
  • Information  (Who must be informed of decisions, once made?)

Ensure this information is easily accessible and use it to inform who does what and who is looped into discussions and kept up to date.

RAACI   #roles and responsibility   #teamwork   #project management   Clarifying roles and responsibilities, levels of autonomy/latitude in decision making, and levels of engagement among diverse stakeholders.

Problem-solving warm-up activities

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process. Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Closing activities for a problem-solving process

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Tips for effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Create psychologically safe spaces for discussion

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner.

It can be tough for people to stand up and contribute if the problems or challenges are emotive or personal in nature. Try and create a psychologically safe space for these kinds of discussions and where possible, create regular opportunities for challenges to be brought up organically.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

Save time and effort creating an effective problem solving process

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

mention any two computer problem solving techniques

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

mention any two computer problem solving techniques

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of great workshop tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your life easier and run better workshops and meetings. In fact, there are plenty of free online workshop tools and meeting…

mention any two computer problem solving techniques

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)
  • Python Programming
  • C Programming
  • Numerical Methods
  • Dart Language
  • Computer Basics
  • Deep Learning
  • C Programming Examples
  • Python Programming Examples

Problem Solving Using Computer (Steps)

Computer based problem solving is a systematic process of designing, implementing and using programming tools during the problem solving stage. This method enables the computer system to be more intuitive with human logic than machine logic. Final outcome of this process is software tools which is dedicated to solve the problem under consideration. Software is just a collection of computer programs and programs are a set of instructions which guides computer’s hardware. These instructions need to be well specified for solving the problem. After its creation, the software should be error free and well documented. Software development is the process of creating such software, which satisfies end user’s requirements and needs.

The following six steps must be followed to solve a problem using computer.

  • Problem Analysis
  • Program Design - Algorithm, Flowchart and Pseudocode
  • Compilation and Execution
  • Debugging and Testing
  • Program Documentation

Find Study Materials for

  • Explanations
  • Business Studies
  • Combined Science
  • Computer Science
  • Engineering
  • English literature
  • Environmental Science
  • Human Geography
  • Macroeconomics
  • Microeconomics
  • Social Studies
  • Browse all subjects
  • Textbook Solutions
  • Read our Magazine

Create Study Materials

  • Flashcards Create and find the best flashcards.
  • Notes Create notes faster than ever before.
  • Study Sets Everything you need for your studies in one place.
  • Study Plans Stop procrastinating with our smart planner features.
  • Problem Solving Techniques

Unlock the secrets of efficient coding, develop an in-depth understanding of different strategies, and learn how decision-making plays a significant role in using problem-solving techniques in Computer Science . This enlightening journey begins with an exploration into the definition of problem-solving techniques and their paramount importance in Computer Science. You further discover the basic problem-solving methods, their practical applications, and how these foundational skills apply directly to coding. 

Problem Solving Techniques

Create learning materials about Problem Solving Techniques with our free learning app!

  • Instand access to millions of learning materials
  • Flashcards, notes, mock-exams and more
  • Everything you need to ace your exams
  • Algorithms in Computer Science
  • Computer Network
  • Computer Organisation and Architecture
  • Computer Programming
  • Computer Systems
  • Data Representation in Computer Science
  • Data Structures
  • Functional Programming
  • Issues in Computer Science
  • Abstraction Computer Science
  • Agile Methodology
  • Agile Scrum
  • Breakpoints
  • Computational Thinking
  • Decomposition Computer Science
  • Integration Testing
  • Kanban Boards
  • Pattern Recognition
  • Software Development Life Cycle
  • Step Into Debugging
  • Step Over Debugging
  • System Testing
  • Unit Testing
  • Watch Variable
  • Waterfall Model
  • Theory of Computation

Going deeper, you explore seven pivotal problem-solving techniques, understanding their concepts and their indispensable uses in Computer Science . Finally, learn the nuances involved in contrasting problem-solving and decision-making techniques, the subtleties that set them apart, and ways in which they can be combined for the most effective results, in terms of both efficiency and creativity.

Understanding Problem-Solving Techniques

Problem-solving techniques in computer science are the protocols, procedures, or methods employed to identify the root cause of a problem and construct an efficient solution.

Definition of problem-solving techniques in Computer Science

Problem-solving techniques in computer science refer to the methods used to find solutions to complex issues using algorithmic or heuristic approaches. These techniques can be systematic, analytical, or intuitive, encompassing traditional programming, machine learning, or artificial intelligence methods.

These techniques are used in various domains within computer science, including data analysis, software development, network troubleshooting, and cybersecurity. For example, in software development, problem-solving may involve debugging an application. Here, the issue could be a broken functionality within the application, and the solution might be modifying a specific segment of code.

At a software development company, the team notices that their mobile application crashes whenever a user tries to upload a profile picture. By employing problem-solving techniques such as testing , the team identifies that the crash occurs due to a buffer overflow when processing large images. Once identified, they solve this problem by modifying the code to handle large image sizes better.

Importance of problem-solving techniques in Computer Science

Problem-solving techniques are the cornerstone of computer science. From designing efficient algorithms for a given task to optimising or guaranteeing certain performance metrics, these techniques are used daily. Here's why they're important:

  • Mitigating runtime errors and system crashes: By identifying and rectifying coding mistakes effectively.
  • Optimizing software: Problem-solving techniques can help improve the efficiency of software, leading to enhanced user experience and reduced resource consumption.
  • Data analysis: They help in organizing, evaluating, and interpreting complex datasets to derive meaningful insights.
  • Cybersecurity: By identifying potential vulnerabilities and patching them before they can be exploited, thereby safeguarding digital assets.

In the domain of machine learning, problem-solving techniques are even more paramount. Here, problems can include determining the best machine learning model for a specific task, tuning the hyperparameters of a model, or dealing with issues like data imbalance or overfitting. These techniques can guide computer scientists in their quest to develop robust, accurate machine-learning models that can make sense of vast, complex data.

Given the rapidly evolving nature of computer science, mastering various problem-solving techniques is essential to stay ahead in this field. It helps you adapt to new advancements and tackle a wide range of challenges that come your way.

Basic Problem-Solving Techniques

Before diving into advanced, specialized techniques for solving problems, it is essential to become proficient in the fundamentals, which transcend specific problem domains and provide a solid foundation for exploring more complex areas within computer science.

Introduction to basic problem-solving techniques

There are several standard problem-solving techniques that you can employ irrespective of the field of study in computer science. The first step, however, is always understanding the problem, then you can choose the right strategy to solve it. Here are some of the basic problem-solving methods that are particularly useful:

Divide and Conquer: This technique involves breaking a larger problem into smaller, more manageable parts, solving each of them individually, and finally combining their solutions to get the overall answer.

Consider an example in the context of sorting a list of numbers. Using a divide-and-conquer algorithm like Merge Sort , the list is continually split in half, until you reach lists of size one. These lists are inherently sorted, and then you recursively merge these sorted lists, resulting in a fully sorted list.

Algorithm Design: This technique involves formalizing a series of organized steps into an algorithm to solve a specific problem. Common approaches include greedy algorithms, dynamic programming, and brute force .

Heuristics: These are rules of thumb or educated guesses that can help you find an acceptable, if not the perfect, solution when the problem is too complex for a direct mathematical approach, or when computational resources are limited.

Heuristics are not guaranteed to yield the optimal solution but are often good enough for practical purposes and can dramatically reduce the time and resources needed to find a solution.

Recursive Thinking: Recursion is predicated on solving a problem by breaking it down into smaller instances of the same problem. The idea is that, eventually, you will get to a problem that is small enough to solve directly.

Even though these techniques might sound simple, they form a cornerstone and are often cloaked within complex problem-solving techniques used in higher-level computer science.

Practical application of basic problem-solving techniques

The practical application of basic problem-solving techniques in computer science is broad and varied, depending on the specific domain. However, some applications cut across most sectors of computer science:

Problem-solving techniquePractical application
Divide and ConquerUsed in ( , ), searching algorithms ( ), FFT (Fast Fourier Transform) algorithm for converting a signal into its constituent frequencies
Algorithm DesignUsed in routing protocols for networks (Dijkstra's algorithm), algorithms for computer graphics and rendering, cryptography algorithms for secure communications
HeuristicsUsed in AI for game playing (Chess, Go), in natural language processing for language translation, and in navigation systems for route planning
Recursive ThinkingUsed in parsing syntax trees in compilers, algorithms for solving puzzles (Sudoku Solver), and many algorithms in (Tree/Graph traversals)

Each technique has its strengths and weaknesses, and the key is knowing which technique (or combination of techniques) to use for a particular problem. Remember, the goal is not just to find any solution, but to find the most efficient one possible.

Other fields, too, benefit from these problem-solving techniques. For example, bioinformatics implements algorithm design to match genetic sequences, while digital forensics employs divide-and-conquer techniques to sift through large amounts of data during an investigation. Moreover, heuristics play a significant role in the burgeoning field of AI, proving that these problem-solving techniques not only provide a solid foundation for computer science but also have real-world applications.

Coding Problem-Solving Techniques

Delving into the more specific realm of coding within computer science, the arsenal of problem-solving techniques takes on facets best suited for resolving issues related to programming and development.

Importance of coding problem-solving techniques in Computer Science

Coding problem-solving techniques are the tools that software developers use to create, optimise, and manage software applications effectively. These techniques play an instrumental role in many aspects:

  • Enhancing code efficiency: Efficient code is faster to execute, consumes less memory, and results in responsive, user-friendly applications. For instance, choosing an optimal sorting algorithm based on the size of the list can markedly improve runtime.
  • Mitigating errors: Through structured debugging and systematic thinking, developers can track and rectify logic errors, syntax errors , or runtime exceptions, leading to robust, error-free code.
  • Facilitating code readability and maintenance: Good coding practices, such as following a consistent naming scheme and using descriptive comments, make code easier to understand, troubleshoot, and maintain – essential when working in a team.
  • Implementing complex functionalities: Many modern applications require intricate algorithms, use elaborate data structures , and handle large volumes of data. Mastery of coding problem-solving techniques enables developers to tackle these challenges effectively.

Examples of coding problem-solving techniques

There's a myriad of coding problem-solving techniques at a developer's disposal. These methods typically supplement basic problem-solving techniques with practices tailored for the coding environment. Let's delve into a few:

Debugging: Debugging is the process of identifying and rectifying coding errors. It often involves using built-in tools or software debuggers to step through the code line-by-line, track variable values, and uncover where things go awry. A systematic debugging approach is essential for problem-solving in coding.

Suppose you are developing a JavaScript web application, and some functionality isn't working as expected. By using the browser's debugging tools, you can step through your JavaScript code, watch the values assigned to variables, and identify the line creating the issue.

Code Refactoring: Refactoring implies rearranging and improving the structure of existing code without changing its functionality. Refactoring techniques, such as extracting repeated code into functions or simplifying conditional expressions, are integral problem-solving tools aimed at improving code readability and efficiency.

Using Data Structures & Algorithms: Effective use of data structures ( Arrays , LinkedList, Stack, Queue, Tree, Hashtable, etc.) and algorithms (Sorting, Searching, etc.) is fundamental in coding problem-solving. The correct choice and application of such tools can have a dramatic impact on a program’s performance.

Version Control: While writing code, you often need to try out different solutions or collaborate with other team members. Using version control systems , like Git, helps manage changes, track history, and merge code from different branches. This aids in solving and managing complex coding problems.

Apart from these fundamental techniques, advanced paradigms, such as Test-Driven Development (TDD), Behaviour Driven Development (BDD), etc., also exist. In TDD, the developer writes tests for a function before writing the actual function. In BDD, the behaviour of an application from the end user's perspective is the guiding force behind development. These paradigms incorporate problem-solving in their methodologies and guide the development process to create effective, robust applications.

Indeed, coding problem-solving techniques enrich a developer's toolkit and provide avenues to tackle the myriad of challenges that arise in programming. Whether it's minimising bugs, improving code efficiency, or implementing complex functionalities, these techniques are indispensable in daily coding endeavours.

In-depth study of 7 Problem-Solving Techniques

Problem-solving takes centre stage in the realm of computer science, where challenges need methodical approaches for efficient resolution. Let's delve into an in-depth exploration of seven such techniques, with each offering a unique perspective on how to tackle and solve issues effectively.

Conceptual understanding of the 7 problem-solving techniques

Within the realm of computer science, efficient problem-solving techniques can be the key to unlocking streamlined workflows, effective data handling, and improved coding management. These problem-solving methods include:

  • Divide and Conquer: This technique splits larger problems into smaller, more manageable sub-problems, solves the sub-problems individually and combines the solutions to get a complete resolution. This technique is pertinent to a wide range of algorithms in computer science , including sorting and searching algorithms.
  • Greedy Algorithms: Greedy algorithms solve problems by making the best choice at each step, with the hope that these local optimal solutions will lead to a globally optimal solution. They are often used in scenarios where the optimal solution has a 'greedy property', such as in the famous 'travelling salesman' problem.
  • Backtracking : This technique incrementally builds candidates for the solutions and abandons a candidate as soon as it determines that this candidate cannot possibly be extended to a valid solution.
  • Dynamic Programming: This method solves complex problems by breaking them down into simpler sub-problems, but unlike divide and conquer, these sub-problems are not solved independently. Instead, the results of sub-problems are stored and utilised to build up solutions to larger problems.
  • Brute Force : This straightforward approach tries every possible solution until it finds the best one. The simplicity of this method often makes it a practical and easy-to-implement fallback plan, although it may not be the most efficient.
  • Randomised Algorithms: For certain problems, deterministic algorithms may be too slow or complex, and the solution space too large to navigate exhaustively. In such cases, randomised algorithms offer an option where random choices drive the solution process. These algorithms have proven extremely efficient in problems like QuickSort and the Monte Carlo method.
  • Heuristic Methods: Heuristics are problem-solving approaches that are not always guaranteed to provide the perfect solution but will produce a good solution in a reasonable time. Various AI and machine learning techniques, such as genetic algorithms or neural networks, heavily use heuristic methods.

A Greedy Algorithm is one where, at each step, the choice that looks the best at that moment is selected with the belief that this choice will lead to an optimal global solution.

Understanding the foundations of these techniques provides a comprehensive toolset to approach a wide array of problems in computer science. It's important to remember that a technique's effectiveness largely depends on the nature of the problem.

Uses of the 7 problem-solving techniques in Computer Science

Each problem-solving method can be coupled with different facets within computer science. For example, encryption techniques, compression algorithms, network routing strategies, and database searches all rely on precise problem-solving methodologies. Here are just a few of the potential uses for each method:

Problem-solving techniqueApplication in Computer Science
Divide and ConquerUsed in algorithms like quicksort and mergesort, matrix multiplication, and Fast Fourier Transform.
Greedy AlgorithmsImplemented in algorithms for task scheduling, Prim's and Kruskal's for minimum spanning trees, and Dijkstra's for shortest paths.
BacktrackingApplied in solving Sudoku puzzles, the eight queens problem, or in the creation of mazes.
Dynamic ProgrammingUsed in algorithms for sequence alignment in bioinformatics, efficient routing in telecommunications and graph theory, or resource allocation in operations research.
Brute ForceFound in simple , gaming solutions such as tic-tac-toe, or password cracking techniques.
Randomised AlgorithmsUsed in cryptography for key generation and primality , and in algorithm design like the randomised version of quicksort - 'Randomized-Quicksort'
Heuristic MethodsEmployed in machine learning and artificial intelligence, like A* pathfinding for game development or genetic algorithms for feature selection in machine learning, game AI and automation, decision making in robotics.

The flexibility and variety of these problem-solving techniques enable a far-reaching applicability across the vast landscape of computer science. By understanding and mastering these techniques, you can tackle a wide array of complex problems more efficiently.

Brainstorming Problem-Solving Techniques

In the context of problem-solving techniques, brainstorming is an invaluable tool. Brainstorming offers a creative, open-ended approach well-suited for troubleshooting challenges, stimulating new ideas, and tackling issues from fresh angles.

Role of brainstorming in problem-solving techniques

Brainstorming's emphasis on exploratory thinking and collaborative problem-solving makes it an excellent tool in computer science. This interactive technique encourages you to think outside the box, ushering a wealth of ideas and potential problem-solving approaches. Here's why brainstorming plays a pivotal role in problem-solving techniques:

  • Encourages Creative Thinking: Brainstorming breaks down the barriers of conventional thought, promoting imaginative solutions that may not be immediately evident. This out-of-the-box thinking can generate unique problem-solving methods for complex computer science problems.
  • Fosters Collaboration: Brainstorming is fundamentally a collective effort. By combining the expertise and viewpoints of multiple individuals, it can foster innovative problem-solving approaches that would not surface in isolated thinking.
  • Aids in Problem Understanding: In the process of brainstorming, not only are solutions discussed, but the problem itself is dissected from different angles. This aids in gaining a deeper understanding of the problem, essential to uncover the most effective solutions.

Consider a team of developers brainstorming to develop a feature for a software application. One developer might suggest a direct approach that, although simple, may not be the most efficient. Another team member could propose a more complex, but efficient, algorithm for the feature. A third might contribute an innovative approach that balances both performance and simplicity.

Through this collective brainstorming, the team converges on the most well-rounded approach, emphasising the critical role that brainstorming plays in problem-solving methodologies.

Applying brainstorming in problem-solving techniques

Brainstorming is not just about generating as many ideas as possible; it's also about creating an organized framework for synthesizing and evaluating those ideas.

For effective brainstorming in problem-solving and decision-making techniques, you can follow the steps below:

  • Define the Problem: Clearly understand and define the problem that needs solving. The more accurately the problem is described, the more targeted the brainstorming will be.
  • Set Guidelines: Establish rules for the brainstorming session to keep it focused and productive. These might include encouraging free thinking, postponing judgment, welcoming wild ideas, building on other ideas, and setting a time limit.
  • Idea Generation: Begin brainstorming, inviting everyone involved to share their ideas. The key is to promote creativity and diversity of thought. No idea is too outlandish; often, the most unconventional suggestions lead to the most innovative solutions.
  • Categorise and Consolidate: Once all the ideas are documented, start to group related ideas together and consolidate overlapping ideas.
  • Analyse and Evaluate: It's time to analyse each idea based on its feasibility, potential impact, and resource requirement. Ideas that might not appear effective initially can be valuable when combined with other ideas.
  • Select and Implement: After thorough analysis and discussion, decide on the best solution(s) to implement, based on the resources and time available, instantly making the brainstorming session instrumental in decision making as well.

Remember: Brainstorming is not just a one-time activity. It can and should be done iteratively. Often, implementation of an idea will bring forward new challenges, requiring another round of brainstorming. The strength of brainstorming lies in its fluid nature, allowing it to adapt and iterate until the problem at hand is fully resolved.

All in all, brainstorming is a powerful problem-solving and decision-making technique in computer science. By cultivating creativity, encouraging collaboration, and fostering a deeper understanding of problems, it holds the potential to tackle complex issues effectively.

Problem Solving and Decision Making Techniques

In computer science, problem-solving and decision-making form the core techniques widely employed in managing software development, debugging, data analysis, network operations, and more. Incorporating these methodologies in a concerted, structured manner can significantly enhance the outcomes in various fields of technology.

Difference between problem-solving and decision-making techniques

While it might appear that problem-solving and decision-making are interchangeable terms, they signify distinct aspects of addressing challenges in computer science.

  • Problem-solving: Within a computer science context, problem-solving involves identifying an issue within a system, application, or theory and resolving it effectively. This process often includes defining the problem, identifying root causes, generating alternative solutions, selecting a solution, and implementing it. Problem-solving often utilises techniques like debugging, algorithmic design, divide and conquer, dynamic programming, recursive thinking, heuristic methods, and more.
  • Decision-making: Decision-making, on the other hand, is a process of choosing between different alternatives. It often follows problem-solving whereby, after identifying potential solutions to a problem, the best option needs to be chosen. Decision-making techniques might include tools like decision matrices, cost-benefit analyses, or simple pros-and-cons lists. In computer science, decision-making can involve choosing the right data structure, deciding which algorithm to use, or selecting a coding methodology.

For instance, problem-solving might involve identifying a bottleneck in a software's performance and brainstorming different ways to enhance the efficiency. However, decision-making comes into play when you need to choose one of the generated solutions based on various factors like resource availability, time constraints, the impact of the solution, etc. Thus, while both techniques cater to overcoming challenges, problem-solving is more focused on creating solutions, whereas decision-making prioritises choosing the most optimal one from these solutions.

Combining problem-solving and decision-making for effective results

Effective results in computer science often stem from an amalgamation of both problem-solving and decision-making techniques. Combining these approaches ensures a comprehensive solution to challenges, complete with a thorough understanding of the problem, an array of possible solutions, and a well-thought-out decision on implementing the best solution.

Consider a situation where a computer system is repeatedly encountering a fatal error. Here's how problem-solving and decision-making techniques can be combined for effective results:

  • Identification: Firstly, identify the issue affecting the system. This could be established through system monitoring tools or error logs. Once the problem is identified, it sets the base for problem-solving.
  • Problem-Solving: Now, brainstorm for possible solutions to rectify the error. This could involve debugging the system or reviewing the code to find potential bugs. Perhaps the issue might be a memory leak that needs addressing or a race condition in multi-threaded operations. These solutions emanate from problem-solving techniques.
  • Decision-Making: Once a list of possible solutions is generated, use decision-making techniques to select the best course of action. You could create a pros-and-cons list for each solution or use a more formal decision matrix to evaluate effectiveness, resources required, impact on system performance, etc. Finally, implement the solution.
  • Review: After implementation, monitor the system to ensure the solution is working as intended. If the problem persists, the process returns to the problem-solving stage to revisit the issue and generate new solutions.

It's important to keep in mind that real-word scenarios seldom follow a tidy linear sequence. More commonly, problem-solving and decision-making are iterative, cyclical processes that overlap and interrelate. It's a dynamic environment where a bottleneck can stimulate new decision-making criteria, or an unforeseen decisional deadlock might call for fresh problem-solving ideas.

Combining problem-solving with decision-making offers a structured, strategic approach to tackle challenges commonly found in computer science. This conjunction of techniques provides a robust, versatile methodology to drive effective results across the diverse landscape of technology.

Problem Solving Techniques - Key takeaways

  • Problem-solving techniques in Computer Science are techniques which typically use algorithmic or heuristic approaches to resolve complex issues.
  • Problem-solving techniques can be systematic, analytical, or intuitive, and involve traditional programming, machine learning, or artificial intelligence methods. Applied in domains such as data analysis, software development, network troubleshooting, and cybersecurity.
  • Basic problem-solving techniques comprises of methods like divide and conquer, algorithm design, heuristics, and recursive thinking, all aimed at understanding and tackling problems.
  • Practical applications of basic problem-solving techniques include applications spanning across various sectors of computer science, including sorting and searching algorithms, routing protocols for networks, AI game playing, and parsing syntax trees in compilers.
  • Examples of coding problem-solving techniques include Debugging which is essential in identifying and rectifying coding errors, Code Refactoring to improve the structure of existing code without changing its functionality, Using Data Structures & Algorithms to have a dramatic impact on a program’s performance, and Version Control System like Git for managing changes, tracking history and merging code from different branches.

Flashcards in Problem Solving Techniques 404

What are problem-solving techniques in computer science?

Problem-solving techniques in computer science refer to the methods used to find solutions to complex issues using algorithmic or heuristic approaches, which can be systematic, analytical, or intuitive. They encompass traditional programming, machine learning, or artificial intelligence methods.

Why are problem-solving techniques important in computer science?

Problem-solving techniques in computer science are important for mitigating runtime errors and system crashes, optimizing software, organizing, evaluating, and interpreting complex datasets, and identifying potential cybersecurity vulnerabilities and patching them.

What is the 'Divide and Conquer' problem-solving technique in computer science?

The 'Divide and Conquer' technique involves breaking a larger problem into smaller, more manageable parts, solving each individually, and combining their solutions to get the overall answer. This is often used in sorting algorithms like Merge Sort.

What is the purpose of the 'Heuristics' problem-solving technique?

'Heuristics' are educated guesses that can help find an acceptable solution when the problem is too complex for a direct mathematical approach, or when computational resources are limited. They are often used in AI and language translations.

What are some of the important functions of coding problem-solving techniques in computer science?

Coding problem-solving techniques aid in enhancing code efficiency, mitigating errors, facilitating code readability and maintenance, and implementing complex functionalities.

What are some examples of coding problem-solving techniques?

Examples include debugging, code refactoring, using appropriate data structures and algorithms, and implementing version control.

Problem Solving Techniques

Learn with 404 Problem Solving Techniques flashcards in the free Vaia app

We have 14,000 flashcards about Dynamic Landscapes.

Already have an account? Log in

Frequently Asked Questions about Problem Solving Techniques

What are some problem-solving techniques?

Some common problem solving techniques include brainstorming, the five whys technique, root cause analysis, lateral thinking, striving for simplicity, the 6 thinking hats and using flow charts or diagrams. Additionally, techniques such as SWOT analysis, Trial and Error, and Decision Trees can also be effective tools in problem-solving. Each technique is employed based on the nature and context of the problem to be solved. It's crucial to understand the problem fully before choosing a technique to apply.

What are the four problem-solving techniques?

The four problem solving techniques are: 

1) Defining the problem clearly to understand its nature and scope

2) Generating a range of potential solutions through brainstorming or creative thinking 

3) Evaluating and selecting the most feasible solutions by analysing their pros and cons

4) Implementing the chosen solution and monitoring its effectiveness.

How to apply problem-solving techniques?

To apply problem solving techniques, you first need to clearly identify and define the problem. Next, gather as much information as you can related to the problem. Once you have all the details, generate a range of potential solutions and evaluate each for its merits and downsides. Finally, implement the best solution and review its effectiveness, making adjustments as necessary.

What are the different problem solving techniques?

Different problem solving techniques include brainstorming, lateral thinking, root cause analysis, the five whys technique, mind mapping, SWOT analysis, "divide and conquer" technique and use of algorithms or heuristics. Additionally, the use of decision trees, fishbone diagrams, and PEST & STEEPLE analysis are also widely used in strategic problem solving. All these techniques help in breaking down complex problems into manageable parts and finding effective solutions. The choice of technique may vary depending on the nature and complexity of the problem.

How to choose problem-solving techniques?

Choosing problem-solving techniques involves understanding the nature and scope of the problem, identifying all potential methods for resolution, and then carefully evaluating each one in terms of its appropriateness, feasibility, and probable effectiveness, selecting the most promising one. Take into consideration multidisciplinary insights, and factor in resources available, time constraints, and potential risks. It can also be useful to bring in outside perspectives or utilise brainstorming techniques. The chosen method should ideally be both effective and efficient in resolving the problem at hand.

Test your knowledge with multiple choice flashcards

What is the 'Divide and Conquer' problem-solving technique in computer science?

Problem Solving Techniques

Join the Vaia App and learn efficiently with millions of flashcards and more!

Keep learning, you are doing great.

Discover learning materials with the free Vaia app

1

Vaia is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

Problem Solving Techniques

Vaia Editorial Team

Team Computer Science Teachers

  • 20 minutes reading time
  • Checked by Vaia Editorial Team

Study anywhere. Anytime.Across all devices.

Create a free account to save this explanation..

Save explanations to your personalised space and access them anytime, anywhere!

By signing up, you agree to the Terms and Conditions and the Privacy Policy of Vaia.

Sign up to highlight and take notes. It’s 100% free.

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place

  • Flashcards & Quizzes
  • AI Study Assistant
  • Study Planner
  • Smart Note-Taking

Join over 22 million students in learning with our Vaia App

Privacy Overview

Get unlimited access with a free vaia account..

  • Instant access to millions of learning materials.
  • Flashcards, notes, mock-exams, AI tools and more.
  • Everything you need to ace your exams.

Second Popup Banner

Exploring the Problem Solving Cycle in Computer Science – Strategies, Techniques, and Tools

  • Post author By bicycle-u
  • Post date 08.12.2023

The world of computer science is built on the foundation of problem solving. Whether it’s finding a solution to a complex algorithm or analyzing data to make informed decisions, the problem solving cycle is at the core of every computer science endeavor.

At its essence, problem solving in computer science involves breaking down a complex problem into smaller, more manageable parts. This allows for a systematic approach to finding a solution by analyzing each part individually. The process typically starts with gathering and understanding the data or information related to the problem at hand.

Once the data is collected, computer scientists use various techniques and algorithms to analyze and explore possible solutions. This involves evaluating different approaches and considering factors such as efficiency, accuracy, and scalability. During this analysis phase, it is crucial to think critically and creatively to come up with innovative solutions.

After a thorough analysis, the next step in the problem solving cycle is designing and implementing a solution. This involves creating a detailed plan of action, selecting the appropriate tools and technologies, and writing the necessary code to bring the solution to life. Attention to detail and precision are key in this stage to ensure that the solution functions as intended.

The final step in the problem solving cycle is evaluating the solution and its effectiveness. This includes testing the solution against different scenarios and data sets to ensure its reliability and performance. If any issues or limitations are discovered, adjustments and optimizations are made to improve the solution.

In conclusion, the problem solving cycle is a fundamental process in computer science, involving analysis, data exploration, algorithm development, solution implementation, and evaluation. It is through this cycle that computer scientists are able to tackle complex problems and create innovative solutions that drive progress in the field of computer science.

Understanding the Importance

In computer science, problem solving is a crucial skill that is at the core of the problem solving cycle. The problem solving cycle is a systematic approach to analyzing and solving problems, involving various stages such as problem identification, analysis, algorithm design, implementation, and evaluation. Understanding the importance of this cycle is essential for any computer scientist or programmer.

Data Analysis and Algorithm Design

The first step in the problem solving cycle is problem identification, which involves recognizing and defining the issue at hand. Once the problem is identified, the next crucial step is data analysis. This involves gathering and examining relevant data to gain insights and understand the problem better. Data analysis helps in identifying patterns, trends, and potential solutions.

After data analysis, the next step is algorithm design. An algorithm is a step-by-step procedure or set of rules to solve a problem. Designing an efficient algorithm is crucial as it determines the effectiveness and efficiency of the solution. A well-designed algorithm takes into consideration the constraints, resources, and desired outcomes while implementing the solution.

Implementation and Evaluation

Once the algorithm is designed, the next step in the problem solving cycle is implementation. This involves translating the algorithm into a computer program using a programming language. The implementation phase requires coding skills and expertise in a specific programming language.

After implementation, the solution needs to be evaluated to ensure that it solves the problem effectively. Evaluation involves testing the program and verifying its correctness and efficiency. This step is critical to identify any errors or issues and to make necessary improvements or adjustments.

In conclusion, understanding the importance of the problem solving cycle in computer science is essential for any computer scientist or programmer. It provides a systematic and structured approach to analyze and solve problems, ensuring efficient and effective solutions. By following the problem solving cycle, computer scientists can develop robust algorithms, implement them in efficient programs, and evaluate their solutions to ensure their correctness and efficiency.

Identifying the Problem

In the problem solving cycle in computer science, the first step is to identify the problem that needs to be solved. This step is crucial because without a clear understanding of the problem, it is impossible to find a solution.

Identification of the problem involves a thorough analysis of the given data and understanding the goals of the task at hand. It requires careful examination of the problem statement and any constraints or limitations that may affect the solution.

During the identification phase, the problem is broken down into smaller, more manageable parts. This can involve breaking the problem down into sub-problems or identifying the different aspects or components that need to be addressed.

Identifying the problem also involves considering the resources and tools available for solving it. This may include considering the specific tools and programming languages that are best suited for the problem at hand.

By properly identifying the problem, computer scientists can ensure that they are focused on the right goals and are better equipped to find an effective and efficient solution. It sets the stage for the rest of the problem solving cycle, including the analysis, design, implementation, and evaluation phases.

Gathering the Necessary Data

Before finding a solution to a computer science problem, it is essential to gather the necessary data. Whether it’s writing a program or developing an algorithm, data serves as the backbone of any solution. Without proper data collection and analysis, the problem-solving process can become inefficient and ineffective.

The Importance of Data

In computer science, data is crucial for a variety of reasons. First and foremost, it provides the information needed to understand and define the problem at hand. By analyzing the available data, developers and programmers can gain insights into the nature of the problem and determine the most efficient approach for solving it.

Additionally, data allows for the evaluation of potential solutions. By collecting and organizing relevant data, it becomes possible to compare different algorithms or strategies and select the most suitable one. Data also helps in tracking progress and measuring the effectiveness of the chosen solution.

Data Gathering Process

The process of gathering data involves several steps. Firstly, it is necessary to identify the type of data needed for the particular problem. This may include numerical values, textual information, or other types of data. It is important to determine the sources of data and assess their reliability.

Once the required data has been identified, it needs to be collected. This can be done through various methods, such as surveys, experiments, observations, or by accessing existing data sets. The collected data should be properly organized, ensuring its accuracy and validity.

Data cleaning and preprocessing are vital steps in the data gathering process. This involves removing any irrelevant or erroneous data and transforming it into a suitable format for analysis. Properly cleaned and preprocessed data will help in generating reliable and meaningful insights.

Data Analysis and Interpretation

After gathering and preprocessing the data, the next step is data analysis and interpretation. This involves applying various statistical and analytical methods to uncover patterns, trends, and relationships within the data. By analyzing the data, programmers can gain valuable insights that can inform the development of an effective solution.

During the data analysis process, it is crucial to remain objective and unbiased. The analysis should be based on sound reasoning and logical thinking. It is also important to communicate the findings effectively, using visualizations or summaries to convey the information to stakeholders or fellow developers.

In conclusion, gathering the necessary data is a fundamental step in solving computer science problems. It provides the foundation for understanding the problem, evaluating potential solutions, and tracking progress. By following a systematic and rigorous approach to data gathering and analysis, developers can ensure that their solutions are efficient, effective, and well-informed.

Analyzing the Data

Once you have collected the necessary data, the next step in the problem-solving cycle is to analyze it. Data analysis is a crucial component of computer science, as it helps us understand the problem at hand and develop effective solutions.

To analyze the data, you need to break it down into manageable pieces and examine each piece closely. This process involves identifying patterns, trends, and outliers that may be present in the data. By doing so, you can gain insights into the problem and make informed decisions about the best course of action.

There are several techniques and tools available for data analysis in computer science. Some common methods include statistical analysis, data visualization, and machine learning algorithms. Each approach has its own strengths and limitations, so it’s essential to choose the most appropriate method for the problem you are solving.

Statistical Analysis

Statistical analysis involves using mathematical models and techniques to analyze data. It helps in identifying correlations, distributions, and other statistical properties of the data. By applying statistical tests, you can determine the significance and validity of your findings.

Data Visualization

Data visualization is the process of presenting data in a visual format, such as charts, graphs, or maps. It allows for a better understanding of complex data sets and facilitates the communication of findings. Through data visualization, patterns and trends can become more apparent, making it easier to derive meaningful insights.

Machine Learning Algorithms

Machine learning algorithms are powerful tools for analyzing large and complex data sets. These algorithms can automatically detect patterns and relationships in the data, leading to the development of predictive models and solutions. By training the algorithm on a labeled dataset, it can learn from the data and make accurate predictions or classifications.

In conclusion, analyzing the data is a critical step in the problem-solving cycle in computer science. It helps us gain a deeper understanding of the problem and develop effective solutions. Whether through statistical analysis, data visualization, or machine learning algorithms, data analysis plays a vital role in transforming raw data into actionable insights.

Exploring Possible Solutions

Once you have gathered data and completed the analysis, the next step in the problem-solving cycle is to explore possible solutions. This is where the true power of computer science comes into play. With the use of algorithms and the application of scientific principles, computer scientists can develop innovative solutions to complex problems.

During this stage, it is important to consider a variety of potential solutions. This involves brainstorming different ideas and considering their feasibility and potential effectiveness. It may be helpful to consult with colleagues or experts in the field to gather additional insights and perspectives.

Developing an Algorithm

One key aspect of exploring possible solutions is the development of an algorithm. An algorithm is a step-by-step set of instructions that outlines a specific process or procedure. In the context of problem solving in computer science, an algorithm provides a clear roadmap for implementing a solution.

The development of an algorithm requires careful thought and consideration. It is important to break down the problem into smaller, manageable steps and clearly define the inputs and outputs of each step. This allows for the creation of a logical and efficient solution.

Evaluating the Solutions

Once you have developed potential solutions and corresponding algorithms, the next step is to evaluate them. This involves analyzing each solution to determine its strengths, weaknesses, and potential impact. Consider factors such as efficiency, scalability, and resource requirements.

It may be helpful to conduct experiments or simulations to further assess the effectiveness of each solution. This can provide valuable insights and data to support the decision-making process.

Ultimately, the goal of exploring possible solutions is to find the most effective and efficient solution to the problem at hand. By leveraging the power of data, analysis, algorithms, and scientific principles, computer scientists can develop innovative solutions that drive progress and solve complex problems in the world of technology.

Evaluating the Options

Once you have identified potential solutions and algorithms for a problem, the next step in the problem-solving cycle in computer science is to evaluate the options. This evaluation process involves analyzing the potential solutions and algorithms based on various criteria to determine the best course of action.

Consider the Problem

Before evaluating the options, it is important to take a step back and consider the problem at hand. Understand the requirements, constraints, and desired outcomes of the problem. This analysis will help guide the evaluation process.

Analyze the Options

Next, it is crucial to analyze each solution or algorithm option individually. Look at factors such as efficiency, accuracy, ease of implementation, and scalability. Consider whether the solution or algorithm meets the specific requirements of the problem, and if it can be applied to related problems in the future.

Additionally, evaluate the potential risks and drawbacks associated with each option. Consider factors such as cost, time, and resources required for implementation. Assess any potential limitations or trade-offs that may impact the overall effectiveness of the solution or algorithm.

Select the Best Option

Based on the analysis, select the best option that aligns with the specific problem-solving goals. This may involve prioritizing certain criteria or making compromises based on the limitations identified during the evaluation process.

Remember that the best option may not always be the most technically complex or advanced solution. Consider the practicality and feasibility of implementation, as well as the potential impact on the overall system or project.

In conclusion, evaluating the options is a critical step in the problem-solving cycle in computer science. By carefully analyzing the potential solutions and algorithms, considering the problem requirements, and considering the limitations and trade-offs, you can select the best option to solve the problem at hand.

Making a Decision

Decision-making is a critical component in the problem-solving process in computer science. Once you have analyzed the problem, identified the relevant data, and generated a potential solution, it is important to evaluate your options and choose the best course of action.

Consider All Factors

When making a decision, it is important to consider all relevant factors. This includes evaluating the potential benefits and drawbacks of each option, as well as understanding any constraints or limitations that may impact your choice.

In computer science, this may involve analyzing the efficiency of different algorithms or considering the scalability of a proposed solution. It is important to take into account both the short-term and long-term impacts of your decision.

Weigh the Options

Once you have considered all the factors, it is important to weigh the options and determine the best approach. This may involve assigning weights or priorities to different factors based on their importance.

Using techniques such as decision matrices or cost-benefit analysis can help you systematically compare and evaluate different options. By quantifying and assessing the potential risks and rewards, you can make a more informed decision.

Remember: Decision-making in computer science is not purely subjective or based on personal preference. It is crucial to use analytical and logical thinking to select the most optimal solution.

In conclusion, making a decision is a crucial step in the problem-solving process in computer science. By considering all relevant factors and weighing the options using logical analysis, you can choose the best possible solution to a given problem.

Implementing the Solution

Once the problem has been analyzed and a solution has been proposed, the next step in the problem-solving cycle in computer science is implementing the solution. This involves turning the proposed solution into an actual computer program or algorithm that can solve the problem.

In order to implement the solution, computer science professionals need to have a strong understanding of various programming languages and data structures. They need to be able to write code that can manipulate and process data in order to solve the problem at hand.

During the implementation phase, the proposed solution is translated into a series of steps or instructions that a computer can understand and execute. This involves breaking down the problem into smaller sub-problems and designing algorithms to solve each sub-problem.

Computer scientists also need to consider the efficiency of their solution during the implementation phase. They need to ensure that the algorithm they design is able to handle large amounts of data and solve the problem in a reasonable amount of time. This often requires optimization techniques and careful consideration of the data structures used.

Once the code has been written and the algorithm has been implemented, it is important to test and debug the solution. This involves running test cases and checking the output to ensure that the program is working correctly. If any errors or bugs are found, they need to be fixed before the solution can be considered complete.

In conclusion, implementing the solution is a crucial step in the problem-solving cycle in computer science. It requires strong programming skills and a deep understanding of algorithms and data structures. By carefully designing and implementing the solution, computer scientists can solve problems efficiently and effectively.

Testing and Debugging

In computer science, testing and debugging are critical steps in the problem-solving cycle. Testing helps ensure that a program or algorithm is functioning correctly, while debugging analyzes and resolves any issues or bugs that may arise.

Testing involves running a program with specific input data to evaluate its output. This process helps verify that the program produces the expected results and handles different scenarios correctly. It is important to test both the normal and edge cases to ensure the program’s reliability.

Debugging is the process of identifying and fixing errors or bugs in a program. When a program does not produce the expected results or crashes, it is necessary to go through the code to find and fix the problem. This can involve analyzing the program’s logic, checking for syntax errors, and using debugging tools to trace the flow of data and identify the source of the issue.

Data analysis plays a crucial role in both testing and debugging. It helps to identify patterns, anomalies, or inconsistencies in the program’s behavior. By analyzing the data, developers can gain insights into potential issues and make informed decisions on how to improve the program’s performance.

In conclusion, testing and debugging are integral parts of the problem-solving cycle in computer science. Through testing and data analysis, developers can verify the correctness of their programs and identify and resolve any issues that may arise. This ensures that the algorithms and programs developed in computer science are robust, reliable, and efficient.

Iterating for Improvement

In computer science, problem solving often involves iterating through multiple cycles of analysis, solution development, and evaluation. This iterative process allows for continuous improvement in finding the most effective solution to a given problem.

The problem solving cycle starts with problem analysis, where the specific problem is identified and its requirements are understood. This step involves examining the problem from various angles and gathering all relevant information.

Once the problem is properly understood, the next step is to develop an algorithm or a step-by-step plan to solve the problem. This algorithm is a set of instructions that, when followed correctly, will lead to the solution.

After the algorithm is developed, it is implemented in a computer program. This step involves translating the algorithm into a programming language that a computer can understand and execute.

Once the program is implemented, it is then tested and evaluated to ensure that it produces the correct solution. This evaluation step is crucial in identifying any errors or inefficiencies in the program and allows for further improvement.

If any issues or problems are found during testing, the cycle iterates, starting from problem analysis again. This iterative process allows for refinement and improvement of the solution until the desired results are achieved.

Iterating for improvement is a fundamental concept in computer science problem solving. By continually analyzing, developing, and evaluating solutions, computer scientists are able to find the most optimal and efficient approaches to solving problems.

Step Description
Problem Analysis Identifying and understanding the problem
Solution Development Creating an algorithm to solve the problem
Implementation Translating the algorithm into a computer program
Evaluation Testing and evaluating the program for correctness
Iteration Repeating the cycle for further improvement

Documenting the Process

Documenting the problem-solving process in computer science is an essential step to ensure that the cycle is repeated successfully. The process involves gathering information, analyzing the problem, and designing a solution.

During the analysis phase, it is crucial to identify the specific problem at hand and break it down into smaller components. This allows for a more targeted approach to finding the solution. Additionally, analyzing the data involved in the problem can provide valuable insights and help in designing an effective solution.

Once the analysis is complete, it is important to document the findings. This documentation can take various forms, such as written reports, diagrams, or even code comments. The goal is to create a record that captures the problem, the analysis, and the proposed solution.

Documenting the process serves several purposes. Firstly, it allows for easy communication and collaboration between team members or future developers. By documenting the problem, analysis, and solution, others can easily understand the thought process behind the solution and potentially build upon it.

Secondly, documenting the process provides an opportunity for reflection and improvement. By reviewing the documentation, developers can identify areas where the problem-solving cycle can be strengthened or optimized. This continuous improvement is crucial in the field of computer science, as new challenges and technologies emerge rapidly.

In conclusion, documenting the problem-solving process is an integral part of the computer science cycle. It allows for effective communication, collaboration, and reflection on the solutions devised. By taking the time to document the process, developers can ensure a more efficient and successful problem-solving experience.

Communicating the Solution

Once the problem solving cycle is complete, it is important to effectively communicate the solution. This involves explaining the analysis, data, and steps taken to arrive at the solution.

Analyzing the Problem

During the problem solving cycle, a thorough analysis of the problem is conducted. This includes understanding the problem statement, gathering relevant data, and identifying any constraints or limitations. It is important to clearly communicate this analysis to ensure that others understand the problem at hand.

Presenting the Solution

The next step in communicating the solution is presenting the actual solution. This should include a detailed explanation of the steps taken to solve the problem, as well as any algorithms or data structures used. It is important to provide clear and concise descriptions of the solution, so that others can understand and reproduce the results.

Overall, effective communication of the solution in computer science is essential to ensure that others can understand and replicate the problem solving process. By clearly explaining the analysis, data, and steps taken, the solution can be communicated in a way that promotes understanding and collaboration within the field of computer science.

Reflecting and Learning

Reflecting and learning are crucial steps in the problem solving cycle in computer science. Once a problem has been solved, it is essential to reflect on the entire process and learn from the experience. This allows for continuous improvement and growth in the field of computer science.

During the reflecting phase, one must analyze and evaluate the problem solving process. This involves reviewing the initial problem statement, understanding the constraints and requirements, and assessing the effectiveness of the chosen algorithm and solution. It is important to consider the efficiency and accuracy of the solution, as well as any potential limitations or areas for optimization.

By reflecting on the problem solving cycle, computer scientists can gain valuable insights into their own strengths and weaknesses. They can identify areas where they excelled and areas where improvement is needed. This self-analysis helps in honing problem solving skills and becoming a better problem solver.

Learning from Mistakes

Mistakes are an integral part of the problem solving cycle, and they provide valuable learning opportunities. When a problem is not successfully solved, it is essential to analyze the reasons behind the failure and learn from them. This involves identifying errors in the algorithm or solution, understanding the underlying concepts or principles that were misunderstood, and finding alternative approaches or strategies.

Failure should not be seen as a setback, but rather as an opportunity for growth. By learning from mistakes, computer scientists can improve their problem solving abilities and expand their knowledge and understanding of computer science. It is through these failures and the subsequent learning process that new ideas and innovations are often born.

Continuous Improvement

Reflecting and learning should not be limited to individual problem solving experiences, but should be an ongoing practice. As computer science is a rapidly evolving field, it is crucial to stay updated with new technologies, algorithms, and problem solving techniques. Continuous learning and improvement contribute to staying competitive and relevant in the field.

Computer scientists can engage in continuous improvement by seeking feedback from peers, participating in research and development activities, attending conferences and workshops, and actively seeking new challenges and problem solving opportunities. This dedication to learning and improvement ensures that one’s problem solving skills remain sharp and effective.

In conclusion, reflecting and learning are integral parts of the problem solving cycle in computer science. They enable computer scientists to refine their problem solving abilities, learn from mistakes, and continuously improve their skills and knowledge. By embracing these steps, computer scientists can stay at the forefront of the ever-changing world of computer science and contribute to its advancements.

Applying Problem Solving in Real Life

In computer science, problem solving is not limited to the realm of programming and algorithms. It is a skill that can be applied to various aspects of our daily lives, helping us to solve problems efficiently and effectively. By using the problem-solving cycle and applying the principles of analysis, data, solution, algorithm, and cycle, we can tackle real-life challenges with confidence and success.

The first step in problem-solving is to analyze the problem at hand. This involves breaking it down into smaller, more manageable parts and identifying the key issues or goals. By understanding the problem thoroughly, we can gain insights into its root causes and potential solutions.

For example, let’s say you’re facing a recurring issue in your daily commute – traffic congestion. By analyzing the problem, you may discover that the main causes are a lack of alternative routes and a lack of communication between drivers. This analysis helps you identify potential solutions such as using navigation apps to find alternate routes or promoting carpooling to reduce the number of vehicles on the road.

Gathering and Analyzing Data

Once we have identified the problem, it is important to gather relevant data to support our analysis. This may involve conducting surveys, collecting statistics, or reviewing existing research. By gathering data, we can make informed decisions and prioritize potential solutions based on their impact and feasibility.

Continuing with the traffic congestion example, you may gather data on the average commute time, the number of vehicles on the road, and the impact of carpooling on congestion levels. This data can help you analyze the problem more accurately and determine the most effective solutions.

Generating and Evaluating Solutions

After analyzing the problem and gathering data, the next step is to generate potential solutions. This can be done through brainstorming, researching best practices, or seeking input from experts. It is important to consider multiple options and think outside the box to find innovative and effective solutions.

For our traffic congestion problem, potential solutions can include implementing a smart traffic management system that optimizes traffic flow or investing in public transportation to incentivize people to leave their cars at home. By evaluating each solution’s potential impact, cost, and feasibility, you can make an informed decision on the best course of action.

Implementing and Iterating

Once a solution has been chosen, it is time to implement it in real life. This may involve developing a plan, allocating resources, and executing the solution. It is important to monitor the progress and collect feedback to learn from the implementation and make necessary adjustments.

For example, if the chosen solution to address traffic congestion is implementing a smart traffic management system, you would work with engineers and transportation authorities to develop and deploy the system. Regular evaluation and iteration of the system’s performance would ensure that it is effective and making a positive impact on reducing congestion.

By applying the problem-solving cycle derived from computer science to real-life situations, we can approach challenges with a systematic and analytical mindset. This can help us make better decisions, improve our problem-solving skills, and ultimately achieve more efficient and effective solutions.

Building Problem Solving Skills

In the field of computer science, problem-solving is a fundamental skill that is crucial for success. Whether you are a computer scientist, programmer, or student, developing strong problem-solving skills will greatly benefit your work and studies. It allows you to approach challenges with a logical and systematic approach, leading to efficient and effective problem resolution.

The Problem Solving Cycle

Problem-solving in computer science involves a cyclical process known as the problem-solving cycle. This cycle consists of several stages, including problem identification, data analysis, solution development, implementation, and evaluation. By following this cycle, computer scientists are able to tackle complex problems and arrive at optimal solutions.

Importance of Data Analysis

Data analysis is a critical step in the problem-solving cycle. It involves gathering and examining relevant data to gain insights and identify patterns that can inform the development of a solution. Without proper data analysis, computer scientists may overlook important information or make unfounded assumptions, leading to subpar solutions.

To effectively analyze data, computer scientists can employ various techniques such as data visualization, statistical analysis, and machine learning algorithms. These tools enable them to extract meaningful information from large datasets and make informed decisions during the problem-solving process.

Developing Effective Solutions

Developing effective solutions requires creativity, critical thinking, and logical reasoning. Computer scientists must evaluate multiple approaches, consider various factors, and assess the feasibility of different solutions. They should also consider potential limitations and trade-offs to ensure that the chosen solution addresses the problem effectively.

Furthermore, collaboration and communication skills are vital when building problem-solving skills. Computer scientists often work in teams and need to effectively communicate their ideas, propose solutions, and address any challenges that arise during the problem-solving process. Strong interpersonal skills facilitate collaboration and enhance problem-solving outcomes.

  • Mastering programming languages and algorithms
  • Staying updated with technological advancements in the field
  • Practicing problem solving through coding challenges and projects
  • Seeking feedback and learning from mistakes
  • Continuing to learn and improve problem-solving skills

By following these strategies, individuals can strengthen their problem-solving abilities and become more effective computer scientists or programmers. Problem-solving is an essential skill in computer science and plays a central role in driving innovation and advancing the field.

Questions and answers:

What is the problem solving cycle in computer science.

The problem solving cycle in computer science refers to a systematic approach that programmers use to solve problems. It involves several steps, including problem definition, algorithm design, implementation, testing, and debugging.

How important is the problem solving cycle in computer science?

The problem solving cycle is extremely important in computer science as it allows programmers to effectively tackle complex problems and develop efficient solutions. It helps in organizing the thought process and ensures that the problem is approached in a logical and systematic manner.

What are the steps involved in the problem solving cycle?

The problem solving cycle typically consists of the following steps: problem definition and analysis, algorithm design, implementation, testing, and debugging. These steps are repeated as necessary until a satisfactory solution is achieved.

Can you explain the problem definition and analysis step in the problem solving cycle?

During the problem definition and analysis step, the programmer identifies and thoroughly understands the problem that needs to be solved. This involves analyzing the requirements, constraints, and possible inputs and outputs. It is important to have a clear understanding of the problem before proceeding to the next steps.

Why is testing and debugging an important step in the problem solving cycle?

Testing and debugging are important steps in the problem solving cycle because they ensure that the implemented solution functions as intended and is free from errors. Through testing, the programmer can identify and fix any issues or bugs in the code, thereby improving the quality and reliability of the solution.

What is the problem-solving cycle in computer science?

The problem-solving cycle in computer science refers to the systematic approach that computer scientists use to solve problems. It involves various steps, including problem analysis, algorithm design, coding, testing, and debugging.

Related posts:

  • The Stages of the Problem Solving Cycle in Cognitive Psychology – Understanding, Planning, Execution, Evaluation, and Reflection
  • A Comprehensive Guide to the Problem Solving Cycle in Psychology – Strategies, Techniques, and Applications
  • The Step-by-Step Problem Solving Cycle for Effective Solutions
  • The Importance of Implementing the Problem Solving Cycle in Education to Foster Critical Thinking and Problem-Solving Skills in Students
  • The Importance of the Problem Solving Cycle in Business Studies – Strategies for Success
  • The Comprehensive Guide to the Problem Solving Cycle in PDF Format
  • A Comprehensive Guide on the Problem Solving Cycle – Step-by-Step Approach with Real-Life Example
  • The Seven Essential Steps of the Problem Solving Cycle
  • Professional Services
  • Creative & Design
  • See all teams
  • Project Management
  • Workflow Management
  • Task Management
  • Resource Management
  • See all use cases

Apps & Integrations

  • Microsoft Teams
  • See all integrations

Explore Wrike

  • Book a Demo
  • Take a Product Tour
  • Start With Templates
  • Customer Stories
  • ROI Calculator
  • Find a Reseller
  • Mobile & Desktop Apps
  • Cross-Tagging
  • Kanban Boards
  • Project Resource Planning
  • Gantt Charts
  • Custom Item Types
  • Dynamic Request Forms
  • Integrations
  • See all features

Learn and connect

  • Resource Hub
  • Educational Guides

Become Wrike Pro

  • Submit A Ticket
  • Help Center
  • Premium Support
  • Community Topics
  • Training Courses
  • Facilitated Services
  • Productivity

Problem-Solving Techniques and Tips (That Actually Work)

June 14, 2022 - 10 min read

Lionel Valdellon

Solving complex problems may be difficult but it doesn't have to be excruciating. You just need the right frame of mind and a process for untangling the problem at hand.

Luckily for you, there are plenty of techniques available to solve whatever problems come at you in the workplace.

When faced with a doozy of a problem, where do you start? And what problem-solving techniques can you use right now that can help you make good decisions?

Today's post will give you tips and techniques for solving complex problems so you can untangle any complication like an expert.

How many steps are there in problem-solving?

At its core, problem-solving is a methodical four-step process. You may even recall these steps from when you were first introduced to the Scientific Method.

  • First, you must define the problem . What is its cause? What are the signs there's a problem at all?
  • Next, you identify various options for solutions. What are some good ideas to solve this?
  • Then, evaluate your options and choose from among them. What is the best option to solve the problem? What's the easiest option? How should you prioritize?
  • Finally, implement the chosen solution . Does it solve the problem? Is there another option you need to try?

When applying problem-solving techniques, you will be using a variation of these steps as your foundation.

Takeaway: Before you can solve a problem, seek to understand it fully.

Creative problem-solving techniques

Time to get creative! You might think this will just be a list of out-of-the-box ways to brainstorm ideas. Not exactly.

Creative problem solving (CPS) is actually a formal process formulated by Sidney Parnes and Alex Faickney Osborn , who is thought of as the father of traditional brainstorming (and the "O" in famous advertising agency BBDO).

Their creative problem solving process emphasizes several things, namely:

  • Separate ideation from evaluation . When you brainstorm creative ideas, have a separate time for writing it all down. Focus on generating lots of ideas. Don't prioritize or evaluate them until everything is captured.
  • Judging will shut it down . Nothing stops the flow of creative ideas faster than judging them on the spot. Wait until the brainstorming is over before you evaluate.
  • Restate problems as questions . It's easier to entice a group into thinking of creative ideas when challenges are stated as open-ended questions.
  • Use "Yes and" to expand ideas . Here's one of the basic tenets of improv comedy. It's way too easy to shut down and negate ideas by using the word "but" (i.e. "But I think this is better..."). Avoid this at all costs. Instead, expand on what was previously introduced by saying "Yes, and..." to keep ideas flowing and evolving.

Takeaway: When brainstorming solutions, generate ideas first by using questions and building off of existing ideas. Do all evaluating and judging later.

Problem-solving tips from psychology

If you take a look at the history of problem-solving techniques in psychology, you'll come across a wide spectrum of interesting ideas that could be helpful.

Take it from experience

In 1911, the American psychologist Edward Thorndike observed cats figuring out how to escape from the cage he placed them in. From this, Thorndike developed his law of effect , which states: If you succeed via trial-and-error, you're more likely to use those same actions and ideas that led to your previous success when you face the problem again.

Takeaway: Your past experience can inform and shed light on the problem you face now. Recall. Explore.

Barriers to reproductive thinking

The Gestalt psychologists  built on Thorndike's ideas when they proposed that problem-solving can happen via reproductive thinking — which is not about sex, but rather solving a problem by using past experience and reproducing that experience to solve the current problem.

What's interesting about Gestalt psychology is how they view barriers to problem-solving. Here are two such barriers:

  • Are you entrenched? Look up mental set or entrenchment . This is when you're fixated on a solution that used to work well in the past but has no bearing to your current problem. Are you so entrenched with a method or idea that you use it even when it doesn't work? As Queen Elsa sang, "Let it go!" 
  • Are you thinking of alternative uses? There is a cognitive bias called functional fixedness which could thwart any of your critical thinking techniques by having you only see an object's conventional function. For example, say you need to cut a piece of paper in half but only have a ruler. Functional fixedness would lead you to think the ruler is only good for measuring things. (You could also use the ruler to crease the paper, making it easier to tear it in half.)

Takeaway: Think outside of the box! And by box, we mean outside of the past experience you're holding on to, or outside any preconceived ideas on how a tool is conventionally used.

More problem-solving tools

Hurson's productive thinking model.

In his book "Think Better," author and creativity guru Tim Hurson proposed a six-step model for solving problems creatively. The steps in his Productive Thinking Model are:

  • Ask, "What is going on?" Define the problem and its impact on your company, then clarify your vision for the future.
  • Ask, "What is success?" Define what the solution must do, what resources it needs, its scope, and the values it must uphold.
  • Ask, "What is the question?" Generate a long list of questions that, when answered, will solve the problem.
  • Generate answers . Answer the questions from step three.
  • Forge the solution . Evaluate the ideas with potential based on the criteria from step two. Pick a solution.
  • Align resources . Identify people and resources to execute the solution.

Use a fishbone diagram to see cause and effect

The most important part of defining the problem is looking at the possible root cause. You'll need to ask yourself questions like: Where and when is it happening? How is it occurring? With whom is it happening? Why is it happening?

You can get to the root cause with a fishbone diagram (also known as an Ishikawa diagram or a cause and effect diagram).

Basically, you put the effect on the right side as the problem statement. Then you list all possible causes on the left, grouped into larger cause categories. The resulting shape resembles a fish skeleton. Which is a perfect way to say, "This problem smells fishy."

Fishbone diagram for cause and effect analysis - problem solving techniques

Use analogies to get to a solution

Analogical thinking uses information from one area to help with a problem in a different area. In short, solving a different problem can lead you to find a solution to the actual problem. Watch out though! Analogies are difficult for beginners and take some getting used to.

An example: In the "radiation problem," a doctor has a patient with a tumor that cannot be operated on. The doctor can use rays to destroy the tumor but it also destroys healthy tissue.

Two researchers, Gick and Holyoak , noted that people solved the radiation problem much more easily after being asked to read a story about an invading general who must capture the fortress of a king but be careful to avoid landmines that will detonate if large forces traverse the streets. The general then sends small forces of men down different streets so the army can converge at the fortress at the same time and can capture it at full force.

Ask "12 what elses"

In her book " The Architecture of All Abundance ," author Lenedra J. Carroll (aka the mother of pop star Jewel) talks about a question-and-answer technique for getting out of a problem.

When faced with a problem, ask yourself a question about it and brainstorm 12 answers ("12 what elses") to that problem. Then you can go further by taking one answer, turning it into a question and generating 12 more "what elses." Repeat until the solution is golden brown, fully baked, and ready to take out of the oven.

mention any two computer problem solving techniques

Start using these techniques today

Hopefully you find these different techniques useful and they get your imagination rolling with ideas on how to solve different problems.

And if that's the case, then you have four different takeaways to use the next time a problem gets you tangled up:

  • Don't start by trying to solve the problem. First, aim to understand the root of the problem.
  • Use questions to generate ideas for solving the problem.
  • Look to previous problems to find the answers to new ones.
  • Clear your preconceived ideas and past experiences before attempting to tackle the problem.

How to solve problems with Wrike

Empower your team to be even more productive with Wrike's project management and collaboration tools. With documents, revisions, and project -related communication all in one place, employees can use Wrike as a single source of truth for all project information.

Get 360-degree visibility of all your work and identify problems before they occur — see schedule or resource conflicts on Gantt charts, easily view progress with custom statuses, and move work along with automated approvals.

Want to streamline your processes and ease future problem-solving? Get started with a free two-week trial of Wrike today.

What are your favorite problem-solving techniques?

Do you have a problem-solving technique that has worked wonders for your organization? Hit the comments below and share your wisdom!

Mobile image promo promo

Lionel Valdellon

Lionel is a former Content Marketing Manager of Wrike. He is also a blogger since 1997, a productivity enthusiast, a project management newbie, a musician and producer of electronic downtempo music, a father of three, and a husband of one.

Sorry, this content is unavailable due to your privacy settings. To view this content, click the “Cookie Preferences” button and accept Advertising Cookies there.

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Computer Basics  - Basic Troubleshooting Techniques

Computer basics  -, basic troubleshooting techniques, computer basics basic troubleshooting techniques.

GCFLearnFree Logo

Computer Basics: Basic Troubleshooting Techniques

Lesson 19: basic troubleshooting techniques.

/en/computerbasics/creating-a-safe-workspace/content/

Troubleshooting

Do you know what to do if your screen goes blank? What if you can't seem to close an application, or can't hear any sound from your speakers? Whenever you have a problem with your computer, don't panic! There are many basic troubleshooting techniques you can use to fix issues like this. In this lesson, we'll show you some simple things to try when troubleshooting, as well as how to solve common problems you may encounter.

General tips to keep in mind

There are many different things that could cause a problem with your computer. No matter what's causing the issue, troubleshooting will always be a process of trial and error —in some cases, you may need to use several different approaches before you can find a solution; other problems may be easy to fix. We recommend starting by using the following tips.

  • Write down your steps : Once you start troubleshooting, you may want to write down each step you take. This way, you'll be able to remember exactly what you've done and can avoid repeating the same mistakes. If you end up asking other people for help, it will be much easier if they know exactly what you've tried already.
  • Take notes about error messages : If your computer gives you an error message , be sure to write down as much information as possible. You may be able to use this information later to find out if other people are having the same error.

cables

  • Restart the computer : When all else fails, restarting the computer is a good thing to try. This can solve a lot of basic issues you may experience with your computer.

Using the process of elimination

If you're having an issue with your computer, you may be able to find out what's wrong using the process of elimination . This means you'll make a list of things that could be causing the problem and then test them out one by one to eliminate them. Once you've identified the source of your computer issue, it will be easier to find a solution.

Let's say you're trying to print out invitations for a birthday party, but the printer won't print. You have some ideas about what could be causing this, so you go through them one by one to see if you can eliminate any possible causes.

First, you check the printer to see that it's turned on and plugged in to the surge protector . It is, so that's not the issue. Next, you check to make sure the printer's ink cartridge still has ink and that there is paper loaded in the paper tray . Things look good in both cases, so you know the issue has nothing to do with ink or paper.

Now you want to make sure the printer and computer are communicating correctly . If you recently downloaded an update to your operating system , it might interfere with the printer. But you know there haven't been any recent updates and the printer was working yesterday, so you'll have to look elsewhere.

You check the printer's USB cord and find that it's not plugged in. You must have unplugged it accidentally when you plugged something else into the computer earlier. Once you plug in the USB cord, the printer starts working again. It looks like this printer issue is solved!

This is just one example of an issue you might encounter while using a computer. In the rest of this lesson, we'll talk about other common computer problems and some ways to solve them.

Simple solutions to common problems

Most of the time, problems can be fixed using simple troubleshooting techniques, like closing and reopening the program. It's important to try these simple solutions before resorting to more extreme measures. If the problem still isn't fixed, you can try other troubleshooting techniques.

Problem: Power button will not start computer

  • Solution 1 : If your computer does not start , begin by checking the power cord to confirm that it is plugged securely into the back of the computer case and the power outlet.
  • Solution 2 : If it is plugged into an outlet, make sure it is a working outlet . To check your outlet, you can plug in another electrical device , such as a lamp .

surge protector

  • Solution 4 : If you are using a laptop , the battery may not be charged. Plug the AC adapter into the wall, then try to turn on the laptop. If it still doesn't start up, you may need to wait a few minutes and try again.

Problem: An application is running slowly

  • Solution 1 : Close and reopen the application.

Checking for updates

Problem: An application is frozen

Sometimes an application may become stuck, or frozen . When this happens, you won't be able to close the window or click any buttons within the application.

task manager in Windows 10

  • Solution 2 : Restart the computer. If you are unable to force quit an application, restarting your computer will close all open apps.

Problem: All programs on the computer run slowly

virus scanner

  • Solution 2 : Your computer may be running out of hard drive space. Try deleting any files or programs you don't need.
  • Solution 3 : If you're using a PC , you can run Disk Defragmenter . To learn more about Disk Defragmenter , check out our lesson on Protecting Your Computer .

Problem: The computer is frozen

Sometimes your computer may become completely unresponsive, or frozen . When this happens, you won't be able to click anywhere on the screen, open or close applications, or access shut-down options.

restarting Windows Explorer in Windows 10

  • Solution 3 : Press and hold the Power button. The Power button is usually located on the front or side of the computer, typically indicated by the power symbol . Press and hold the Power button for 5 to 10 seconds to force the computer to shut down.
  • Solution 4 : If the computer still won't shut down, you can unplug the power cable from the electrical outlet. If you're using a laptop, you may be able to remove the battery to force the computer to turn off. Note : This solution should be your last resort after trying the other suggestions above.

Problem: The mouse or keyboard has stopped working

wired mouse or keyboard

  • Solution 2 : If you're using a wireless mouse or keyboard, make sure it's turned on and that its batteries are charged.

Problem: The sound isn't working

  • Solution 1 : Check the volume level. Click the audio button in the top-right or bottom-right corner of the screen to make sure the sound is turned on and that the volume is up.
  • Solution 2 : Check the audio player controls. Many audio and video players will have their own separate audio controls. Make sure the sound is turned on and that the volume is turned up in the player.
  • Solution 3 : Check the cables. Make sure external speakers are plugged in, turned on, and connected to the correct audio port or a USB port. If your computer has color-coded ports, the audio output port will usually be green .

headphones and speakers

Problem: The screen is blank

  • Solution 1 : The computer may be in Sleep mode. Click the mouse or press any key on the keyboard to wake it.
  • Solution 2 : Make sure the monitor is plugged in and turned on .
  • Solution 3 : Make sure the computer is plugged in and turned on .
  • Solution 4 : If you're using a desktop, make sure the monitor cable is properly connected to the computer tower and the monitor.

Solving more difficult problems

If you still haven't found a solution to your problem, you may need to ask someone else for help. As an easy starting point, we'd recommend searching the Web . It's possible that other users have had similar problems, and solutions to these problems are often posted online. Also, if you have a friend or family member who knows a lot about computers, they may be able to help you.

Google search of Windows 10

Keep in mind that most computer problems have simple solutions, although it may take some time to find them. For difficult problems, a more drastic solution may be required, like reformatting your hard drive or reinstalling your operating system. If you think you might need a solution like this, we recommend consulting a professional first. If you're not a computer expert, it's possible that attempting these solutions could make the situation worse.

previous

/en/computerbasics/how-to-use-your-computers-builtin-help/content/

The-Most-Important-Soft-Skill-for-Developers-—-How-to-Get-Better-at-It.webp

The Most Important Soft Skill for Developers & How to Get Better at It

Cory-Stieg-Headshot-e1697134432604.webp?w=338

  • Share article on Twitter
  • Share article on Facebook
  • Share article on LinkedIn

At its core, programming is just solving problems so a computer can execute a task. Or, as one of our engineers Nick Duckwiler aptly put it: “A lot of engineering is just solving headaches.” Indeed, between fixing bugs and dreaming up app ideas that can address real world difficulties, devs need to be enthusiastic about solving problems of all sizes.   

On top of all the technical knowledge that’s required for engineering roles, you also should work on soft skills, which are personal attributes that enable you to work well with others. Problem solving is one of the most essential soft skills to have in technical positions , and luckily, there are plenty of ways to get better at tackling challenges and finding solutions.

Our course catalog just got a major update with over 70 new courses that cover professional or soft skills, like communication, leadership, productivity, and teamwork. These courses are completely free and can help you unlock essential skills for your career. In the free course Becoming a Successful Collaborator , you’ll master the meaning of collaboration, effective teaming practices, and conflict management styles, so you can enhance problem-solving, productivity, and team interconnection. Read on for more creative proven problem-solving tactics that you can try today.

Learn professional skills for free

  • View courses

Write out the problem

Your problem won’t always come right out and say: “It’s me, hi. I’m the problem , it’s me.” In fact, something that often gets in the way of solving a problem is that we zero in on the wrong problem.

When pinpointing a problem, you can try borrowing a UX research technique that’s part of the design thinking process. After you’ve done some initial research or information gathering, you delineate your problem space and write a problem statement, which is a concise couple of sentences that succinctly define the task and offer a clear sense of direction. Write out the who, what, where, when, and why of your problem.

Getting to the core of your fundamental issue will make addressing the symptoms much easier. You can learn more about this strategy in our free course Learn Design Thinking: Ideation .

Don’t try to solve it alone

Rather than spinning your wheels trying to fix a problem on your own, consider having other people weigh in. Set up a brainstorming session for the problem you’re trying to solve, see if anyone can pair program with you, or send a Slack message to your team and see what your collective intelligence can accomplish. In the free course Expanding Your Communication Skill Set , you’ll learn how to collaborate and get things done in all kinds of workplace scenarios.

It’s easy to get tunnel vision when you’re working on a project and become fixated on one part of it. Getting more people involved in the problem-solving process will enable you to address blind spots, consider fresh perspectives, and ultimately get valuable feedback and validation for your idea. Not to mention, you’ll get experience collaborating with other people, which is a soft skill in and of itself.

Say it out loud

Ever seen a rubber duck on a programmer’s desk and wondered what it’s doing there? There’s a popular debugging technique called “ rubberducking ,” where you describe out loud what your code is supposed to do to the duck. As you verbally articulate your code and thoughts to the silent, non-judgmental duck, you may identify issues or problems that you skipped over before. Though you might have to work up the courage to talk to an inanimate object at your desk, you’ll be surprised how effective and practical rubberducking can be when it comes to pinpointing a problem.

See how other people approached the problem

Remember: You’re probably not the first person to have experienced this problem. There’s a plethora of resources that developers use to ask questions, get feedback, or crowd-source solutions for bugs. Go to Stack Overflow and see if someone else has experienced your issue and created a workaround. Or look through Docs , our open-contribution code documentation for popular languages, to see if you can find a solution. (Better yet, once you figure your issue out, you could take what you learned and contribute a Doc for folks to reference in the future.)

Learn problem-solving skills in our new courses

Our professional skills courses are carefully selected by our team to offer the most relevant and in-demand business skills for learners like you. You can begin learning immediately — all you need is a free Codecademy account to get started.

This blog was originally published in October 2023 and has been updated to include details about our new professional skills courses.

Related courses

Effective stakeholder communications for technology professionals, building and delivering a great virtual presentation, strategies for managing technical teams, becoming a successful collaborator, listening to engage, empower, and influence, effective team communication, subscribe for news, tips, and more, related articles.

What-soft-skills-are-and-how-to-showcase-them-1.png?w=1024

What Soft Skills Are & How to Showcase Them

Soft skills don’t receive as much attention as hard skills, but they’re just as important. Learn how to showcase your soft skills during the hiring process.

ProskilllaunchBlog_SM_F_TKExamplesofInterpersonalSkillsThatYouNeedinTechCareers-ezgif.com-jpg-to-webp-converter.webp?w=1024

The Interpersonal Skills That You Need in Tech Careers

Work is more than just contributing code — these people skills make you stand out.

Pro-skill-launch-Blog_SM_F_Learn-Essential-Professional-Skills-in-70-New-Free-Courses.webp?w=1024

Learn Essential Professional Skills in 70+ New Free Courses

Improve your soft skills like communication, leadership, and problem solving in these new free courses. 

Header-Image_2083x875-13.png?w=1024

What is C# ​U​sed ​F​or? 

C# is a popular programming language that’s similar to C and C++. Learn what it’s used for, what you can do with it, and how to get started.

How-Engineers-Use-ChatGPT-in-Their-Daily-Workflow.webp?w=1024

How Engineers Actually Use ChatGPT in Their Daily Workflow

Are you using these ChatGPT tips in your own work?

050224_learner_stories_illustrations_F_Header_image_Liz-Gardiner.webp?w=1024

How I Went from Translator to Engineering Apprentice in 7 Months

Today’s story is from Lizzie Gardiner, a 29-year-old Engineering Apprentice, living in West Yorkshire, England.

Pride-Day_R1_Blog2.webp?w=1024

10 Python Code Challenges to Try During Pride

Celebrate Pride with these bite-sized Python coding challenges.

How to Solve Coding Problems with a Simple Four Step Method

Madison Kanna

I had fifteen minutes left, and I knew I was going to fail.

I had spent two months studying for my first technical interview.

I thought I was prepared, but as the interview came to a close, it hit me: I had no idea how to solve coding problems.

Of all the tutorials I had taken when I was learning to code, not one of them had included an approach to solving coding problems.

I had to find a method for problem-solving—my career as a developer depended on it.

I immediately began researching methods. And I found one. In fact, what I uncovered was an invaluable strategy. It was a time-tested four-step method that was somehow under the radar in the developer ecosystem.

In this article, I’ll go over this four-step problem-solving method that you can use to start confidently solving coding problems.

Solving coding problems is not only part of the developer job interview process—it’s what a developer does all day. After all, writing code is problem-solving.

A method for solving problems

This method is from the book How to Solve It by George Pólya. It originally came out in 1945 and has sold over one million copies.

His problem-solving method has been used and taught by many programmers, from computer science professors (see Udacity’s Intro to CS course taught by professor David Evans) to modern web development teachers like Colt Steele.

Let’s walk through solving a simple coding problem using the four-step problem-solving method. This allows us to see the method in action as we learn it. We'll use JavaScript as our language of choice. Here’s the problem:

Create a function that adds together two numbers and returns that value. There are four steps to the problem-solving method:

  • Understand the problem.
  • Devise a plan.
  • Carry out the plan.

Let’s get started with step one.

Step 1: Understand the problem.

When given a coding problem in an interview, it’s tempting to rush into coding. This is hard to avoid, especially if you have a time limit.

However, try to resist this urge. Make sure you actually understand the problem before you get started with solving it.

Read through the problem. If you’re in an interview, you could read through the problem out loud if that helps you slow down.

As you read through the problem, clarify any part of it you do not understand. If you’re in an interview, you can do this by asking your interviewer questions about the problem description. If you’re on your own, think through and/or Google parts of the question you might not understand.

This first step is vital as we often don’t take the time to fully understand the problem. When you don’t fully understand the problem, you’ll have a much harder time solving it.

To help you better understand the problem, ask yourself:

What are the inputs?

What kinds of inputs will go into this problem? In this example, the inputs are the arguments that our function will take.

Just from reading the problem description so far, we know that the inputs will be numbers. But to be more specific about what the inputs will be, we can ask:

Will the inputs always be just two numbers? What should happen if our function receives as input three numbers?

Here we could ask the interviewer for clarification, or look at the problem description further.

The coding problem might have a note saying, “You should only ever expect two inputs into the function.” If so, you know how to proceed. You can get more specific, as you’ll likely realize that you need to ask more questions on what kinds of inputs you might be receiving.

Will the inputs always be numbers? What should our function do if we receive the inputs “a” and “b”? Clarify whether or not our function will always take in numbers.

Optionally, you could write down possible inputs in a code comment to get a sense of what they’ll look like:

//inputs: 2, 4

What are the outputs?

What will this function return? In this case, the output will be one number that is the result of the two number inputs. Make sure you understand what your outputs will be.

Create some examples.

Once you have a grasp of the problem and know the possible inputs and outputs, you can start working on some concrete examples.

Examples can also be used as sanity checks to test your eventual problem. Most code challenge editors that you’ll work in (whether it’s in an interview or just using a site like Codewars or HackerRank) have examples or test cases already written for you. Even so, writing out your own examples can help you cement your understanding of the problem.

Start with a simple example or two of possible inputs and outputs. Let's return to our addition function.

Let’s call our function “add.”

What’s an example input? Example input might be:

// add(2, 3)

What is the output to this? To write the example output, we can write:

// add(2, 3) ---> 5

This indicates that our function will take in an input of 2 and 3 and return 5 as its output.

Create complex examples.

By walking through more complex examples, you can take the time to look for edge cases you might need to account for.

For example, what should we do if our inputs are strings instead of numbers? What if we have as input two strings, for example, add('a', 'b')?

Your interviewer might possibly tell you to return an error message if there are any inputs that are not numbers. If so, you can add a code comment to handle this case if it helps you remember you need to do this.

Your interviewer might also tell you to assume that your inputs will always be numbers, in which case you don’t need to write any extra code to handle this particular input edge case.

If you don’t have an interviewer and you’re just solving this problem, the problem might say what happens when you enter invalid inputs.

For example, some problems will say, “If there are zero inputs, return undefined.” For cases like this, you can optionally write a comment.

// check if there are no inputs.

// If no inputs, return undefined.

For our purposes, we’ll assume that our inputs will always be numbers. But generally, it’s good to think about edge cases.

Computer science professor Evans says to write what developers call defensive code. Think about what could go wrong and how your code could defend against possible errors.  

Before we move on to step 2, let’s summarize step 1, understand the problem:

-Read through the problem.

-What are the inputs?

-What are the outputs?

Create simple examples, then create more complex ones.

2. Devise a plan for solving the problem.

Next, devise a plan for how you’ll solve the problem. As you devise a plan, write it out in pseudocode.

Pseudocode is a plain language description of the steps in an algorithm. In other words, your pseudocode is your step-by-step plan for how to solve the problem.

Write out the steps you need to take to solve the problem. For a more complicated problem, you’d have more steps. For this problem, you could write:

// Create a sum variable.

Add the first input to the second input using the addition operator .

// Store value of both inputs into sum variable.

// Return as output the sum variable. Now you have your step-by-step plan to solve the problem. For more complex problems, professor Evans notes, “Consider systematically how a human solves the problem.” That is, forget about how your code might solve the problem for a moment, and think about how you would solve it as a human. This can help you see the steps more clearly.

3. Carry out the plan (Solve the problem!)

Hand, Rubik, Cube, Puzzle, Game, Rubik Cube

The next step in the problem-solving strategy is to solve the problem. Using your pseudocode as your guide, write out your actual code.

Professor Evans suggests focusing on a simple, mechanical solution. The easier and simpler your solution is, the more likely you can program it correctly.

Taking our pseudocode, we could now write this:

Professor Evans adds, remember not to prematurely optimize. That is, you might be tempted to start saying, “Wait, I’m doing this and it’s going to be inefficient code!”

First, just get out your simple, mechanical solution.

What if you can’t solve the entire problem? What if there's a part of it you still don't know how to solve?

Colt Steele gives great advice here: If you can’t solve part of the problem, ignore that hard part that’s tripping you up. Instead, focus on everything else that you can start writing.

Temporarily ignore that difficult part of the problem you don’t quite understand and write out the other parts. Once this is done, come back to the harder part.

This allows you to get at least some of the problem finished. And often, you’ll realize how to tackle that harder part of the problem once you come back to it.

Step 4: Look back over what you've done.

Once your solution is working, take the time to reflect on it and figure out how to make improvements. This might be the time you refactor your solution into a more efficient one.

As you look at your work, here are some questions Colt Steele suggests you ask yourself to figure out how you can improve your solution:

  • Can you derive the result differently? What other approaches are there that are viable?
  • Can you understand it at a glance? Does it make sense?
  • Can you use the result or method for some other problem?
  • Can you improve the performance of your solution?
  • Can you think of other ways to refactor?
  • How have other people solved this problem?

One way we might refactor our problem to make our code more concise: removing our variable and using an implicit return:

With step 4, your problem might never feel finished. Even great developers still write code that they later look at and want to change. These are guiding questions that can help you.

If you still have time in an interview, you can go through this step and make your solution better. If you are coding on your own, take the time to go over these steps.

When I’m practicing coding on my own, I almost always look at the solutions out there that are more elegant or effective than what I’ve come up with.

Wrapping Up

In this post, we’ve gone over the four-step problem-solving strategy for solving coding problems.

Let's review them here:

  • Step 1: understand the problem.
  • Step 2: create a step-by-step plan for how you’ll solve it .
  • Step 3: carry out the plan and write the actual code.
  • Step 4: look back and possibly refactor your solution if it could be better.

Practicing this problem-solving method has immensely helped me in my technical interviews and in my job as a developer. If you don't feel confident when it comes to solving coding problems, just remember that problem-solving is a skill that anyone can get better at with time and practice.

If you enjoyed this post, join my coding club , where we tackle coding challenges together every Sunday and support each other as we learn new technologies.

If you have feedback or questions on this post, feel free to tweet me @madisonkanna ..

Read more posts .

If you read this far, thank the author to show them you care. Say Thanks

Learn to code for free. freeCodeCamp's open source curriculum has helped more than 40,000 people get jobs as developers. Get started

  • Skip to primary navigation
  • Skip to main content
  • Skip to footer

logo

Eduinput- Online tutoring platform for Math, chemistry, Biology Physics

An online learning platform for Mcat, JEE, NEET and UPSC students

Problem Solving Techniques in Computer Science

mention any two computer problem solving techniques

Problem-solving is the process of identifying a problem and finding the best solution for it. Problem-solving is a technique that can be developed by following a well-organized approach. Every day we encounter many problems and solve them.

Every problem is different. Some problems are very difficult and are needed more attention to recognize the solution.

A problem may be solved by multiple methods. One solution may be faster, cheaper, and more reliable than others. It is important to choose a suitable worthy solution.

Different strategies, techniques, and tools are used to solve a problem. Computers are used as a tool to solve complex problems by developing computer programs.

Computer programs contain different instructions for computers. A programmer writes instructions and the computer executes these instructions to solve a problem. A person can be a good programmer if he has the skill of solving problems.

Table of Contents

Problem-Solving Techniques.

There are three different types of problem-solving techniques.

A set of instructions given to a computer to solve a problem is called a program.

A computer works according to the given instructions in the program. Computer programs are written in programming languages. A person who develops a program is called a programmer.

The programmer develops programs to instruct the computer on how to process data into information. The programmer uses programming languages or tools to write programs.

 Advantages of Computer Program

Different advantages of computer programs are as follows:

  • A computer program can solve many problems by giving instructions to the computer.
  • A computer program can be used to perform a task again and again and fastly.
  • A program can process a large amount of data easily.
  • It can display the results in different styles.
  • The processing of a program is more efficient and less time-consuming.
  • Different types of programs are used in different fields to perform certain tasks.

   Algorithms & Pseudo Code

An algorithm is a step-by-step procedure to solve a problem. The process of solving

problem becomes simpler and easier with help of algorithm. It is better to write an algorithm

before writing the actual computer program.

Properties of Algorithm

Following are some properties of an algorithm:

  • The given problem should be broken down into simple and meaningful steps.
  • The steps should be numbered sequentially.
  • The steps should be descriptive and written in simple English. 

Algorithms are written in a language that is similar to simple English called pseudocode. There is no standard to write pseudo code. It is used to specify program logic in an English-like manner that is independent of any particular programming language.

Pseudocode simplifies program development by separating it into two main parts.

Logic Design

In this part, the logic of the program is designed. We specify different steps required to solve the problem and the sequence of these steps.

In this part, the algorithm is converted into a program. The steps of the algorithm are

translated into instructions of any programming language.

The use of pseudo-code allows the programmer to focus on the planning of the program. After the planning is final, it can be written in any programming language.

The following algorithm inputs two numbers calculate the sum and then displays the result on the screen.

4. Total A+B

5. Display Total

The following algorithm inputs the radius from the user and calculates the area of a circle.

Hint: Area 3.14* radius* radius)

2. Input radius in r

3. area = 3.14* r* r

4. Print area

Advantages of Algorithm

There are many advantages of an algorithm

Reduce complexity

Writing algorithm and program separately simplifies the overall task by dividing it into two simpler tasks. While writing the algorithm, we can focus on solving the problem instead of concentrating on a particular language.

Increased Flexibility

An algorithm is written so that the code may be written in any language. Using an algorithm, the program could be written in Visual Basic, Java or C++, etc.

Ease of Understanding

It is not necessary to understand a particular programming language to understand an algorithm. It is written in an English-like manner.

A flowchart is a combination of two words flow and chart. A chart consists of different symbols to display information about any program. Flow indicates the direction processing that takes place in the program.

Flowchart is a graphical representation of an algorithm. It is a way of visually presenting the flow of data, operations performed on data, and the sequence of these operations.

Flowchart is similar to the layout plan of a building. A designer draws the layout plan of the building before constructing it. Similarly, a programmer prefers to design the flowchart before writing the computer program. Flowchart is designed according to the defined rule.

Uses of Logic Flowchart

Flowchart is used for the following reasons

  • Flowchart is used to represent an algorithm in a simple graphical manner.
  • Flowchart is used to show the steps of an algorithm easily.
  • Flowchart is used to understand the flow of the program.
  • Flowchart is used to improve the logic for solving a problem.
  • Programs can be reviewed and debugged easily.
  • Chapter-Getting Started with C

Related Articles

mention any two computer problem solving techniques

Structured Programming Technique-Advantages and Disadvantages

mention any two computer problem solving techniques

High-Level Programming Language-Popular High-level languages

mention any two computer problem solving techniques

History of C Language – Advantages and Disadvantages of C Language

mention any two computer problem solving techniques

Programming Languages | Language processor

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Get updates about new courses

NCERT solutions

footer-logo

Join our scholarship program

Click Here to join

9th Class 10th Class 11 Class 12 Class

Join the groups below to get updates.

Blog post cover

How to Solve Coding Problems: Step-by-Step Guide (2024)

Avatar of snappify

May 20, 2024 · 13 min read

Coding challenges are a common obstacle for many programmers, whether they are just starting or have years of experience.

In this complete guide, we will provide expert tips and strategies for effectively solving coding problems.

By following these valuable tips, you can confidently enhance your problem-solving skills and conquer even the most challenging coding tasks.

Let's get started.

Read the Problem Statement Carefully

Read the Problem Statement Carefully

Identify key constraints

One imperative step in solving coding problems is identifying the key constraints in the problem statement. These constraints define the boundaries within which your solution must operate and can greatly influence your approach.

Note important variables

Carefully note down important variables mentioned in the problem statement as they often hold crucial information for solving the problem efficiently.

Understanding the significance of these variables can guide you toward the right solution approach.

Remember to consider any implicit variables that might affect your solution but are not explicitly mentioned in the problem statement.

Attention to all variables will ensure a more comprehensive understanding of the problem.

Tip:  Here, you can learn about key  programming definitions and terms

Create your next presentation

snappify will help you to create stunning presentations and videos.

This video was created using snappify 🤩

Break Down Complexity

Break Down Complexity

Divide into smaller Tasks

You'll find that breaking down a complex coding problem into smaller tasks makes it more manageable.

Start by identifying the different components of the problem and breaking them down into smaller subproblems. This approach will help you tackle each subproblem individually and eventually solve the larger problem.

Focus on one task

The key to successfully breaking down a complex coding problem is to focus on one task at a time.

Concentrating all your efforts on solving one specific subproblem can help you avoid feeling overwhelmed by the complexity of the overall task.

This focused approach will improve your problem-solving skills and allow you to make steady progress toward the final solution.

When focusing on one task, setting clear goals and objectives for that specific subproblem is vital. It will help you stay on track and prevent distractions derailing your problem-solving process.

By dedicating your full attention and energy to each task, you can efficiently work through the complexities of the coding problem and find an effective solution.

Tip:  The  Feynman learning technique  is the best solution for learning how to break down complex concepts.

Research and Learn

Research and Learn

Study similar problems

Research shows that one of the best strategies to solve coding problems easily is to study similar problems.

By analyzing how others have approached and solved comparable issues, you can gain valuable insights and techniques to apply to your challenges.

Learn new concepts

Learning new concepts is imperative for continuous improvement in coding.

By staying updated with the latest technologies, algorithms, and best practices, you can enhance your problem-solving skills and broaden your understanding of different coding techniques.

Any aspiring coder should regularly explore new concepts through online courses, tutorials, and coding challenges.

This proactive approach helps solve current problems more effectively and prepares you for future challenges in the ever-evolving tech industry.

Tip:  The fastest way to learn any new concept is to share what you learn. For example, you can learn a piece of code and then use  code sharing tools  to share your knowledge with the audience.

Write Pseudocode First

Write Pseudocode First

Plan out Algorithm Steps

For effective problem-solving, it is crucial to plan out the steps of your algorithm before writing actual code.

Pseudocode helps break down the problem into smaller, manageable steps, making it easier to implement the solution in the chosen programming language.

Visualize solution flow

While writing pseudocode, visualize how the solution will flow from one step to another.

This visualization helps in understanding the logic of the algorithm and can highlight any potential issues or optimizations that can be made before writing actual code.

For instance, if you are working on a sorting algorithm, visualizing the flow can help you determine the most efficient way to arrange the elements and identify any redundant steps that you can eliminate to improve performance.

Start with Simple

Start with Simple

Implement basic solution

Unlike complex problems, coding problems are best tackled with a straightforward approach.

Begin by implementing a basic solution that may not be the most efficient but solves the problem correctly.

This helps in understanding the problem better and getting a working solution.

Refine as needed

Implementing a basic solution is just the beginning.

As you progress, refine your code by optimizing it for performance, readability, and scalability.

Refactoring code to improve efficiency and incorporating best practices will boost your solution to the next level.

A key strategy for refining your code is to analyze its complexity and identify areas for optimization. This may involve revisiting your algorithm choices and data structures or breaking down the problem into smaller, manageable parts.

By continuously refining your solution, you improve your coding skills and enhance the quality of your code.

Use Online Resources

Use Online Resources

Leverage coding communities

Despite the various challenges of coding problems, the process becomes easier when you tap into the wealth of knowledge available in coding communities.

These online platforms, such as Stack Overflow and GitHub, offer a supportive environment where you can seek solutions, ask questions, and learn from experienced programmers.

Consult online tutorials

These resources provide step-by-step guidance on various programming concepts and problem-solving techniques, making grasping complex algorithms and data structures easier.

The abundance of online tutorials ranges from beginner to advanced, and they are fit for programmers of all proficiency levels.

By consulting these tutorials, you can enhance your understanding of coding principles and develop effective strategies for solving various coding problems.

Any aspiring coder should take advantage of the vast array of online resources that can facilitate the process of solving coding problems.

By leveraging coding communities, consulting online tutorials, and exploring other online platforms, you can quickly sharpen your problem-solving skills and become a more proficient programmer.

Tip:  Resources like YouTube and Udemy are great ways. But you can also read the  best development books  to enhance your coding skills further.

Debug Thoroughly

Debug Thoroughly

Identify common mistakes

Unlike overlooking small errors, identifying common mistakes is crucial in debugging code efficiently.

Any coder should be aware of recurring issues like:

  • Syntax Errors
  • Logical mistakes
  • Incorrect variable usage

By recognizing these patterns, programmers can initiate debugging and write cleaner code.

Test edge cases

Any comprehensive debugging strategy should include testing edge cases to ensure code reliability and robustness.

By intentionally pushing the boundaries of input values or conditions, developers can uncover potential mistakes that might go unnoticed during regular testing.

This practice helps programmers anticipate and address unexpected scenarios, leading to more resilient code.

Testing edge cases involves evaluating the extremes of input data or conditions to verify the code's behavior under challenging circumstances.

By examining how the program handles unusual or extreme values, developers can identify vulnerabilities or inefficiencies that may occur in real-world usage.

Practice Regularly

Practice Regularly

Build problem-solving muscle

Your coding skills are like a muscle that needs regular exercise to strengthen. Make a habit of solving coding problems daily to enhance your problem-solving abilities.

Develop coding instincts

Build a strong intuition for coding by practicing regularly.

As you solve more problems, you'll notice patterns and common strategies that can help you tackle new problems more efficiently.

Developing coding instincts involves understanding different approaches to problem-solving and knowing when to apply them. This initiative will guide you in choosing the most effective solutions and optimizing your code for better performance.

Review and Refine

Review and Refine

Analyze solution efficiency

Unlike simply finding a solution, it is imperative to analyze its efficiency.

Evaluate the time complexity, space complexity, and overall performance of the code.

This step will help you understand how the code will perform with larger inputs and whether there are any bottlenecks that need to be addressed.

Optimize code quality

Coding problems are not just about finding a solution but also about writing clean and efficient code.

Pay attention to coding standards, readability, and best practices.

Refactor the code to make it more concise, understandable, and maintainable. This step is crucial in ensuring that your code is not only functional but also of high quality.

You can use tools like linters and code formatters to check and improve your code's quality automatically.

These tools can help you catch potential errors, enforce coding standards, and enhance the overall readability of your codebase.

By optimizing your code quality, you can make it easier for yourself and others to understand and work with the code in the future.

Tip:  You can use a  code review checklist  to optimize code efficiency quickly.

Learn from Others

Learn from Others

Study open-source code

Study open-source code to truly enhance your coding skills.

By studying the work of experienced developers, you can gain insight into different perspectives, problem-solving techniques, and coding styles.

This exposure can broaden your knowledge and inspire innovative solutions to coding problems.

Learn from mentors

Some of the most effective learning experiences come from mentors who can provide guidance, feedback, and real-world insights.

Connecting with experienced professionals in the field can offer valuable advice, help you navigate challenges, and accelerate your learning process.

Learn from mentors who have expertise in your specific area of interest.

Their guidance can help you grasp complex concepts, avoid common pitfalls, and stay updated on industry trends.

Building a strong mentorship relationship can significantly impact your coding journey and foster professional growth.

Stay Calm and Patient

Stay Calm and Patient

Manage problem-solving stress

After encountering a challenging coding problem, managing the stress that comes with it is imperative.

Take deep breaths, step back, and remind yourself that feeling stuck is okay.

Keeping a clear mind will help you approach the problem more effectively.

Take breaks when needed

If you find yourself hitting a wall and getting frustrated, it's time to take a break.

Stepping away from the problem for a few minutes or even an hour can improve your mental clarity.

Some fresh air or a quick walk can help reset your mind and improve focus when you return to the task.

When stress builds up, it can blur your thinking and make problem-solving even more challenging.

Taking breaks gives you a chance to relax and allows your brain to subconsciously work on the problem in the background, often leading to new insights and solutions.

Identify Patterns

Identify Patterns

Recognize common patterns

One vital skill in solving coding problems is recognizing common patterns.

By identifying recurring themes or structures in the problem you're trying to solve, you can apply similar solutions that have worked in the past. It can help simplify your problem-solving process and lead to more efficient coding.

Apply pattern-based solutions

To effectively apply pattern-based solutions, you need to understand different types of patterns commonly found in coding problems.

These patterns can include algorithms like sliding windows, two-pointers, or depth-first search.

By leveraging these patterns, you can quickly develop solutions that have been proven to work for similar problems.

Tip:  You can explore different  development frameworks  to identify common patterns.

Draw Diagrams

Draw Diagrams

Visualize problem structure

When faced with a complex coding problem, start by visualizing its structure.

Use diagrams to represent different components, their relationships, and data flow. This visual representation can clarify the problem and help you identify key areas to focus on.

Illustrate solution flow

While solving coding problems, illustrating the solution flow through diagrams can facilitate the problem-solving process.

Create a step-by-step flowchart or sequence diagram to map the logic and algorithm.

This visual aid can guide you through the implementation phase and help you identify potential errors or optimizations in the solution.

Diagrams can also serve as documentation for your code, making it easier for others to understand your thought process and approach.

By incorporating visual elements into your problem-solving strategies, you can enhance your efficiency and accuracy in coding.

Collaborate with Peers

Collaborate with Peers

Work with coding partners

For an effective problem-solving strategy, consider working with coding partners.

Collaborating with peers can help you bounce ideas off each other, share different approaches, and collectively develop innovative solutions.

By leveraging your peers diverse skills and perspectives, you can tackle coding problems more efficiently and effectively.

Learn from peer feedback

Even the most experienced coders can benefit from constructive feedback from their peers.

Peer feedback can provide valuable insights into alternative solutions, code optimization techniques, and potential pitfalls to avoid.

You can continuously improve your problem-solving skills and expand your coding knowledge by actively seeking and incorporating feedback from your coding peers.

Work with your coding partners to brainstorm ideas, discuss different approaches, and troubleshoot any challenges you encounter.

Creating a collaborative environment with your peers can enhance your problem-solving abilities and accelerate your learning process.

Final Words

Mastering the key skills mentioned above will help you solve coding problems more easily and efficiently.

Buffing your problem-solving skills, staying organized, and utilizing various techniques such as pseudocoding and debugging can help you tackle coding challenges with confidence and precision.

Keep practicing and implementing these strategies to enhance your problem-solving abilities and become a more skilled coder.

Why is code optimization important in the problem-solving process?

Code optimization is important in the problem-solving process because it improves the code's performance and efficiency. Optimized code runs faster, requires less memory, and performs better with large input sizes. Optimization reduces the code's time and space complexity and ensures that it meets performance requirements.

Why is testing your code with different test cases important in coding problem-solving?

Testing your code with different test cases helps ensure your solution works correctly for various scenarios. It also helps identify edge cases, errors, and potential bugs in the code. Thorough testing enhances the reliability and accuracy of your code.

Share Article

  • Skip to content
  • Select language
  • Skip to search

The web browser you are using is out of date, please upgrade .

Please use a modern web browser with JavaScript enabled to visit OpenClassrooms.com

Think like a computer: the logic of programming

Free online content available in this course.

course.header.alt.is_video

course.header.alt.is_certifying

Last updated on 6/15/21

Discover how computers solve problems

Have you ever wondered how a computer solves a problem?  As humans, we learn problem-solving by watching others and through trial and error.  What makes a smart car smart? What is artificial intelligence and what makes it artificial?

Computers can’t actually think, but they can perform billions of logical operations per second. These logical operations are written by us and provide the computer with the instructions needed to perform the problem-solving.  This means you need to think like a computer and translate what you need it to do into program instructions it understands.

Solving a problem like a computer

Computers are basically toddlers. You have to explain everything to them. Take the simple task of watering flowers.  What tools do you need? What steps do you need?

Pick up a watering can by the handle.

Go to the faucet.

Put the opening of the watering can under the faucet.

Turn on the faucet.

Fill the watering can with water.

Turn off the faucet.

Go to your garden.

Tilt the spout of the watering can downwards.

Pour the water on your flowers.

This looks deceptively simple.  However, if you forget to tell your toddler...er...computer to pick up the watering can by the handle, it may try to pick it up by the spout.  If you don’t tell it to turn the faucet on, it will just sit there, staring at it. And if you don’t tell it to turn it off, it might just let the water run. 🚰 You can see where this is going.

Toddler watering flowers

Computers can’t make assumptions or guess what you want .  If you tell a computer to dust the furniture, it will actually put dust on your furniture, instead of removing it!  It can’t read context clues, so it will take all of your instructions literally. This is why it’s important to think through all the logical gaps in your instructions!

Try it out for yourself!

Write out the steps to making a cup of coffee or tea.  Write down everything that needs to be done. If you use milk or cream, don’t forget to say how to find it!  Once you’re done, test your instructions out on a friend. Tell them to follow the directions exactly.  Have you missed anything?

Computers can solve problems by performing billions of operations per second .

A programmer’s job is to find solutions . They do this by breaking down problems into easy-to-follow steps for a computer.

Programming languages allow people to communicate with computers.

Computers are literal and do exactly what you tell them to.

Example of certificate of achievement

Only Premium members can download videos from our courses. However, you can watch them online for free.

Problem Solving Through Programming in C

In this lesson, we are going to learn Problem Solving Through Programming in C. This is the first lesson while we start learning the C language.

Introduction to Problem Solving Through Programming in C

computer programmers are problem solvers. In order to solve a problem on a computer, we must know how to represent the information describing the problem and determine the steps to transform the information from one representation into another.

A computer is a very powerful and versatile machine capable of performing a multitude of different tasks, yet it has no intelligence or thinking power.

The computer cannot solve the problem on its own, one has to provide step by step solutions of the problem to the computer. In fact, the task of problem-solving is not that of the computer.

In order to solve a problem with the computer, one has to pass through certain stages or steps. They are as follows:

Steps to Solve a Problem With the Computer

Step 1: understanding the problem:, step 2: analyzing the problem:.

The idea here is to search for an appropriate solution to the problem under consideration. The end result of this stage is a broad overview of the sequence of operations that are to be carried out to solve the given problem.

Step 3: Developing the solution:

Step 4: coding and implementation:.

The vehicle for the computer solution to a problem is a set of explicit and unambiguous instructions expressed in a programming language. This set of instruction is called a program with problem solving through programming in C .

The problem solving is a skill and there are no universal approaches one can take to solving problems. Basically one must explore possible avenues to a solution one by one until she/he comes across the right path to a solution.

Problem Solving Steps

Problem-solving is a creative process which defines systematization and mechanization. There are a number of steps that can be taken to raise the level of one’s performance in problem-solving.

1. Problem Definition Phase:

In the problem definition phase, we must emphasize what must be done rather than how is it to be done. That is, we try to extract the precisely defined set of tasks from the problem statement.

2. Getting Started on a Problem:

Sometimes you do not have any idea where to begin solving a problem, even if the problem has been defined. Such block sometimes occurs because you are overly concerned with the details of the implementation even before you have completely understood or worked out a solution.

3. Use of Specific Examples:

It is usually much easier to work out the details of a solution to a specific problem because the relationship between the mechanism and the problem is more clearly defined.

4. Similarities Among Problems:

The more experience one has the more tools and techniques one can bring to bear in tackling the given problem. But sometimes, it blocks us from discovering a desirable or better solution to the problem.

5. Working Backwards from the Solution:

In some cases, we can assume that we already have the solution to the problem and then try to work backwards to the starting point. Even a guess at the solution to the problem may be enough to give us a foothold to start on the problem.

General Problem Solving Strategies:

There are a number of general and powerful computational strategies that are repeatedly used in various guises in computer science.

1. Divide and Conquer:

The Splitting can be carried on further so that eventually we have many sub-problems, so small that further splitting is no necessary to solve them. We shall see many examples of this strategy and discuss the gain in efficiency due to its application.

2. Binary Doubling:

3. dynamic programming:.

The travelling salesman problem falls into this category. The idea here is that a good or optimal solution to a problem can be built-up from good or optimal solutions of the sub-problems.

4. General Search, Back Tracking and Branch-and-Bound:

Share this story, choose your platform, related posts, what is preprocessor in c, what is file handling in c, structures and unions in c.

UNIT 1: How to Think Like an Engineer.

Learning objectives.

  • Explain what we mean by “Computational Thinking”.
  • Describe the problem being solved in a computational algorithm.
  • Explain the process for generating computational algorithms.
  • Generate and test algorithms to solve computational problems.
  • Evaluate computational algorithms for exactness, correctness, termination, generalizability and understandability.
  • Explain the role of programming in the field of Informatics.

Introduction

The goal of this book is to teach you to solve computational problems and to think like an engineer. Computational problems are problems that can be solved by the use of computations (a computation is what you do when you calculate something). Engineers are people who solve problems – they invent, design, analyze, build and test “things” to fulfill objectives and requirements. The single most important skill for you to learn is problem solving. Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately. As it turns out, the process of learning to program is an excellent opportunity to practice problem-solving skills.

This book strives to prepare you to write well-designed computer programs that solve interesting problems involving data.

Computational Thinking

image

Figure 1: “The seven components to computational thinking”(www.ignitemyfutureinschool.org/about)

Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) – thinking like an engineer. Computational thinking is a fundamental skill for everyone, not just for programmers because computational thinking is what comes before any computing technology. [1]

Computer science is the study of computation — what can be computed and how to compute it whereas computational thinking is:

Conceptualizing , not programming. Computer science is not only computer programming. Thinking like a computer scientist means more than being able to program a computer. It requires thinking at multiple levels of abstraction;

Fundamental , not rote skill. A fundamental skill is something every human being must know to function in modern society. Rote means a mechanical routine;

A way that humans, not computers, think . Computational thinking is a way humans solve problems; it is not trying to get humans to think like computers. Computers are dull and boring; humans are clever and imaginative. We humans make computers exciting. Equipped with computing devices, we use our cleverness to tackle problems we would not dare take on before the age of computing and build systems with functionality limited only by our imaginations;

Complements and combines mathematical and engineering thinking . Computer science inherently draws on mathematical thinking, given that, like all sciences, its formal foundations rest on mathematics. Computer science inherently draws on engineering thinking, given that we build systems that interact with the real world;

Ideas , not artifacts. It’s not just the software and hardware artifacts we produce that will be physically present everywhere and touch our lives all the time, it will be the computational concepts we use to approach and solve problems, manage our daily lives, and communicate and interact with other people;

For everyone, everywhere . Computational thinking will be a reality when it is so integral to human endeavors it disappears as an explicit philosophy. [2]

mention any two computer problem solving techniques

Figure 2 “Are you happy?” by Typcut http://www.typcut.com/headup/are-you-happy

An algorithm specifies a series of steps that perform a particular computation or task. Throughout this book we’ll examine a number of different algorithms to solve a variety of computational problems.

Algorithms resemble recipes. Recipes tell you how to accomplish a task by performing a number of steps. For example, to bake a cake the steps are: preheat the oven; mix flour, sugar, and eggs thoroughly; pour into a baking pan; set the timer and bake until done.

However, “algorithm” is a technical term with a more specific meaning than “recipe”, and calling something an algorithm means that the following properties are all true:

  • An algorithm is an unambiguous description that makes clear what has to be implemented in order to solve the problem. In a recipe, a step such as “Bake until done” is ambiguous because it doesn’t explain what “done” means. A more explicit description such as “Bake until the cheese begins to bubble” is better. In a computational algorithm, a step such as “Choose a large number” is vague: what is large? 1 million, 1 billion, or 100? Does the number have to be different each time, or can the same number be used again?
  • An algorithm expects a defined set of inputs. For example, it might require two numbers where both numbers are greater than zero. Or it might require a word, or a list customer names.
  • An algorithm produces a defined set of outputs. It might output the larger of the two numbers, an all-uppercase version of a word, or a sorted version of the list of names.
  • An algorithm is guaranteed to terminate and produce a result, always stopping after a finite time. If an algorithm could potentially run forever, it wouldn’t be very useful because you might never get an answer.
  • Must be general for any input it is given. Algorithms solve general problems (determine if a password is valid); they are of little use if they only solve a specific problem (determine if ‘comp15’ is a valid password)
  • It is at the right level of detail…..the person or device executing the instruction know how to accomplish the instruction without any extra information.

Once we know it’s possible to solve a problem with an algorithm, a natural question is whether the algorithm is the best possible one. Can the problem be solved more quickly or efficiently?

The first thing you need to do before designing an algorithm is to understand completely the problem given. Read the problem’s description carefully, then read it again. Try sketching out by hand some examples of how the problem can be solved. Finally consider any special cases and design your algorithm to address them.

An algorithm does not solve a problem rather it gives you a series of steps that, if executed correctly, will result in a solution to a problem.

An Example Algorithm

Let us look at a very simple algorithm called find_max.

Problem : Given a list of positive numbers, return the largest number on the list.

Inputs : A list of positive numbers. This list must contain at least one number. (Asking for the largest number in a list of no numbers is not a meaningful question.)

Outputs : A number, which will be the largest number in the list.

Algorithm :

  • Accept a list of positive numbers; set to nums_list
  • Set max_number to 0.
  • If the number is larger, set max_number to the larger number.
  • max_number is now set to the largest number in the list of positive numbers, nums_list.

Does this meet the criteria for being an algorithm?

  • Is it unambiguous? Yes. Each step of the algorithm consists of uncomplicated operations, and translating each step into programming code is straight forward.
  • Does it have defined inputs and outputs? Yes.
  • Is it guaranteed to terminate? Yes. The list nums_list is of finite length, so after looking at every element of the list the algorithm will stop.
  • Is it general for any input? Yes. A list of any set of positive numbers works.
  • Does it produce the correct result? Yes. When tested, the results are what are expected

[3] Figure 3: Example Algotithm

Verifying your Algorithm

How do we know if an algorithm is unambiguous, correct, comes to an end, is general AND is at the right level of detail? We must test the algorithm. Testing means verifying that the algorithm does what we expect it to do. In our ‘bake a cake’ example we know our algorithm is ‘working’ if, in the end, we get something that looks, smells and tastes like a cake.

mention any two computer problem solving techniques

Figure 4 “ Keyboard ” by Geralt is licensed under CC 2

Your first step should be to carefully read through EACH step of the algorithm to check for ambiguity and if there is any information missing. To ensure that the algorithm is correct, terminates and is general for any input we devise ‘test cases’ for the algorithm.

A test case is a set of inputs, conditions, and expected results developed for a particular computational problem to be solved. A test case is really just a question that you ask of the algorithm (e.g. if my list is the three numbers 2, 14, and 11 does the algorithm return the number 14?). The point of executing the test is to make sure the algorithm is correct, that it terminates and is general for any input.

Good (effective) test cases:

  • are easy to understand and execute
  • are created with the user in mind (what input mistakes will be made? what are the preconditions?)
  • make no assumptions (you already know what it is supposed to do)
  • consider the boundaries for a specified range of values.

Let us look at the example algorithm from the previous section. The input for the algorithm is ‘a list of positive numbers’. To make it easy to understand and execute keep the test lists short. The preconditions are that the list only contains numbers and these numbers must be positive so include a test with a ‘non-number’ (i.e. a special character or a letter) and a test with a negative number. The boundaries for the list are zero and the highest positive number so include a test with zero and a large positive number. That is it! Here is an example of three different test cases.

1

List: 44, 14, 0, 1521, 89, 477

1521

2

List: 18, 4, 72, *, 31

Error (or no result)

3

List: 22, -9, 52

Error (or no result)

Manually, you should step through your algorithm using each of the three test cases, making sure that the algorithm does indeed terminate and that you get your expected result. As our algorithms and programs become more complex, skilled programmers often break each test case into individual steps of the algorithm/program and indicate what the expected result of each step should be. When you write a detailed test case, you don’t necessarily need to specify the expected result for each test step if the result is obvious.

In computer programming we accept a problem to solve and develop an algorithm that can serve as a general solution. Once we have such a solution, we can use our computer to automate the execution. Programming is a skill that allows a competent programmer to take an algorithm and represent it in a notation (a program) that can be followed by a computer. These programs are written in programming languages (such as Python). Writing a correct and valid algorithm to solve a computational problem is key to writing good code. Learn to Think First and coding will come naturally!

Computational problem solving does not simply involve the act of computer programming. It is a process, with programming being only one of the steps. Before a program is written, a design for the program must be developed (the algorithm). And before a design can be developed, the problem to be solved must be well understood. Once written, the program must be thoroughly tested. These steps are outlined in Figure 5.

mention any two computer problem solving techniques

Figure 5: Process of Computational Problem Solving

Values and Variables

A value is one of the basic things computer programs works with, like a password or a number of errors.

Values belong to different types: 21 is an integer (like the number of errors), and ‘comp15’ is a string of characters (like the password). Python lets you give names to values giving us the ability to generalize our algorithms.

One of the most powerful features of a programming language is the ability to use variables. A variable is simply a name that refers to a value as shown below,

variable is assigned the value 21
 variable is assigned the value ‘comp15’

Whenever the variable errors appears in a calculation the current value of the variable is used.

variable is assigned the value 21
variable is assigned the value of 21+1 (22)

We need some way of storing information (i.e. the number of errors or the password) and manipulate them as well. This is where variables come into the picture. Variables are exactly what the name implies – their value can vary, i.e., you can store anything using a variable. Variables are just parts of your computer’s memory where you store some information. Unlike literal constants, you need some method of accessing these variables and hence you give them names.

Programmers generally choose names for their variables that are meaningful and document what the variable is used for. It is a good idea to begin variable names with a lowercase letter . The underscore character (_) can appear in a name and is often used in names with multiple words.

What is a program?

image

Figure 6: “ Python Code ” by nyuhuhuu is licensed under CC-BY 2.0

A program is a sequence of instructions that specifies how to perform a computation. The computation might be something mathematical, such as solving a system of mathematical equations or finding the roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing text in a document or something graphical, like processing user input on an ATM device.

The details look different in different computer programming languages, but there are some low-level conceptual patterns (constructs) that we use to write all programs. These constructs are not just for Python programs, they are a part of every programming language.

input Get data from the “outside world”. This might be reading data from a file, or even some kind of sensor like a microphone or GPS. In our initial algorithms and programs, our input will come from the user typing data on the keyboard.

output Display the results of the program on a screen or store them in a file or perhaps write them to a device like a speaker to play music or speak text.

sequential execution Perform statements one after another in the order they are encountered in the script.

conditional execution Checks for certain conditions and then executes or skips a sequence of statements.

repeated execution Perform some set of statements repeatedly, usually with some variation.

reuse Write a set of instructions once and give them a name and then reuse those instructions as needed throughout your program.

Believe it or not, that’s pretty much all there is to it. Every computer application you’ve ever used, no matter how complicated, is made up of constructs that look pretty much like these. So you can think of programming as the process of breaking a large, complex task into smaller and smaller subtasks until the subtasks are simple enough to be performed with one of these basic constructs. The “art” of writing a program is composing and weaving these basic elements together many times over to produce something that is useful to its users.

Computational Problem Design using the Basic Programming Constructs

The key to better algorithm design and thus to programming lies in limiting the control structure to only three constructs as shown below.

  • The Sequence structure (sequential execution)
  • The Decision, Selection or Control structure (conditional execution)
  • Repetition or Iteration Structure (repeated execution)

image

Figure 7: the 3 Programming Constructs

  Let us look at some examples for the sequential control and the selection control.

Sequential Control Example

The following algorithm is an example of sequential control .

Problem : Given two numbers, return the sum and the product of the two numbers.

Inputs : Two numbers.

Outputs : The sum and the product.

  • display “Input two numbers”
  • accept number1, accept number2
  • sum = number1 + number2
  • print “The sum is “, sum
  • product = number1 * number2
  • print “The product is “, product
  • Is it guaranteed to terminate? Yes. Sequential control, by its nature, always ends.
  • Is it general for any input? Yes. Any two numbers work in this design.
  • Does it produce the correct result? Yes. When tested, the results are what are expected.

Here is an example of three different test cases that are used to verify the algorithm.

1

numbers 0 and 859

sum is 859
product is 0

2

numbers -5 and 10

sum is 5
product is -50

3

numbers 12 and 3

sum is 15
product is 36

Selection Control Examples

The following two algorithms are examples of selection control which uses the ‘IF’ statement in most programming languages.

Problem : Given two numbers, the user chooses to either multiply, add or subtract the two numbers. Return the value of the chosen calculation.

Inputs : Two numbers and calculation option.

Outputs : The value of the chosen calculation.

The relational (or comparison) operators used in selection control are:

= is equal to [in Python the operator is ==]

> is greater than

< is less than

>= is greater than or equal

<= is less than or equal

<> is not equal to [in Python the operator is !=]

  • display “choose one of the following”
  • display “m for multiply”
  • display “a for add”
  • display “s for subtract”
  • accept choice
  • display “input two numbers you want to use”
  • accept number1, number2
  • if choice = m then answer= number1 * number2
  • if choice = a then answer= number1 + number2
  • if choice = s then answer= number1 -number212. if choice is not m, a, or s then answer is NONE
  • display answer
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s choice and the two numbers the algorithm will stop.
  • Is it general for any input? Yes. Any two numbers work in this design and only a choice of a’m’, ‘a’, or ‘s’ will result in numeric output.

1

choice ‘a’
numbers -12 and 32

answer is 20
terminate

2

choice ‘s’
numbers -2012 and 0

answer is 2012
terminate

3

choice ‘**’
numbers 8 and 4

answer is NONE
terminate

This example uses an extension of the simple selection control structure we just saw and is referred to as the ‘IF-ELSE’ structure.

Problem : Accept from the user a positive integer value representing a salary amount, return tax due based on the salary amount.

Inputs : One positive integer number.

Outputs : The calculated tax amount.

= is equal to  [in Python the operator is ==]

<> is not equal to  [in Python the operator is !=]

  • accept salary
  • If salary < 50000 then
  • Tax = 0 Else
  • If salary > 50000 AND salary < 100000 then
  • Tax = 50000 * 0.05 Else
  • Tax = 100000 * 0.30
  • display Tax
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number, even if it is negative, the algorithm will stop.
  • Is it general for any input? Yes. Any number entered in this design will work.

1

salary of 0

tax is 0
terminate

2

salary of 75000

tax is 2500
terminate

3

salary of 120000

tax is 30000
terminate

Iterative Control Examples

The third programming control is the iterative or, also referred to as, the repetition structure. This control structure causes certain steps to be repeated in a sequence a specified number of times or until a condition is met. This is what is called a ‘loop’ in programming

In all programming languages there are generally two options: an indefinite loop (the Python ‘WHILE’ programming statement) and a definite loop (the Python ‘FOR’ programming statement). We can use these two constructs, WHILE and FOR, for iterations or loops in our algorithms.

Note for Reader: A definite loop is where we know exactly the number of times the loop’s body will be executed. Definite iteration is usually best coded as a Python for loop. An indefinite loop is where we do not know before entering the body of the loop the exact number of iterations the loop will perform. The loop just keeps going until some condition is met. A while statement is used in this case.

The following algorithm is an example of iterative control using WHILE .

Problem : Print each keyboard character the users types in until the user chooses the ‘q’ (for ‘quit’) character.

Inputs : A series of individual characters.

Outputs : Each character typed in by the user.

  • initialize (set) letter = ‘a’
  • WHILE letter <> ‘q’
  • ACCEPT letter
  • DISPLAY “The character you typed is”, letter
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s keyboard character, even if it is not a letter, the algorithm will stop.
  • Is it general for any input? Yes. Any keyboard character entered in this design will work.

1

letter ‘z’

The character you typed is z.
Ask for another letter.

2

letter ‘8’

The character you typed is 8
Ask for another letter.

3

letter ‘q’

The character you typed is q.
Terminate.

The following algorithm is an example of iterative control using FOR . This statement is used when the number of iterations is known in advance.

Problem : Ask the user how many words they want to enter then print the words entered by the user.

Inputs : Number of words to be entered; this value must be a positive integer greater than zero. Individual words.

Outputs : Each word typed in by the user.

  • accept num_words (must be at least one)
  • repeat num_words times (FOR 1 to num_words)
  • accept word
  • DISPLAY “The word you entered is”, word
  • Is it guaranteed to terminate? Yes. The input is of finite length, so after accepting the user’s number of words to enter and any characters typed on the keyboard, even if it is not a ‘word’ per say, the algorithm will stop.
  • Is it general for any input? Yes. Any positive integer greater than zero and any size ‘word’ will work.

Here is an example of two different test cases that are used to verify the algorithm.

1

num_words 1
word ‘code’

The word you entered is ‘code’.
Terminate.

2

num_words 3
word ‘coding’

word ‘is’


word ‘fun’

The word you entered is ‘coding’.
Ask for another word.

The word you entered is ‘is’.
Ask for another word.

The word you entered is ‘fun’.
Terminate.

The Role of Programming in the Field of Informatics

image

Figure8: iPhone apps by Jaap Arriens/NurPhoto via Getty Images (abcnews.go.com)

You see computer programming in use every day. When you use Google or your smartphone, or watch a movie with special effects, there is programing at work. When you order a product over the Internet, there is code in the web site, in the cryptography used to keep your credit card number secure, and in the way that UPS routes their delivery vehicle to get your order to you as quickly as possible.

Programming is indeed important to an informatics professional as they are interested in finding solutions for a wide variety of computational problems involving data.

When you Google the words “pie recipe,” Google reports that it finds approximately 38 million pages, ranked in order of estimated relevance and usefulness. Facebook has approximately 1 billion active users who generate over 3 billion comments and “Likes” each day. GenBank, a national database of DNA sequences used by biologists and medical researchers studying genetic diseases, has over 100 million genetic sequences with over 100 billion DNA base pairs. According to the International Data Corporation, by 2020 the digital universe – the data we create and copy annually – will reach 44 zettabytes, or 44 trillion gigabytes.

image

Figure 9: The Digital Universe ( www.emc.com/leadership/digital-universe/2014iview/images )

  Doing meaningful things with data is challenging, even if we’re not dealing with millions or billions of things. In this book, we will be working with smaller sets of data. But much of what we’ll do will be applicable to very large amounts of data too.

Unit Summary

Computational Thinking is the thought processes involved in formulating a problem and expressing its solution in a way that a computer—human or machine—can effectively carry out.

Computational Thinking is what comes before any computing technology—thought of by a human, knowing full well the power of automation.

Writing a correct and valid algorithm to solve a computational problem is key to writing good code.

  • What are the inputs?
  • What are the outputs (or results)?
  • Can we break the problem into parts?
  • Think about the connections between the input & output.
  • Consider designing ‘backwards’.
  • Have you seen the problem before? In a slightly different form?
  • Can you solve part of the problem?
  • Did you use all the inputs?
  • Can you test it on a variety of inputs?
  • Can you think of how you might write the algorithm differently if you had to start again?
  • Does it solve the problem? Does it meet all the requirements? Is the output correct?
  • Does it terminate?
  • Is it general for all cases?

Practice Problems

  • Write about a process in your life (e.g. driving to the mall, walking to class, etc.) and estimate the number of steps necessary to complete the task. Would you consider this a complex or simple task? What happens if you scale that task (e.g. driving two states away to the mall)? Is your method the most efficient? Can you come up with a more efficient way?

image

  • Write an algorithm to find the average of 25 test grades out of a possible 100 points.
  • If you are given three sticks, you may or may not be able to arrange them in a triangle. For example, if one of the sticks is 12 inches long and the other two are one inch long, it is clear that you will not be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to see if it is possible to form a triangle: “If any of the three lengths is greater than the sum of the other two, then you cannot form a triangle. Otherwise, you can.”Write an algorithm that accepts three integers as arguments, and that displays either “Yes” or “No,” depending on whether you can or cannot form a triangle from sticks with the given lengths.
  • ROT13 is a weak form of encryption that involves “rotating” each letter in a word by 13 places. To rotate a letter means to shift it through the alphabet, wrapping around to the beginning if necessary, so ‘A’ shifted by 3 is ‘D’ and ‘Z’ shifted by 1 is ‘A’. Write an algorithm that accepts a word and an integer from the user, and that prints a new encrypted word that contains the letters from the original word “rotated” by the given amount (the integer input). For example, “cheer” rotated by 7 is “jolly” and “melon” rotated by −10 is “cubed.”
>= 0.9 A
>= 0.8 B
>= 0.7 C
>= 0.6 D
< 0.6 E
  • Write an algorithm which repeatedly accepts numbers until the user enters “done”. Once “done” is entered, display the total sum of all the numbers, the count of numbers entered, and the average of all the numbers.
  • Write an algorithm that sums a series of ten positive integers entered by the user excluding all numbers greater than 100. Display the final sum.
  • Wing, Jeannette M. "Computational thinking." Communications of the ACM 49.3 (2006): 33-35. ↵

mention any two computer problem solving techniques

Privacy Policy

  • Soft skills
  • What is a credential?
  • Why do a credential?
  • How do credentials work?
  • Selecting your level
  • How will I be assessed?
  • Benefits for professionals
  • Benefits for organisations
  • Benefits for postgraduates

Problem solving techniques: Steps and methods

mention any two computer problem solving techniques

Posted on May 29, 2019

Constant disruption has become a hallmark of the modern workforce and organisations want problem solving skills to combat this. Employers need people who can respond to change – be that evolving technology, new competitors, different models for doing business, or any of the other transformations that have taken place in recent years.

In addition, problem solving techniques encompass many of the other top skills employers seek . For example, LinkedIn’s list of the most in-demand soft skills of 2019 includes creativity, collaboration and adaptability, all of which fall under the problem-solving umbrella.

Despite its importance, many employees misunderstand what the problem solving method really involves.

What constitutes effective problem solving?

Effective problem solving doesn’t mean going away and coming up with an answer immediately. In fact, this isn’t good problem solving at all, because you’ll be running with the first solution that comes into your mind, which often isn’t the best.

Instead, you should look at problem solving more as a process with several steps involved that will help you reach the best outcome. Those steps are:

  • Define the problem
  • List all the possible solutions
  • Evaluate the options
  • Select the best solution
  • Create an implementation plan
  • Communicate your solution

Let’s look at each step in a little more detail.

It's important you take the time to brainstorm and consider all your options when solving problems.

1. Define the problem

The first step to solving a problem is defining what the problem actually is – sounds simple, right? Well no. An effective problem solver will take the thoughts of everyone involved into account, but different people might have different ideas on what the root cause of the issue really is. It’s up to you to actively listen to everyone without bringing any of your own preconceived notions to the conversation. Learning to differentiate facts from opinion is an essential part of this process.

An effective problem solver will take the opinions of everyone involved into account

The same can be said of data. Depending on what the problem is, there will be varying amounts of information available that will help you work out what’s gone wrong. There should be at least some data involved in any problem, and it’s up to you to gather as much as possible and analyse it objectively.

2. List all the possible solutions

Once you’ve identified what the real issue is, it’s time to think of solutions. Brainstorming as many solutions as possible will help you arrive at the best answer because you’ll be considering all potential options and scenarios. You should take everyone’s thoughts into account when you’re brainstorming these ideas, as well as all the insights you’ve gleaned from your data analysis. It also helps to seek input from others at this stage, as they may come up with solutions you haven’t thought of.

Depending on the type of problem, it can be useful to think of both short-term and long-term solutions, as some of your options may take a while to implement.

One of the best problem solving techniques is brainstorming a number of different solutions and involving affected parties in this process.

3. Evaluate the options

Each option will have pros and cons, and it’s important you list all of these, as well as how each solution could impact key stakeholders. Once you’ve narrowed down your options to three or four, it’s often a good idea to go to other employees for feedback just in case you’ve missed something. You should also work out how each option ties in with the broader goals of the business.

There may be a way to merge two options together in order to satisfy more people.

4. Select an option

Only now should you choose which solution you’re going to go with. What you decide should be whatever solves the problem most effectively while also taking the interests of everyone involved into account. There may be a way to merge two options together in order to satisfy more people.

5. Create an implementation plan

At this point you might be thinking it’s time to sit back and relax – problem solved, right? There are actually two more steps involved if you want your problem solving method to be truly effective. The first is to create an implementation plan. After all, if you don’t carry out your solution effectively, you’re not really solving the problem at all. 

Create an implementation plan on how you will put your solution into practice. One problem solving technique that many use here is to introduce a testing and feedback phase just to make sure the option you’ve selected really is the most viable. You’ll also want to include any changes to your solution that may occur in your implementation plan, as well as how you’ll monitor compliance and success.

6. Communicate your solution

There’s one last step to consider as part of the problem solving methodology, and that’s communicating your solution . Without this crucial part of the process, how is anyone going to know what you’ve decided? Make sure you communicate your decision to all the people who might be impacted by it. Not everyone is going to be 100 per cent happy with it, so when you communicate you must give them context. Explain exactly why you’ve made that decision and how the pros mean it’s better than any of the other options you came up with.

Prove your problem solving skills with Deakin

Employers are increasingly seeking soft skills, but unfortunately, while you can show that you’ve got a degree in a subject, it’s much harder to prove you’ve got proficiency in things like problem solving skills. But this is changing thanks to Deakin’s micro-credentials. These are university-level micro-credentials that provide an authoritative and third-party assessment of your capabilities in a range of areas, including problem solving. Reach out today for more information .

Purdue Mitchell E. Daniels, Jr. School of Business logo

Effective Problem-Solving Techniques in Business

Problem solving is an increasingly important soft skill for those in business. The Future of Jobs Survey by the World Economic Forum drives this point home. According to this report, complex problem solving is identified as one of the top 15 skills that will be sought by employers in 2025, along with other soft skills such as analytical thinking, creativity and leadership.

Dr. Amy David , clinical associate professor of management for supply chain and operations management, spoke about business problem-solving methods and how the Purdue University Online MBA program prepares students to be business decision-makers.

Why Are Problem-Solving Skills Essential in Leadership Roles?

Every business will face challenges at some point. Those that are successful will have people in place who can identify and solve problems before the damage is done.

“The business world is constantly changing, and companies need to be able to adapt well in order to produce good results and meet the needs of their customers,” David says. “They also need to keep in mind the triple bottom line of ‘people, profit and planet.’ And these priorities are constantly evolving.”

To that end, David says people in management or leadership need to be able to handle new situations, something that may be outside the scope of their everyday work.

“The name of the game these days is change—and the speed of change—and that means solving new problems on a daily basis,” she says.

The pace of information and technology has also empowered the customer in a new way that provides challenges—or opportunities—for businesses to respond.

“Our customers have a lot more information and a lot more power,” she says. “If you think about somebody having an unhappy experience and tweeting about it, that’s very different from maybe 15 years ago. Back then, if you had a bad experience with a product, you might grumble about it to one or two people.”

David says that this reality changes how quickly organizations need to react and respond to their customers. And taking prompt and decisive action requires solid problem-solving skills.

What Are Some of the Most Effective Problem-Solving Methods?

David says there are a few things to consider when encountering a challenge in business.

“When faced with a problem, are we talking about something that is broad and affects a lot of people? Or is it something that affects a select few? Depending on the issue and situation, you’ll need to use different types of problem-solving strategies,” she says.

Using Techniques

There are a number of techniques that businesses use to problem solve. These can include:

  • Five Whys : This approach is helpful when the problem at hand is clear but the underlying causes are less so. By asking “Why?” five times, the final answer should get at the potential root of the problem and perhaps yield a solution.
  • Gap Analysis : Companies use gap analyses to compare current performance with expected or desired performance, which will help a company determine how to use its resources differently or adjust expectations.
  • Gemba Walk : The name, which is derived from a Japanese word meaning “the real place,” refers to a commonly used technique that allows managers to see what works (and what doesn’t) from the ground up. This is an opportunity for managers to focus on the fundamental elements of the process, identify where the value stream is and determine areas that could use improvement.
  • Porter’s Five Forces : Developed by Harvard Business School professor Michael E. Porter, applying the Five Forces is a way for companies to identify competitors for their business or services, and determine how the organization can adjust to stay ahead of the game.
  • Six Thinking Hats : In his book of the same name, Dr. Edward de Bono details this method that encourages parallel thinking and attempting to solve a problem by trying on different “thinking hats.” Each color hat signifies a different approach that can be utilized in the problem-solving process, ranging from logic to feelings to creativity and beyond. This method allows organizations to view problems from different angles and perspectives.
  • SWOT Analysis : This common strategic planning and management tool helps businesses identify strengths, weaknesses, opportunities and threats (SWOT).

“We have a lot of these different tools,” David says. “Which one to use when is going to be dependent on the problem itself, the level of the stakeholders, the number of different stakeholder groups and so on.”

Each of the techniques outlined above uses the same core steps of problem solving:

  • Identify and define the problem
  • Consider possible solutions
  • Evaluate options
  • Choose the best solution
  • Implement the solution
  • Evaluate the outcome

Data drives a lot of daily decisions in business and beyond. Analytics have also been deployed to problem solve.

“We have specific classes around storytelling with data and how you convince your audience to understand what the data is,” David says. “Your audience has to trust the data, and only then can you use it for real decision-making.”

Data can be a powerful tool for identifying larger trends and making informed decisions when it’s clearly understood and communicated. It’s also vital for performance monitoring and optimization.

How Is Problem Solving Prioritized in Purdue’s Online MBA?

The courses in the Purdue Online MBA program teach problem-solving methods to students, keeping them up to date with the latest techniques and allowing them to apply their knowledge to business-related scenarios.

“I can give you a model or a tool, but most of the time, a real-world situation is going to be a lot messier and more valuable than what we’ve seen in a textbook,” David says. “Asking students to take what they know and apply it to a case where there’s not one single correct answer is a big part of the learning experience.”

Make Your Own Decision to Further Your Career

An online MBA from Purdue University can help advance your career by teaching you problem-solving skills, decision-making strategies and more. Reach out today to learn more about earning an online MBA with Purdue University .

If you would like to receive more information about pursuing a business master’s at the Mitchell E. Daniels, Jr. School of Business, please fill out the form and a program specialist will be in touch!

Connect With Us

Disclosure: This post may contain affiliate links. We receive a small commission at no cost to you when you make a purchase using our links. We test each product thoroughly and give high marks to only the very best. We are independently owned, and the opinions expressed here are our own.

Educational » Common Computer Problems and Solutions

Common Computer Problems and Solutions

Have you ever faced the dread of your computer freezing right before a crucial deadline?

That sinking feeling isn't just you.

Computers have become vital to our daily productivity regardless of occupation. With regular usage and handling of day-to-day tasks, computers are prone to various technical issues.

In this article, I will discuss common computer problems and solutions for each challenge, which will help you understand underlying system complications and their fixes.

Computer Problems and solutions featured image

List of 10 Common Computer Problems and Solutions

In some cases, it may not be practical to have an engineer take possession of your computer for repairs when the issue can be resolved easily and inexpensively at home. Especially considering that professionals sometimes charge a premium for simple fixes that you can accomplish yourself with a little guidance.

Hence, the list below will help you discover 10 common computer problems and solutions to save money. You are also enhancing your technical skills in the process.

Note: For some of the issues listed below, you might need a basic understanding of computing or, in certain cases, seek advice from someone with more technical experience.

1. Slow Computer Performance

Slow Computer performance

Problem Type: Software and Hardware

A slow computer is a source of frustration for many users. However, this computer problem can be caused by numerous reasons, some mentioned below, along with their solutions.

Maxed Out Disk Space

When a computer's storage device, whether an HDD (Hard Disk Drive) or an SSD (Solid State Drive), is nearly full, it can affect the system's performance differently. A full disk can lead to file fragmentation for HDDs, where parts of files are scattered across the drive. This fragmentation forces the drive head to move to different physical locations to read a single file, significantly increasing access times and slowing down the system.

In contrast, SSDs, which use flash memory, do not suffer performance degradation due to fragmentation in the same way, as they can access data instantaneously regardless of its location on the drive. However, keeping an SSD near full capacity can still impact its performance and longevity due to limitations on write cycles and the need for proper wear leveling. Thus, regardless of the type of drive, maintaining adequate free space is crucial for ensuring optimal system responsiveness and longevity of the storage device.

Cleaning unnecessary files from your drives is essential to regain your PC's performance speed. However, it's crucial to proceed with caution and avoid deleting system files that are vital for the smooth operation of your Windows operating system. Here's how you can safely clean your computer:

  • Start with the Basics : Begin by emptying the Recycle Bin and deleting obvious junk files such as watched movies, images, and other unnecessary items. This simple step can free up a surprising amount of space on your hard drive.
  • Cloud Storage and External Drives : If you're unsure about deleting certain files directly from your drives, consider transferring data to a cloud server or storing it on an external hard drive or an SSD. This way, you can free up space on your computer without permanently losing access to your files.

Critical System File Locations to Avoid

While cleaning your PC, it's vital to steer clear of specific directories where Windows stores its system files. Tampering with these locations can lead to serious system stability issues. Here's a quick overview of these critical areas:

  • Windows Folder : Primarily located on the C: drive, this directory and its subfolders, like "System32" and "SysWOW64," contain crucial system programs and libraries.
  • Program Files and Program Files (x86) : These contain files for installed programs. "Program Files" is used for 64-bit applications, while "Program Files (x86)" houses 32-bit apps on 64-bit systems.
  • Users Folder : This includes personal files, settings, and the "AppData" subfolder, which holds application-specific data. Be cautious not to remove files from here without understanding their purpose.
  • Windows\System32 : A critical directory for system operation containing essential DLLs and drivers.
  • Windows\SoftwareDistribution : Used by Windows Update, it's generally safe to clear its contents to resolve update issues but avoid unnecessary tampering.
  • Windows\Prefetch : This helps speed up program loading. The system manages it automatically, and manual intervention is not recommended.
  • Windows\WinSxS (Side by Side) : Critical for the functionality of multiple applications and Windows features, particularly in managing updates and DLL versions.

By respecting these guidelines and focusing on safe areas for cleanup, you can improve your computer's performance without risking system health. Always remember, when in doubt about a file's importance, it's safer to research or consult a professional before deletion of System files.

Note : Consider downloading a PC tune-up application for a hands-off approach. Such software can help automate the cleaning process, reducing manual effort and the risk of accidentally deleting important files.

Program Running in The Background

Background applications, including system services and user-installed software, consume system resources such as CPU and RAM. It can lead to slower system performance as these resources are divided among more processes, especially if these applications are resource-intensive. Users might not be aware of these processes running, as they can start automatically at boot or run hidden in the system tray.

Manage Startup Applications

Disabling Startup apps from Task Manager

To prevent unnecessary programs from slowing down your computer right from startup, you can manage which applications automatically run at boot:

  • Right-click the Taskbar and select Task Manager.
  • Switch to the Startup apps tab.
  • Here, you'll see a list of applications that start automatically when your computer boots. Carefully review this list, and for any application you don't need immediately at startup, right-click it and choose Disable.

This action doesn't uninstall the applications but prevents them from auto-starting, freeing up resources.

2. Use Task Manager for Active Applications

  • Press (Ctrl+Shift+Esc) or (Ctrl+Alt+Del) and select Task Manager to open it.
  • Navigate to the Processes tab to see all running applications and background processes. Identify any applications that you are not actively using and select them, then click End Task to close them and free up resources.

3. Regularly Check for Unnecessary Applications

  • Periodically review the applications installed on your computer. If you find programs you no longer use, consider uninstalling them to free up space and resources.

By managing startup applications and actively monitoring what runs in the background, you can significantly improve your computer's performance without needing technical interventions that might compromise system stability.

Malware Attack

Malware attack on computers

Malicious software, also known as malware , includes viruses, spyware, and other harmful programs designed to sneak into your computer without you knowing. These unwanted programs can cause much trouble by slowing down your computer, as they use up your system's resources while running in the background.

Malware can come in many forms and do different things—some might steal your personal information, while others could just slow your device down or display unwanted ads.

Antivirus software prevents malware from executing harmful actions by scanning for malicious patterns or behaviors. Real-time protection actively monitors files as they are accessed and blocks malicious activities, while scheduled scans periodically check the entire system for malware. These actions are crucial for maintaining system performance and security by preventing malware from consuming resources or damaging files.

Use reliable antivirus software to keep your device virus-free and ensure smooth functioning.

Low-Spec Computer

Your device can also slow down if you run an operating system with low-config hardware that does not align with the system requirements of advanced programs.

Note:  It's high time to consider upgrading your system.

Other Reasons

Apart from the mentioned issues that cause your PC to slow down often, here are a few other common reasons:

  • Keeping too many browser add-ons
  • Keeping way too many browser tabs open
  • Outdated drivers that need an update
  • PC hardware failure requiring professional guidance

I hope these solutions will help fix the system sluggishness, the most common computer problem.

Note:    To regain your system's lost performance, check out efficient and affordable TuneUp programs like  Advanced SystemCare ,  CCleaner , or  Avast Cleanup Premium .

2. Computer Keeps Restarting (Reboot Loop)

Windows rebooting problem

The Windows Reboot loop, or the boot loop , can be frustrating.

There can be multiple reasons your computer is stuck in the endless looping process. However, usually, the fault can be traced back to one of these three things:

  • A Windows or App Update
  • Windows Driver that needs an upgrade
  • Installation of new software

Something in the process goes wrong, resulting in an infinite reboot loop. It is a problem that has plagued Windows for years.

However, you do not have to be an expert to fix the reboot loop. Here are the solutions to fix this computer problem.

1. Do a Hard Reboot

Unplug any external devices (like USB drives or printers), then hold down the power button for 5 seconds to turn off your PC. Wait a bit, then turn it back on. This can sometimes break the loop.

2. Open Safe Mode Manually

If the method mentioned earlier doesn't resolve the boot loop, try booting up your system in Safe Mode.

To enter Safe Mode on Windows, you should first access the Windows Recovery Environment (WinRE):

  • Restart your Windows device.
  • While restarting, long-press the power button for 10 seconds to shut down.
  • Turn on your device again by pressing the power button.
  • Repeat the abovementioned process a few times to allow your device to boot into Automatic Repair.
  • From there, choose the "Advanced options" to access WinRE and enter Safe Mode.

Once entered, select Troubleshoot > Advanced options > Startup Settings > Restart.

After your computer restarts, press F5 to access the Safe Mode with networking.

Note:  Read more on  how to boot Windows in safe mode.

3. Uninstall the latest installation

If you've recently added new software or a system update, try uninstalling it from Safe Mode. This could be the culprit behind the restarts.

4. Turn off the automatic restart feature

How to Disable Automatic Restart in Windows

Windows includes a built-in feature designed to automatically restart your computer in response to application failures and other issues. However, this functionality can become bothersome, particularly when engaged in crucial tasks. Hence, to deactivate this feature, please follow the instructions provided below:

  • Find the 'Control Panel' by searching for it in the Start Menu.
  • Opt for 'System and Security.'
  • Select the 'System' option.
  • Now select 'Advanced system settings' in the right pane.
  • Click 'Settings' in the next window's 'Startup and Recovery' section.
  • Uncheck the Automatically restart box under 'System failure.' Click OK to close.

5. Update System Drivers

Updating System Device Drivers can resolve a lot of computer problems

Device drivers ensure communication between the operating system and hardware components. Outdated drivers can lead to inefficiencies in this communication, causing the hardware to underperform or behave erratically. This can result in system instability, crashes, or reduced performance, emphasizing the importance of keeping drivers updated for optimal system functionality.

To update your device drivers, you can follow these steps:

  • Press the Windows icon to open the Start Menu,
  • Search for Device Manager,
  • Check for individual driver updates and install them.

Note 1:  If you do not receive proper driver updates, check a third-party driver updater like  Driver Booster Pro .

Note 2: If the boot loop is caused after a driver update, boot into Safe Mode and roll back the update.

Follow the above-tested methods to revive your device from the common plague.

Some unnoticed hardware issues can often generate reboot loops. Thus, you must ensure that the hardware component of your system is functioning well. Check your CPU and RAM thoroughly to guarantee the well-being of your device. Also, check if your device's power supply is connected properly.

3. Blue Screen of Death (BSOD)

Blue Screen of Death is a massive computer problem which requires careful analysis

One of the most common computer problems, BSOD (Blue Screen of Death), is a nightmare for Windows users. BSOD is a warning displayed on a blue screen when your system is interrupted by some errors.

However, with the latest technological advancements, it has become less common than it was years ago. Typically, the BSODs are caused by driver software, faulty apps, or hardware issues.

An occasional BSOD that you never see again is usually harmless. However, it would be best to keep yourself prepared for uncertain situations.

Below are the measurements you can take if you ever face such occurrences.

1. Do Necessary Updates

Operating system updates often include patches for security vulnerabilities and fixes for known bugs affecting system performance. By addressing these issues, updates help maintain system stability and efficiency, protecting against exploits that could slow down the system or compromise user data.

2. Remove Bad Programs

Remove suspicious programs that you think can cause trouble in your system—especially those incompatible with your PC configuration and downloaded from untrusted sources.

3. Return to the previous device driver

Sometimes, faulty upgradation of device drivers can cause BSOD. On such occasions, it is advised to roll back to the previous version of the device driver before your most recent upgrade. 

Tip:  Learn  how to roll back a driver to a previous version .

Note:  The driver will change based on the problem.

4. Install Latest Security Patches

Always ensure your system has the latest security patches from Microsoft. These updates often include fixes for known issues that could lead to BSODs.

5. Conduct a diagnostic test

While there isn't a one-stop diagnostic test for all BSOD causes, Windows provides multiple tools to help pinpoint and resolve issues:

  • Windows Memory Diagnostic : To check for memory (RAM) problems, type "Windows Memory Diagnostic" into the search bar, select it, and choose to restart your computer and check for memory problems.
  • Check Disk Utility (CHKDSK) : To find and fix hard drive errors, open Command Prompt as an administrator, type chkdsk /f followed by Enter, and then press Y to schedule a disk check on the next restart.
  • System File Checker (SFC) : To repair corrupted Windows system files, open Command Prompt as an administrator, type sfc /scannow , and then press Enter. This scans your system for corrupted files and automatically repairs them.
  • View Reliability History : Search for "Reliability Monitor" in the Windows search bar. This tool provides a timeline of system events and errors, including BSODs, which can help identify recent changes that might have led to the issueConsultingng Microsoft's official support website or forums can provide more targeted advice for specific BSOD error codes.

Diagnose Windows errors with this tool

4. Troubleshooting Malfunctioning Peripheral Devices

Problem Type: Hardware and Software

Certain devices that we connect to our computers, like keyboards, mice, printers, and others, can sometimes stop working correctly. This might happen because they are used often or because setting them up can be complicated, leading to issues.

When these devices fail to operate properly, the probable solution might be costly and irritating, which is not ideal for any user.

1. The first thing to do if a device like a keyboard or printer isn't working is to check its connection to the computer. If the cables are damaged or not plugged in properly, try using different cables or plugging them into different ports.

2. You can reinstall or update the device drivers and see if that fixes the issue.

5. Frozen or Stuck Computer

Problem Type: Software

Unexpected computer freezes can create immense frustration while working on an important task. You can be quickly prompted to attempt a manual reboot of your computer to fix the issue but with the risk of losing everything unsaved.

However, you can also try a better option by understanding the reasons for the frozen system. Usually, software issues are the most common reason behind a frozen computer. Thus, you can apply the solutions mentioned below to prevent such uncertain occurrences.

Here are 7 easy solutions to fix freezing computer problems.

  • Before prompting a quick reboot, wait a while to see if the problem fixes itself. At times, heavy application on low-configuration devices takes a toll on the CPU and RAM, which can sometimes cause your system to freeze for a while.
  • Make an effort to move the mouse cursor around the screen. If it won't move, your computer probably has a deadlock and needs to be restarted.
  • Try pressing the keyboard's "Caps Lock" button. The Windows Task Manager can fix the software problem if the Caps Lock light indicates it is functioning. You may need to reboot your computer if the Caps Lock light malfunctions.
  • Upgrade your system hardware configuration.
  • Keep your device up-to-date.
  • Keeping your device configuration in mind, minimize the amount of multitasking or kill unnecessary tasks from Task Manager.
  • Uninstall Unnecessary Programs that consume a lot of your system resources.

Note: If the problem persists, scan the QR code on the blue screen to learn more about the situation.

6. Unexpected PC Shutdowns

solve sudden computer shutdown problems

Problem Type: Hardware

Hardware can significantly impact system performances, such as overheating due to dust accumulation in fans and heat sinks or failing hard drives. Overheating can cause the CPU to throttle down its speed to avoid damage, while hard drive issues can lead to slow data access times. Monitoring system temperatures and hard drive health can help identify these issues before they lead to more severe performance degradation.

Check if Your Computer is overheating

A computer can overheat for multiple reasons, like damaged or underperforming fans, poor ventilation, dust, inadequate power supply, and multitasking.

Maintaining your computer's cleanliness, ensuring a steady power source, and elevating your laptop if the fan is on the underside is advised.

Note: You can check the CPU temperatures using Core Temp , a free and lightweight application.

Faulty Power Supply, Battery, or Charger

Diagnosing and resolving power supply issues becomes easy with a thorough analysis. A faulty laptop battery or a broken cable can cause sudden PC shutdowns.

Also, a heavily used computer can go off spontaneously when plugged into a power source with less voltage than required.

Be mindful while powering your device from the right connection sources.

7. Battery Drain Issues

Battery Drain problem in computers

Like other portable devices, laptops have a built-in battery that degrades over time, making the battery last less.

There are numerous reasons behind a battery draining too fast, like too many processes running in the background, using a heavy application, increased screen brightness, malware elements running in the background, and using your laptop in high-performance Mode.

Use the curated guide mentioned below to save your computer's battery life. Below are 3 easy solutions to fix this computer problem.

1. Use Battery Saver Mode

Updates from Windows 10 and Windows 11 come with battery saver mode. You can use the given feature to save battery juice for important work.

2. Use third-party PC optimization tools

PC tune-up applications automate computer maintenance by cleaning up unnecessary files, optimizing startup processes, and managing system resources. They can help clear out temporary files that take up space, adjust settings to speed up boot times, and identify and disable unnecessary background processes, improving overall system performance.

3. Minimizing the use of Heavy Applications

Programs requiring intensive graphic consumption to function properly often consume a lot of juice from the battery. Thus, minimizing the usage duration of those applications can increase your battery life.

8. Intermittent WIFI Connectivity Issues

As a Windows user, you will likely have experienced sudden WIFI disconnection while working. An outdated device update, network adapter, or power management issue generally causes such instances.

Below, I have mentioned 3 simple solutions to fix your computer's WIFI Connectivity issue.

1. Update Your Network Adapter

mention any two computer problem solving techniques

It is important to have an up-to-date driver so that your device performs efficiently, including external hardware. If you haven't updated your device recently, this is high time to perform a quick update.

All the adapters, including the Network Adapter, can be found in the device management segment.

Tip:  If the mentioned solution doesn't work, disable the network adapter and enable it afterwards.

2. Run Network Troubleshooter

Troubleshooting aims to determine why something does not work as expected and explain how to resolve the problem.

By running Network Troubleshooter, the computer will recognize the possible causes of your WIFI frequently disconnecting and automatically fix the issue.

To access the troubleshooter, search for Troubleshoot Settings in Start Menu, then navigate to,

  • Other troubleshooters> Network and Internet > Run

3. Fix Your Power Management Settings

mention any two computer problem solving techniques

Wireless Connections drain your device's battery usage. Thus, sometimes your device might automatically disconnect the wireless connection from time to time to save battery juice.

However, you can fix this by making a small adjustment, searching for the Device Manager from the Start Menu, and then navigating to Network Adapters. After that, double-click on your adapter and select the Power Management tab in the window, uncheck Allow the Computer to turn off this device to save the power box, and click OK.

Once done, restart your device to check if you are still facing the same issue.

Tip:  Switch off and on the router once before you jump straight into the solutions mentioned above.

9. PC Power-On Failures

Power failures in computer

Imagine trying to turn on your computer by pressing the power button, but nothing happens. This can make you feel really scared and confused.

Luckily, power issues do not mean your PC is broken and data is lost. Both desktops and laptops face power issues for multiple reasons, most of which are hardware-related.

It can be because of a faulty laptop keyboard or an external monitor facing some issues that stop the PC from turning on properly.

Here's how you can fix the issues;

For Laptops

Laptops are more prone to face power issues than desktops due to their internal batteries and external power supplies. If your laptop is not turning on after pressing the power key multiple times, you should first analyze for damages to the charger or internal battery.

You should carefully open the laptop's back cover, ensuring the machine is unplugged, and detach the battery before attempting to power off the computer again.

If this resolves the issue, it might be a sign that it's time to consider replacing your battery. And if not, then I suggest you contact the experts to look into the matter.

Note:  Apart from the battery, the problem can also lie in the keyboard. If your device is powered on after trying the above method and not by applying the power button, consider contacting an IT professional.

For Desktops

All cables must be correctly connected to the CPU for a desktop computer to turn on. So, before powering on your device, verify that all cables are properly attached. However, if that's not the case, you should consider taking professional guidance.

10. PC Overheating

overheating problem in computers

One of the common causes of PC Overheating is overusing your device. The more tasks you perform at once, the more likely you will experience PC overheating. Below, I have mentioned a few methods to cool down your overheating PC.

1. End all the heavy tasks from the Task Manager you are performing together. Also, look for unwanted apps consuming your device resources and killing them.

2. Check if the fans are working. Fans play a vital role in cooling down your PC. But if your fan isn't working properly and causing loud noises, you should start cleaning up your PC to improve the airflow.

3. Laptops can also use an external cooling system, like a cooling pad that can blow air upwards.

4. Finally, let yourself and your computer rest, especially if you work long hours.

Preventive Tips for Common Computer Problems

Apart from individual solutions for separate computer problems, you can apply common fixes to restore your computer's optimal health. Plus, performing most of the steps regularly will prevent such issues from happening in the first place.

Below are a few of the common solutions you can apply for a variety of computer problems:

1. Always Keep Your Device Updated

Apart from keeping the device's optimal health intact, updates carry many useful advantages. The latest updates repair security holes of current updates and protect your device from malicious threats and various computer problems. It also helps remove computer bugs.

Keeping your device updated means you get new features for your devices and the removal of unnecessary ones.

2. Install Antivirus Solution

Viruses are one of the deterring problems of computers. One wrong move can jeopardize the security of your whole system.

Thus, installing Antivirus software can protect your device from such malicious elements. Advanced antivirus programs detect, block, and remove viruses, malware, and ransomware that can interfere with your device and make your device vulnerable to unknown threats.

Also, robust antivirus programs nowadays like  Bitdefender Total Security  and  Kaspersky Plus come with multiple convenient functionalities that protect your device from viruses and related threats and optimize it to its best.

3. Do a Hard Reboot

Applying a hard reboot is one of the most common fixes for any time-consuming computer problems and speeds up the performance of your device. By performing a hard reboot, your device restarts the whole system again, eventually correcting the software glitches you were facing.

Hard reboots are usually done when the operating system or software functions are not responding. The process can be applied if you face internet or Bluetooth connectivity issues, overheating issues, and almost every problematic PC scenario.

Note:  However efficient the process might look, applying it multiple times can hamper your device's health. Thus, be mindful while using a hard reboot during a minor computer problem.

4. Install PC tune-up Application

If you are someone who does not like to put manual effort into fixing minor computer issues, then I recommend using a PC tune-up program. PC tune-up applications such as  CCleaner Pro , Avast Cleanup Premium, and  Advanced SystemCare  dig deep into your computer, thoroughly search for trouble areas, and fix the issues.

5. Uninstall Unnecessary Programs

Uninstalling unnecessary programs will make room for important files and improve the efficiency of your hard drive. It can also help boost the performance of your device and minimize frequent software glitches. Uninstaller apps like IObit Uninstaller Pro and CCleaner are of great help.

Note:  It is advised to download applications from trusted sources to protect your device and file safety.

6. Run troubleshooter

Whenever faced with an issue, your first step should be to run troubleshooting. Troubleshooting in the computer looks for the reasons for an issue and automatically makes adjustments to fix it.

This method is very effective and can be applied to any computer problems you face in the long run.

Most computer problems result from minor malfunctions, which can be fixed easily. However, recognizing and analyzing the concerns is essential to maximize efficiency and eliminate unnecessary expenses.

Computer problems and solutions are common daily, but certain challenges may require professional expertise. If you find it tricky to fix any of the mentioned problems, contact your nearby IT professional.

Debarati Dutta Tech Writer Dealarious

A Tech Enthusiast who adores the creative flow of nature, practices the philosophy of life, and wanders to explore multiple places. I solely believe the union of technology and nature can create a positive impact on the evolution of living beings on this planet. Above all I am an ardent learner who loves to share her translucent experiences.

Leave a Comment Cancel reply

Examples

Problem Solving

Ai generator.

mention any two computer problem solving techniques

Problem solving is a crucial skill in both personal and professional settings. Whether it’s addressing a personal challenge or drafting a business problem solving proposal , the ability to identify a problem and develop a solution is essential. Writing a problem solving essay helps articulate the issue clearly and systematically outline potential solutions. Effective problem and solution involves critical thinking, creativity, and a structured approach to overcome obstacles and achieve goals.

What is Problem Solving?

Problem solving is the process of identifying a challenge, analyzing its components, and finding an effective solution. It involves critical thinking, creativity, and the application of various techniques and tools.

Examples of Problem Solving

Examples-of-Problem-Solving

  • Analytical Thinking : Breaking down complex problems into manageable parts.
  • Creativity : Developing innovative solutions to problems.
  • Critical Thinking : Evaluating information and arguments to make a reasoned decision.
  • Decision-Making : Choosing the best course of action from various alternatives.
  • Research : Gathering relevant information to understand and solve a problem.
  • Communication : Clearly conveying ideas and solutions to others.
  • Collaboration : Working effectively with others to solve problems.
  • Time Management : Prioritizing tasks to efficiently address problems.
  • Adaptability : Adjusting strategies as new information or challenges arise.
  • Attention to Detail : Ensuring all aspects of a problem are considered.
  • Logical Reasoning : Using logic to identify solutions and predict outcomes.
  • Empathy : Understanding others’ perspectives to create more effective solutions.
  • Negotiation : Finding mutually acceptable solutions through discussion.
  • Conflict Resolution : Addressing and resolving disagreements.
  • Patience : Remaining calm and persistent when solving complex problems.
  • Organization : Structuring tasks and information systematically.
  • Leadership : Guiding and motivating a team to solve problems.
  • Decision Analysis : Evaluating the potential impact of different solutions.
  • Project Management : Planning and executing solutions effectively.
  • Technical Skills : Using specialized knowledge to solve technical problems.
  • Customer Service : Resolving customer issues effectively and efficiently.
  • Risk Management : Identifying and mitigating potential problems.
  • Innovation : Implementing new ideas to solve existing problems.
  • Strategic Planning : Developing long-term solutions and plans.
  • Resourcefulness : Finding quick and clever ways to overcome difficulties.
  • Stress Management : Handling pressure while solving problems.
  • Observation : Noticing subtle details that could be key to solving a problem.
  • Data Analysis : Interpreting data to inform problem-solving decisions.
  • Flexibility : Being open to new approaches and changing plans when necessary.
  • Self-Assessment : Reflecting on your own problem-solving process to improve future performance.

Problem-Solving Examples for Students

1. math word problems.

Problem: Jane has 3 apples, and she buys 4 more apples from the store. How many apples does she have now?

  • Understand the problem: Jane starts with 3 apples and buys 4 more.
  • Break it down: 3 apples (initial) + 4 apples (additional).
  • Solve: 3 + 4 = 7.
  • Answer: Jane has 7 apples.

2. Group Project Coordination

Problem: A group of students needs to complete a science project, but they are having trouble coordinating their schedules.

  • Understand the problem: The main issue is scheduling conflicts.
  • Break it down: Identify each member’s available times.
  • Research: Use tools like Doodle or Google Calendar to find common free times.
  • Brainstorm solutions: Propose meeting during lunch breaks or weekends.
  • Evaluate: Choose the most convenient and feasible option for everyone.
  • Develop an action plan: Set a recurring meeting time and delegate tasks.
  • Implement: Start meeting and working on the project according to the plan.
  • Monitor and review: Adjust schedules if conflicts arise and keep track of progress.

3. Essay Writing

Problem: A student struggles to start writing an essay on a given topic.

  • Understand the problem: The difficulty is starting the essay.
  • Break it down: Identify the essay topic, main points, and required structure.
  • Research: Gather information and resources related to the topic.
  • Brainstorm solutions: Create an outline, jot down ideas, and decide on the thesis statement.
  • Evaluate: Choose the most compelling points and organize them logically.
  • Develop an action plan: Write a draft based on the outline, then revise and edit.
  • Implement: Begin writing the introduction, followed by the body paragraphs and conclusion.
  • Monitor and review: Proofread the essay and make necessary corrections.

4. Time Management

Problem: A student has trouble managing time between homework, extracurricular activities, and leisure.

  • Understand the problem: The issue is balancing multiple responsibilities.
  • Break it down: Identify all tasks and time commitments.
  • Research: Look for time management techniques and tools.
  • Brainstorm solutions: Use planners, to-do lists, or apps like Trello or Todoist.
  • Evaluate: Choose the most effective tool and technique.
  • Develop an action plan: Create a weekly schedule, prioritizing tasks by importance and deadlines.
  • Implement: Follow the schedule and adjust as necessary.
  • Monitor and review: Reflect on the effectiveness of the schedule and make improvements.

5. Conflict Resolution

Problem: Two students have a disagreement over a shared locker space.

  • Understand the problem: The conflict is about sharing limited space.
  • Break it down: Identify each student’s concerns and needs.
  • Research: Look into conflict resolution strategies.
  • Brainstorm solutions: Propose solutions like dividing the locker into specific sections or creating a rotation schedule.
  • Evaluate: Choose the fairest and most practical solution.
  • Develop an action plan: Agree on the solution and set guidelines.
  • Implement: Follow the agreed plan and make adjustments if needed.
  • Monitor and review: Ensure both students are satisfied with the arrangement and resolve any further issues.

Problem-Solving Examples in Real-life

Example 1: workplace conflict.

Situation : Two team members have a disagreement that affects their productivity.

  • Identify the Problem : Understand the root cause of the conflict.
  • Analyze : Talk to both parties separately to get their perspectives.
  • Generate Solutions : Consider solutions like mediation, reassignment of tasks, or team-building exercises.
  • Evaluate : Assess which solution is likely to resolve the conflict without affecting team morale.
  • Implement : Arrange a mediation session.
  • Review : Follow up to ensure the conflict is resolved and monitor team dynamics.

Example 2: Personal Finance Management

Situation : Struggling to manage monthly expenses and savings.

  • Identify the Problem : Determine specific areas where overspending occurs.
  • Analyze : Review bank statements and categorize expenses.
  • Generate Solutions : Create a budget, reduce unnecessary expenses, and set savings goals.
  • Evaluate : Choose a budgeting method that fits your lifestyle.
  • Implement : Start tracking expenses and adjust spending habits.
  • Review : Regularly review your budget and savings to ensure you are on track.

How to Improve Your Problem-Solving Skills?

Understand the Problem: Before attempting to solve any problem, it’s crucial to fully understand it. Read through the problem statement carefully and make sure you grasp every detail.

Break It Down : Divide the problem into smaller, more manageable parts. This approach, known as decomposition, makes it easier to tackle complex issues by focusing on individual components one at a time.

Research and Gather Information : Collect all relevant information and data that might help in solving the problem. Look for similar problems and their solutions.

Brainstorm Possible Solutions : Generate as many potential solutions as possible. Don’t worry about evaluating them at this stage; the goal is to think creatively and come up with a wide range of ideas.

Evaluate and Select the Best Solution : Assess the feasibility, pros, and cons of each potential solution. Consider factors such as resources, time, and potential risks. Choose the solution that best addresses the problem and is most practical.

Develop an Action Plan : Create a detailed plan for implementing your chosen solution. Outline the steps you need to take, assign tasks if working in a team, and set deadlines to ensure timely progress.

Implement the Solution : Put your plan into action. Stay focused and be prepared to adapt if necessary. Keep track of your progress and make adjustments as needed.

Monitor and Review : After implementing the solution, monitor the results to ensure the problem is resolved. Evaluate the outcome and review the process to learn from any mistakes or successes.

Problem-solving in workplace

  • Enhancing Efficiency : Quick and effective problem resolution can streamline processes and reduce downtime.
  • Boosting Productivity : Employees who can solve problems independently help maintain workflow and productivity.
  • Improving Customer Satisfaction : Solving customer issues promptly can lead to higher satisfaction and loyalty.
  • Fostering Innovation : Problem-solving often leads to new ideas and improvements that drive innovation.
  • Promoting Employee Development : Encouraging problem-solving helps employees grow and develop their skills.

How To Highlight Problem-Solving Skills?

1. on your resume.

When listing problem-solving skills on your resume, provide concrete examples. Use action verbs and quantify your achievements where possible.

  • Resolved a customer service issue that increased customer satisfaction by 20%.
  • Developed a new process that reduced production errors by 15%.

2. In a Cover Letter

Your cover letter is a great place to elaborate on your problem-solving abilities. Describe a specific situation where you successfully addressed a challenge.

“In my previous role at XYZ Company, I identified a bottleneck in our production line. I conducted a thorough analysis and implemented a new workflow, which reduced production time by 25% and saved the company $50,000 annually.”

3. During an Interview

Be prepared to discuss your problem-solving skills in depth during an interview. Use the STAR (Situation, Task, Action, Result) method to structure your responses.

Example: “Can you give an example of a time when you solved a difficult problem at work?”

  • Situation: Our sales team was struggling with declining numbers.
  • Task: I was tasked with identifying the root cause and finding a solution.
  • Action: I analyzed sales data, conducted team meetings, and identified a lack of training as the main issue.
  • Result: I organized comprehensive training sessions, which led to a 30% increase in sales over the next quarter.

4. On Social Media and Professional Profiles

Highlight problem-solving skills on LinkedIn and other professional profiles. Share posts or articles about your problem-solving experiences and successes.

“I’m thrilled to share that I recently led a project to overhaul our customer service protocol, resulting in a 40% reduction in response time and a significant boost in customer satisfaction!”

5. In Performance Reviews

During performance reviews, make sure to emphasize your problem-solving contributions. Provide specific examples and outcomes.

“In the past year, I resolved three major project roadblocks, enabling our team to meet all deadlines and exceed our performance goals.”

6. Through Projects and Case Studies

If applicable, create case studies or detailed project descriptions that showcase your problem-solving process and results. This can be particularly useful for portfolios or presentations.

Case Study: Improving IT System Efficiency

  • Problem: Frequent system downtimes affecting productivity.
  • Solution: Implemented a new monitoring system and revised maintenance schedules.
  • Outcome: System downtimes were reduced by 50%, significantly improving productivity.

7. By Demonstrating Soft Skills

Problem-solving often involves other soft skills such as communication, creativity, and teamwork. Highlighting these related skills can further emphasize your ability to solve problems effectively.

“By fostering open communication within my team and encouraging creative brainstorming sessions, we were able to devise innovative solutions to our most pressing challenges.”

How to Answer Problem-Solving Interview Questions

  • Understand the Question : Make sure you fully understand the problem before you try to solve it. Ask clarifying questions if needed to ensure you have all the relevant information.
  • Think Aloud : Demonstrate your thinking process by explaining your thoughts as you work through the problem. This shows your interviewer how you approach problems and organize your thoughts.
  • Break It Down : Divide the problem into smaller, manageable parts. This can make a complex issue seem more approachable and allows you to tackle each component systematically.
  • Use a Structured Approach : Employ frameworks or methodologies that are relevant to the question. For example, you might use the STAR method (Situation, Task, Action, Result) for behavioral questions, or a simple problem-solving framework like Define, Measure, Analyze, Improve, Control (DMAIC) for process improvements.
  • Be Creative : Employers often look for creativity in your answers. Think outside the box and propose innovative solutions when appropriate.
  • Prioritize Solutions : If there are multiple potential solutions, discuss the pros and cons of each and explain why you would choose one over the others.
  • Stay Calm and Positive : Problem-solving under pressure is part of the test. Maintain a calm and positive demeanor, showing that you can handle stress effectively.
  • Summarize Your Steps : After you have worked through the problem, summarize the steps you took and the conclusion you reached. This helps ensure the interviewer followed your process and underscores your methodical approach.
  • Ask for Feedback : After presenting your solution, it can be beneficial to ask if there are any additional factors you might consider. This shows openness to learning and adapting.
  • Practice Regularly : Like any skill, problem-solving improves with practice. Regularly engage in brain teasers, logic puzzles, or case studies to sharpen your skills.

Why Are Problem-Solving is Important?

  • Effective Decision-Making : Problem-solving is essential for making decisions that are logical, informed, and well-considered. This skill helps individuals and organizations make choices that lead to better outcomes.
  • Innovation and Improvement : Solving problems effectively often requires innovative thinking. This can lead to new ideas and improvements in processes, products, and services, which are essential for business growth and adaptation.
  • Handling Complex Situations : Many roles involve complex situations that are not straightforward to manage. Problem-solving skills enable individuals to dissect these situations and devise effective strategies to deal with them.
  • Enhances Productivity : Efficient problem-solving contributes to higher productivity, as it allows for the identification and removal of obstacles that impede workflow and performance.
  • Career Advancement : Individuals who are effective problem solvers are often seen as leaders and can advance more quickly in their careers. This skill is valuable because it demonstrates the ability to handle difficult situations and complex challenges.
  • Adaptability and Resilience : Problem-solving is key to adapting to new situations and overcoming challenges. Those who can creatively navigate through difficulties are generally more resilient.
  • Quality of Life : On a personal level, strong problem-solving skills can improve one’s quality of life by enabling better management of the challenges that come with daily living.
  • Team Collaboration : Problem-solving often requires collaboration. Being good at solving problems can improve your ability to work with others, as it involves communication, persuasion, and negotiation skills.

How to Include Problem-Solving in a Job Application

  • Resume : Detail specific problem-solving instances in your job descriptions using action verbs like “analyzed” and “implemented”. Mention the positive outcomes achieved.
  • Cover Letter : Narrate a specific instance where your problem-solving skills led to a successful outcome, demonstrating initiative and effectiveness.
  • Skills Section : Include “problem-solving” in a skills section if the job ad specifically mentions it.
  • Quantify Achievements : Use numbers to describe the impact of your solutions, such as cost savings or efficiency improvements.
  • Job Interviews : Prepare to discuss specific examples of your problem-solving skills, focusing on the challenge, your action, and the result.
  • References : Brief your references about your problem-solving achievements so they can provide specific examples when contacted by employers.

Tips for Enhancing Problem-Solving

  • Practice Regularly: Like any skill, problem-solving improves with regular practice. Engage in activities that challenge your thinking, such as puzzles, games, or real-world problem-solving scenarios.
  • Learn from Others: Study how others approach and solve problems. This can provide new strategies and perspectives that you can incorporate into your own problem-solving toolkit.
  • Stay Calm and Positive: Maintaining a calm and positive mindset can significantly improve your ability to solve problems. Stress and negativity can cloud your judgment and hinder creative thinking.
  • Develop Critical Thinking: Sharpen your critical thinking skills by questioning assumptions, analyzing information, and evaluating evidence. This will help you make more informed and logical decisions.
  • Collaborate with Others: Working with others can bring new insights and ideas. Collaboration can also help you see the problem from different angles and develop more effective solutions.
  • Keep Learning: Continuously expand your knowledge and skills. The more you know, the better equipped you are to tackle a variety of problems.

How can I improve my problem-solving skills?

Practice regularly, learn various problem-solving techniques, and engage in activities that challenge your thinking.

What are common problem-solving techniques?

Common techniques include brainstorming, root cause analysis, the 5 Whys, and SWOT analysis.

What are the steps in the problem-solving process?

Identify the problem, analyze the problem, generate solutions, select a solution, implement, and evaluate.

How do I demonstrate problem-solving skills in an interview?

Discuss specific situations where you effectively solved problems, highlighting your thought process and outcomes.

What’s the difference between critical thinking and problem-solving?

Critical thinking involves analyzing and evaluating information, while problem-solving focuses on finding solutions to problems.

How do problem-solving skills help in leadership?

They enable leaders to manage challenges effectively, inspire innovation, and guide teams through obstacles.

How to measure problem-solving skills?

Assess through scenarios or challenges that require identifying, analyzing, and resolving problems.

What role does creativity play in problem-solving?

Creativity enables out-of-the-box thinking, which can lead to innovative and effective solutions.

How do you use problem-solving in project management?

Apply it to anticipate potential issues, plan solutions, and ensure smooth project execution.

What’s an example of a problem-solving situation?

Resolving customer complaints by identifying the issue, brainstorming solutions, and implementing changes to prevent future complaints.

Twitter

Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting

IMAGES

  1. PPT

    mention any two computer problem solving techniques

  2. mention any two computer problem solving techniques

    mention any two computer problem solving techniques

  3. mention any two computer problem solving techniques

    mention any two computer problem solving techniques

  4. use of problem solving technique in computer field

    mention any two computer problem solving techniques

  5. 5 Problem Solving Strategies to Become a Better Problem Solver

    mention any two computer problem solving techniques

  6. 6 Ways to Improve Your Programming Problem Solving

    mention any two computer problem solving techniques

VIDEO

  1. lecture of computer .problem solving.Class 9

  2. CSC126 ASSESMENT #4: GROUP PROJECT

  3. Mention any two points of difference between classification and tabulation

  4. This Technique can solve your problem! #shaleenshrotriya #businesscoach #solution #coaching

  5. F.Y.B.Sc.(C.S.)|Sem-I |CS-111: Problem Solving using Computer and C Programming

  6. Mention two country you want to visit at least once in your lifetime #viralvideo #shortsfeed

COMMENTS

  1. 40 problem-solving techniques and processes

    We'll outline that process here and then follow with techniques you can use to explore and work on that step of the problem solving process with a group. The seven-step problem solving process is: 1. Problem identification. The first stage of any problem solving process is to identify the problem (s) you need to solve.

  2. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  3. Problem Solving Using Computer (Steps)

    The following six steps must be followed to solve a problem using computer. Problem Analysis. Program Design - Algorithm, Flowchart and Pseudocode. Coding. Compilation and Execution. Debugging and Testing. Program Documentation. Computer based problem solving is a systematic process of designing, implementing and using programming tools during ...

  4. Problem Solving Techniques: Decision Making & Brainstorming

    A. Problem-solving techniques in computer science are only necessary for network troubleshooting and not other areas within the field. B. Problem-solving techniques in computer science are solely about fixing bugs in software code. C. Problem-solving techniques in computer science involve only brainstorming sessions to discuss issues. D.

  5. The Problem Solving Cycle in Computer Science: A Complete Guide

    The problem solving cycle is a systematic approach to analyzing and solving problems, involving various stages such as problem identification, analysis, algorithm design, implementation, and evaluation. Understanding the importance of this cycle is essential for any computer scientist or programmer.

  6. PDF An Introduction to Computer Science and Problem Solving

    as a basis for the manner in which they solve the problem at hand. In mathematics, a solution is often expressed in terms of formulas and equations. In computer science, the solution is expressed in terms of a program: A program is a sequence of instructions that can be executed by a computer to solve some problem or perform a specified task.

  7. PDF Introduction to Problem Solving

    automate any routine human task efficiently. Computers are used for solving various day-to-day problems and thus problem solving is an essential skill that a computer science student should know. It is pertinent to mention that computers themselves cannot solve a problem. Precise step-by-step instructions should be given by us to solve the problem.

  8. Problem-Solving Techniques and Tips (That Actually Work)

    Their creative problem solving process emphasizes several things, namely: Separate ideation from evaluation. When you brainstorm creative ideas, have a separate time for writing it all down. Focus on generating lots of ideas. Don't prioritize or evaluate them until everything is captured. Judging will shut it down.

  9. Problem-Solving Techniques: The Guide to Effective Solutions

    Explore expert insights on problem-solving techniques. Learn to define problems effectively, brainstorm creative solutions, and implement successful strategies. Application error: a client-side exception has occurred (see the browser console for more information). ...

  10. Computer Basics: Basic Troubleshooting Techniques

    Restart the computer: When all else fails, restarting the computer is a good thing to try. This can solve a lot of basic issues you may experience with your computer. Using the process of elimination. If you're having an issue with your computer, you may be able to find out what's wrong using the process of elimination.This means you'll make a list of things that could be causing the problem ...

  11. Problem-Solving Strategies for Software Engineers

    Write out the problem. Your problem won't always come right out and say: "It's me, hi. I'm the problem, it's me.". In fact, something that often gets in the way of solving a problem is that we zero in on the wrong problem. When pinpointing a problem, you can try borrowing a UX research technique that's part of the design thinking ...

  12. How to Solve Coding Problems with a Simple Four Step Method

    In this post, we've gone over the four-step problem-solving strategy for solving coding problems. Let's review them here: Step 1: understand the problem. Step 2: create a step-by-step plan for how you'll solve it. Step 3: carry out the plan and write the actual code.

  13. PDF Unit 2: Problem Solving

    Introduction. In order for students to become "computational thinkers" they need experience solving a wide range of problems and the opportunity to experiment with a variety of solution strategies. This unit begins with an introduction to the problem solving process. Students are asked to solve new problems by planning a strategy, designing ...

  14. Problem Solving Techniques in Computer Science

    Computers are used as a tool to solve complex problems by developing computer programs. Computer programs contain different instructions for computers. A programmer writes instructions and the computer executes these instructions to solve a problem. A person can be a good programmer if he has the skill of solving problems.

  15. How to Solve Coding Problems: Step-by-Step Guide (2024)

    Divide into smaller Tasks. You'll find that breaking down a complex coding problem into smaller tasks makes it more manageable. Start by identifying the different components of the problem and breaking them down into smaller subproblems. This approach will help you tackle each subproblem individually and eventually solve the larger problem.

  16. Discover how computers solve problems

    Get the most out of this course Understand objects in object oriented programing Discover your computer's inner architect Interact with objects: complex systems Quiz: Software objects 101 Discover how computers solve problems Work with sequences Work with states and logical operators Follow a sequence with conditions Iterate your instructions by working with loops Quiz: Understand logic flow ...

  17. Problem Solving Through Programming in C

    Introduction to Problem Solving Through Programming in C. Problem Solving Through Programming in C. Steps to Solve a Problem With the Computer. Step 1: Understanding the Problem: Step 2: Analyzing the Problem: Step 3: Developing the solution: Step 4: Coding and Implementation: Problem Solving Steps. 1.

  18. UNIT 1: How to Think Like an Engineer.

    Computational Thinking is the thought processes involved in understanding a problem and expressing its solution in a way that a computer can effectively carry out. Computational thinking involves solving problems, designing systems, and understanding human behavior (e.g. what the user needs or wants) - thinking like an engineer. Computational ...

  19. Problem solving techniques: Steps and methods

    Evaluate the options. Select the best solution. Create an implementation plan. Communicate your solution. Let's look at each step in a little more detail. The first solution you come up with won't always be the best - taking the time to consider your options is an essential problem solving technique. 1.

  20. 3 Tips to Solve Problems Like an Expert

    Apologies, but something went wrong on our end. Refresh the page, check Medium 's site status, or find something interesting to read. Most people avoid problems or deal with them haphazardly. Great thinkers & leaders look for problems & have frameworks that help them solve problems better.

  21. Effective Problem-Solving Techniques in Business

    Problem solving is an increasingly important soft skill for those in business. The Future of Jobs Survey by the World Economic Forum drives this point home. According to this report, complex problem solving is identified as one of the top 15 skills that will be sought by employers in 2025, along with other soft skills such as analytical thinking, creativity and leadership.

  22. Problem solving techniques notes

    LOYOLA COLLEGE OF ARTS & SCIENCE. Department of Computer Applications PROBLEM SOLVING TECHNIQUES III BCA UNIT I Introduction To Computer Problem-Solving: Introduction - The Problem-solving Aspect - Top-down Design-implementation of Algorithms- Program Verification - The Efficiency of Algorithms.UNIT-II Analysis of Algorithm: Fundamental Algorithms - Exchanging the values of Two Variables

  23. 10 Most Common Computer Problems and Solutions

    Check your CPU and RAM thoroughly to guarantee the well-being of your device. Also, check if your device's power supply is connected properly. 3. Blue Screen of Death (BSOD) Problem Type: Software and Hardware. One of the most common computer problems, BSOD (Blue Screen of Death), is a nightmare for Windows users.

  24. Problem Solving

    Practice Regularly: Like any skill, problem-solving improves with practice. Regularly engage in brain teasers, logic puzzles, or case studies to sharpen your skills. Why Are Problem-Solving is Important? Effective Decision-Making: Problem-solving is essential for making decisions that are logical, informed, and well-considered. This skill helps ...