Psychological Steps Involved in Problem Solving

what are the steps in problem solving psychology

A mental process or a phenomenon dedicated towards solving problems by discovering and analyzing the problem is referred to as problem-solving. It is a process dedicated to finding not just any solution, but the best solution to resolve any problems. There is no such thing as one best way to solve every kind of problem, since there are unique problems depending upon the situation there are unique solutions too.

Steps involved in problem solving

In psychology, problem solving doesn’t necessarily refer to solving psychological/mental issues of the brain. The process simply refers to solving every kind of problems in life in a proper manner. The idea of including the subject in psychology is because psychology deals with the overall mental process. And, tactfully using our thought process is what leads to the solution of any problems.

There are number of rigid psychological steps involved in problem solving, which is also referred as problem-solving cycle. The steps are in sequential order, and solving any problem requires following them one after another. But, we tend to avoid following this rigid set of steps, which is why it often requires us to go through the same steps over and over again until a satisfactory solution is reached.

Here are the steps involved in problem solving, approved by expert psychologists.

1. Identifying the Problem

Identifying the problem seems like the obvious first stem, but it’s not exactly as simple as it sounds. People might identify the wrong source of a problem, which will render the steps thus carried on useless.

For instance , let’s say you’re having trouble with your studies. identifying the root of your failure is your first priority. The problem here could be that you haven’t been allocating enough time for your studies, or you haven’t tried the right techniques. But, if you make an assumption that the problem here is the subject being too hard, you won’t be able to solve the problem.

2. Defining/Understanding the Problem

Defining the problem

It’s vital to properly define the problem once it’s been identified. Only by defining the problem, further steps can be taken to solve it. While at it, you also need to take into consideration different perspectives to understand any problem; this will also help you look for solutions with different perspectives.

Now, following up with the previous example . Let’s say you have identified the problem as not being able to allocate enough time for your studies. You need to sort out the reason behind it. Have you just been procrastinating? Have you been too busy with work? You need to understand the whole problem and reasons behind it, which is the second step in problem solving.

3. Forming a Strategy

Developing a strategy is the next step to finding a solution. Each different situation will require formulating different strategies, also depending on individual’s unique preferences.

Now, you have identified and studied your problem. You can’t just simply jump into trying to solve it. You can’t just quit work and start studying. You need to draw up a strategy to manage your time properly. Allocate less time for not-so-important works, and add them to your study time. Your strategy should be well thought, so that in theory at least, you are able to manage enough time to study properly and not fail in the exams.

4. Organizing Information

Organizing information when solving a problem

Organizing the available information is another crucial step to the process. You need to consider

  • What do you know about the problem?
  • What do you not know about the problem?

Accuracy of the solution for your problem will depend on the amount of information available.

The hypothetical strategy you formulate isn’t the all of it either. You need to now contemplate on the information available on the subject matter. Use the aforementioned questions to find out more about the problem. Proper organization of the information will force you to revise your strategy and refine it for best results.

5. Allocating Resources

Time, money and other resources aren’t unlimited. Deciding how high the priority is to solve your problem will help you determine the resources you’ll be using in your course to find the solution. If the problem is important, you can allocate more resources to solving it. However, if the problem isn’t as important, it’s not worth the time and money you might spend on it if not for proper planning.

For instance , let’s consider a different scenario where your business deal is stuck, but it’s few thousand miles away. Now, you need to analyze the problem and the resources you can afford to expend to solve the particular problem. If the deal isn’t really in your favor, you could just try solving it over the phone, however, more important deals might require you to fly to the location in order to solve the issue.

6. Monitoring Progress

Monitoring progress of solution of a problem

You need to document your progress as you are finding a solution. Don’t rely on your memory, no matter how good your memory is. Effective problem-solvers have been known to monitor their progress regularly. And, if they’re not making as much progress as they’re supposed to, they will reevaluate their approach or look for new strategies.

Problem solving isn’t an overnight feat. You can’t just have a body like that of Brad Pitt after a single session in the gym. It takes time and patience. Likewise, you need to work towards solving any problem every day until you finally achieve the results. Looking back at the previous example , if everything’s according to plan, you will be allocating more and more time for your studies until finally you are confident that you’re improving. One way to make sure that you’re on a right path to solving a problem is by keeping track of the progress. To solve the problem illustrated in the first example, you can take self-tests every week or two and track your progress.

7. Evaluating the Results

Your job still isn’t done even if you’ve reached a solution. You need to evaluate the solution to find out if it’s the best possible solution to the problem. The evaluation might be immediate or might take a while. For instance , answer to a math problem can be checked then and there, however solution to your yearly tax issue might not be possible to be evaluated right there.

  • Take time to identify the possible sources of the problem. It’s better to spend a substantial amount of time on something right, than on something completely opposite.
  • Ask yourself questions like What, Why, How to figure out the causes of the problem. Only then can you move forward on solving it.
  • Carefully outline the methods to tackle the problem. There might be different solutions to a problem, record them all.
  • Gather all information about the problem and the approaches. More, the merrier.
  • From the outlined methods, choose the ones that are viable to approach. Try discarding the ones that have unseen consequences.
  • Track your progress as you go.
  • Evaluate the outcome of the progress.

What are other people reading?

Insight problem solving strategy

Divergent Thinking

Convergent Thinking

Convergent Thinking

Convergent Vs Divergent Thinking

Convergent Vs Divergent Thinking

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

what are the steps in problem solving psychology

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

what are the steps in problem solving psychology

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size
  • Search Menu
  • Browse content in Arts and Humanities
  • Browse content in Archaeology
  • Anglo-Saxon and Medieval Archaeology
  • Archaeological Methodology and Techniques
  • Archaeology by Region
  • Archaeology of Religion
  • Archaeology of Trade and Exchange
  • Biblical Archaeology
  • Contemporary and Public Archaeology
  • Environmental Archaeology
  • Historical Archaeology
  • History and Theory of Archaeology
  • Industrial Archaeology
  • Landscape Archaeology
  • Mortuary Archaeology
  • Prehistoric Archaeology
  • Underwater Archaeology
  • Zooarchaeology
  • Browse content in Architecture
  • Architectural Structure and Design
  • History of Architecture
  • Residential and Domestic Buildings
  • Theory of Architecture
  • Browse content in Art
  • Art Subjects and Themes
  • History of Art
  • Industrial and Commercial Art
  • Theory of Art
  • Biographical Studies
  • Byzantine Studies
  • Browse content in Classical Studies
  • Classical History
  • Classical Philosophy
  • Classical Mythology
  • Classical Literature
  • Classical Reception
  • Classical Art and Architecture
  • Classical Oratory and Rhetoric
  • Greek and Roman Papyrology
  • Greek and Roman Epigraphy
  • Greek and Roman Law
  • Greek and Roman Archaeology
  • Late Antiquity
  • Religion in the Ancient World
  • Digital Humanities
  • Browse content in History
  • Colonialism and Imperialism
  • Diplomatic History
  • Environmental History
  • Genealogy, Heraldry, Names, and Honours
  • Genocide and Ethnic Cleansing
  • Historical Geography
  • History by Period
  • History of Agriculture
  • History of Education
  • History of Gender and Sexuality
  • Industrial History
  • Intellectual History
  • International History
  • Labour History
  • Legal and Constitutional History
  • Local and Family History
  • Maritime History
  • Military History
  • National Liberation and Post-Colonialism
  • Oral History
  • Political History
  • Public History
  • Regional and National History
  • Revolutions and Rebellions
  • Slavery and Abolition of Slavery
  • Social and Cultural History
  • Theory, Methods, and Historiography
  • Urban History
  • World History
  • Browse content in Language Teaching and Learning
  • Language Learning (Specific Skills)
  • Language Teaching Theory and Methods
  • Browse content in Linguistics
  • Applied Linguistics
  • Cognitive Linguistics
  • Computational Linguistics
  • Forensic Linguistics
  • Grammar, Syntax and Morphology
  • Historical and Diachronic Linguistics
  • History of English
  • Language Evolution
  • Language Reference
  • Language Acquisition
  • Language Variation
  • Language Families
  • Lexicography
  • Linguistic Anthropology
  • Linguistic Theories
  • Linguistic Typology
  • Phonetics and Phonology
  • Psycholinguistics
  • Sociolinguistics
  • Translation and Interpretation
  • Writing Systems
  • Browse content in Literature
  • Bibliography
  • Children's Literature Studies
  • Literary Studies (Romanticism)
  • Literary Studies (American)
  • Literary Studies (Asian)
  • Literary Studies (European)
  • Literary Studies (Eco-criticism)
  • Literary Studies (Modernism)
  • Literary Studies - World
  • Literary Studies (1500 to 1800)
  • Literary Studies (19th Century)
  • Literary Studies (20th Century onwards)
  • Literary Studies (African American Literature)
  • Literary Studies (British and Irish)
  • Literary Studies (Early and Medieval)
  • Literary Studies (Fiction, Novelists, and Prose Writers)
  • Literary Studies (Gender Studies)
  • Literary Studies (Graphic Novels)
  • Literary Studies (History of the Book)
  • Literary Studies (Plays and Playwrights)
  • Literary Studies (Poetry and Poets)
  • Literary Studies (Postcolonial Literature)
  • Literary Studies (Queer Studies)
  • Literary Studies (Science Fiction)
  • Literary Studies (Travel Literature)
  • Literary Studies (War Literature)
  • Literary Studies (Women's Writing)
  • Literary Theory and Cultural Studies
  • Mythology and Folklore
  • Shakespeare Studies and Criticism
  • Browse content in Media Studies
  • Browse content in Music
  • Applied Music
  • Dance and Music
  • Ethics in Music
  • Ethnomusicology
  • Gender and Sexuality in Music
  • Medicine and Music
  • Music Cultures
  • Music and Media
  • Music and Religion
  • Music and Culture
  • Music Education and Pedagogy
  • Music Theory and Analysis
  • Musical Scores, Lyrics, and Libretti
  • Musical Structures, Styles, and Techniques
  • Musicology and Music History
  • Performance Practice and Studies
  • Race and Ethnicity in Music
  • Sound Studies
  • Browse content in Performing Arts
  • Browse content in Philosophy
  • Aesthetics and Philosophy of Art
  • Epistemology
  • Feminist Philosophy
  • History of Western Philosophy
  • Metaphysics
  • Moral Philosophy
  • Non-Western Philosophy
  • Philosophy of Language
  • Philosophy of Mind
  • Philosophy of Perception
  • Philosophy of Science
  • Philosophy of Action
  • Philosophy of Law
  • Philosophy of Religion
  • Philosophy of Mathematics and Logic
  • Practical Ethics
  • Social and Political Philosophy
  • Browse content in Religion
  • Biblical Studies
  • Christianity
  • East Asian Religions
  • History of Religion
  • Judaism and Jewish Studies
  • Qumran Studies
  • Religion and Education
  • Religion and Health
  • Religion and Politics
  • Religion and Science
  • Religion and Law
  • Religion and Art, Literature, and Music
  • Religious Studies
  • Browse content in Society and Culture
  • Cookery, Food, and Drink
  • Cultural Studies
  • Customs and Traditions
  • Ethical Issues and Debates
  • Hobbies, Games, Arts and Crafts
  • Lifestyle, Home, and Garden
  • Natural world, Country Life, and Pets
  • Popular Beliefs and Controversial Knowledge
  • Sports and Outdoor Recreation
  • Technology and Society
  • Travel and Holiday
  • Visual Culture
  • Browse content in Law
  • Arbitration
  • Browse content in Company and Commercial Law
  • Commercial Law
  • Company Law
  • Browse content in Comparative Law
  • Systems of Law
  • Competition Law
  • Browse content in Constitutional and Administrative Law
  • Government Powers
  • Judicial Review
  • Local Government Law
  • Military and Defence Law
  • Parliamentary and Legislative Practice
  • Construction Law
  • Contract Law
  • Browse content in Criminal Law
  • Criminal Procedure
  • Criminal Evidence Law
  • Sentencing and Punishment
  • Employment and Labour Law
  • Environment and Energy Law
  • Browse content in Financial Law
  • Banking Law
  • Insolvency Law
  • History of Law
  • Human Rights and Immigration
  • Intellectual Property Law
  • Browse content in International Law
  • Private International Law and Conflict of Laws
  • Public International Law
  • IT and Communications Law
  • Jurisprudence and Philosophy of Law
  • Law and Politics
  • Law and Society
  • Browse content in Legal System and Practice
  • Courts and Procedure
  • Legal Skills and Practice
  • Primary Sources of Law
  • Regulation of Legal Profession
  • Medical and Healthcare Law
  • Browse content in Policing
  • Criminal Investigation and Detection
  • Police and Security Services
  • Police Procedure and Law
  • Police Regional Planning
  • Browse content in Property Law
  • Personal Property Law
  • Study and Revision
  • Terrorism and National Security Law
  • Browse content in Trusts Law
  • Wills and Probate or Succession
  • Browse content in Medicine and Health
  • Browse content in Allied Health Professions
  • Arts Therapies
  • Clinical Science
  • Dietetics and Nutrition
  • Occupational Therapy
  • Operating Department Practice
  • Physiotherapy
  • Radiography
  • Speech and Language Therapy
  • Browse content in Anaesthetics
  • General Anaesthesia
  • Neuroanaesthesia
  • Clinical Neuroscience
  • Browse content in Clinical Medicine
  • Acute Medicine
  • Cardiovascular Medicine
  • Clinical Genetics
  • Clinical Pharmacology and Therapeutics
  • Dermatology
  • Endocrinology and Diabetes
  • Gastroenterology
  • Genito-urinary Medicine
  • Geriatric Medicine
  • Infectious Diseases
  • Medical Toxicology
  • Medical Oncology
  • Pain Medicine
  • Palliative Medicine
  • Rehabilitation Medicine
  • Respiratory Medicine and Pulmonology
  • Rheumatology
  • Sleep Medicine
  • Sports and Exercise Medicine
  • Community Medical Services
  • Critical Care
  • Emergency Medicine
  • Forensic Medicine
  • Haematology
  • History of Medicine
  • Browse content in Medical Skills
  • Clinical Skills
  • Communication Skills
  • Nursing Skills
  • Surgical Skills
  • Browse content in Medical Dentistry
  • Oral and Maxillofacial Surgery
  • Paediatric Dentistry
  • Restorative Dentistry and Orthodontics
  • Surgical Dentistry
  • Medical Ethics
  • Medical Statistics and Methodology
  • Browse content in Neurology
  • Clinical Neurophysiology
  • Neuropathology
  • Nursing Studies
  • Browse content in Obstetrics and Gynaecology
  • Gynaecology
  • Occupational Medicine
  • Ophthalmology
  • Otolaryngology (ENT)
  • Browse content in Paediatrics
  • Neonatology
  • Browse content in Pathology
  • Chemical Pathology
  • Clinical Cytogenetics and Molecular Genetics
  • Histopathology
  • Medical Microbiology and Virology
  • Patient Education and Information
  • Browse content in Pharmacology
  • Psychopharmacology
  • Browse content in Popular Health
  • Caring for Others
  • Complementary and Alternative Medicine
  • Self-help and Personal Development
  • Browse content in Preclinical Medicine
  • Cell Biology
  • Molecular Biology and Genetics
  • Reproduction, Growth and Development
  • Primary Care
  • Professional Development in Medicine
  • Browse content in Psychiatry
  • Addiction Medicine
  • Child and Adolescent Psychiatry
  • Forensic Psychiatry
  • Learning Disabilities
  • Old Age Psychiatry
  • Psychotherapy
  • Browse content in Public Health and Epidemiology
  • Epidemiology
  • Public Health
  • Browse content in Radiology
  • Clinical Radiology
  • Interventional Radiology
  • Nuclear Medicine
  • Radiation Oncology
  • Reproductive Medicine
  • Browse content in Surgery
  • Cardiothoracic Surgery
  • Gastro-intestinal and Colorectal Surgery
  • General Surgery
  • Neurosurgery
  • Paediatric Surgery
  • Peri-operative Care
  • Plastic and Reconstructive Surgery
  • Surgical Oncology
  • Transplant Surgery
  • Trauma and Orthopaedic Surgery
  • Vascular Surgery
  • Browse content in Science and Mathematics
  • Browse content in Biological Sciences
  • Aquatic Biology
  • Biochemistry
  • Bioinformatics and Computational Biology
  • Developmental Biology
  • Ecology and Conservation
  • Evolutionary Biology
  • Genetics and Genomics
  • Microbiology
  • Molecular and Cell Biology
  • Natural History
  • Plant Sciences and Forestry
  • Research Methods in Life Sciences
  • Structural Biology
  • Systems Biology
  • Zoology and Animal Sciences
  • Browse content in Chemistry
  • Analytical Chemistry
  • Computational Chemistry
  • Crystallography
  • Environmental Chemistry
  • Industrial Chemistry
  • Inorganic Chemistry
  • Materials Chemistry
  • Medicinal Chemistry
  • Mineralogy and Gems
  • Organic Chemistry
  • Physical Chemistry
  • Polymer Chemistry
  • Study and Communication Skills in Chemistry
  • Theoretical Chemistry
  • Browse content in Computer Science
  • Artificial Intelligence
  • Computer Architecture and Logic Design
  • Game Studies
  • Human-Computer Interaction
  • Mathematical Theory of Computation
  • Programming Languages
  • Software Engineering
  • Systems Analysis and Design
  • Virtual Reality
  • Browse content in Computing
  • Business Applications
  • Computer Security
  • Computer Games
  • Computer Networking and Communications
  • Digital Lifestyle
  • Graphical and Digital Media Applications
  • Operating Systems
  • Browse content in Earth Sciences and Geography
  • Atmospheric Sciences
  • Environmental Geography
  • Geology and the Lithosphere
  • Maps and Map-making
  • Meteorology and Climatology
  • Oceanography and Hydrology
  • Palaeontology
  • Physical Geography and Topography
  • Regional Geography
  • Soil Science
  • Urban Geography
  • Browse content in Engineering and Technology
  • Agriculture and Farming
  • Biological Engineering
  • Civil Engineering, Surveying, and Building
  • Electronics and Communications Engineering
  • Energy Technology
  • Engineering (General)
  • Environmental Science, Engineering, and Technology
  • History of Engineering and Technology
  • Mechanical Engineering and Materials
  • Technology of Industrial Chemistry
  • Transport Technology and Trades
  • Browse content in Environmental Science
  • Applied Ecology (Environmental Science)
  • Conservation of the Environment (Environmental Science)
  • Environmental Sustainability
  • Environmentalist Thought and Ideology (Environmental Science)
  • Management of Land and Natural Resources (Environmental Science)
  • Natural Disasters (Environmental Science)
  • Nuclear Issues (Environmental Science)
  • Pollution and Threats to the Environment (Environmental Science)
  • Social Impact of Environmental Issues (Environmental Science)
  • History of Science and Technology
  • Browse content in Materials Science
  • Ceramics and Glasses
  • Composite Materials
  • Metals, Alloying, and Corrosion
  • Nanotechnology
  • Browse content in Mathematics
  • Applied Mathematics
  • Biomathematics and Statistics
  • History of Mathematics
  • Mathematical Education
  • Mathematical Finance
  • Mathematical Analysis
  • Numerical and Computational Mathematics
  • Probability and Statistics
  • Pure Mathematics
  • Browse content in Neuroscience
  • Cognition and Behavioural Neuroscience
  • Development of the Nervous System
  • Disorders of the Nervous System
  • History of Neuroscience
  • Invertebrate Neurobiology
  • Molecular and Cellular Systems
  • Neuroendocrinology and Autonomic Nervous System
  • Neuroscientific Techniques
  • Sensory and Motor Systems
  • Browse content in Physics
  • Astronomy and Astrophysics
  • Atomic, Molecular, and Optical Physics
  • Biological and Medical Physics
  • Classical Mechanics
  • Computational Physics
  • Condensed Matter Physics
  • Electromagnetism, Optics, and Acoustics
  • History of Physics
  • Mathematical and Statistical Physics
  • Measurement Science
  • Nuclear Physics
  • Particles and Fields
  • Plasma Physics
  • Quantum Physics
  • Relativity and Gravitation
  • Semiconductor and Mesoscopic Physics
  • Browse content in Psychology
  • Affective Sciences
  • Clinical Psychology
  • Cognitive Psychology
  • Cognitive Neuroscience
  • Criminal and Forensic Psychology
  • Developmental Psychology
  • Educational Psychology
  • Evolutionary Psychology
  • Health Psychology
  • History and Systems in Psychology
  • Music Psychology
  • Neuropsychology
  • Organizational Psychology
  • Psychological Assessment and Testing
  • Psychology of Human-Technology Interaction
  • Psychology Professional Development and Training
  • Research Methods in Psychology
  • Social Psychology
  • Browse content in Social Sciences
  • Browse content in Anthropology
  • Anthropology of Religion
  • Human Evolution
  • Medical Anthropology
  • Physical Anthropology
  • Regional Anthropology
  • Social and Cultural Anthropology
  • Theory and Practice of Anthropology
  • Browse content in Business and Management
  • Business Ethics
  • Business Strategy
  • Business History
  • Business and Technology
  • Business and Government
  • Business and the Environment
  • Comparative Management
  • Corporate Governance
  • Corporate Social Responsibility
  • Entrepreneurship
  • Health Management
  • Human Resource Management
  • Industrial and Employment Relations
  • Industry Studies
  • Information and Communication Technologies
  • International Business
  • Knowledge Management
  • Management and Management Techniques
  • Operations Management
  • Organizational Theory and Behaviour
  • Pensions and Pension Management
  • Public and Nonprofit Management
  • Strategic Management
  • Supply Chain Management
  • Browse content in Criminology and Criminal Justice
  • Criminal Justice
  • Criminology
  • Forms of Crime
  • International and Comparative Criminology
  • Youth Violence and Juvenile Justice
  • Development Studies
  • Browse content in Economics
  • Agricultural, Environmental, and Natural Resource Economics
  • Asian Economics
  • Behavioural Finance
  • Behavioural Economics and Neuroeconomics
  • Econometrics and Mathematical Economics
  • Economic History
  • Economic Systems
  • Economic Methodology
  • Economic Development and Growth
  • Financial Markets
  • Financial Institutions and Services
  • General Economics and Teaching
  • Health, Education, and Welfare
  • History of Economic Thought
  • International Economics
  • Labour and Demographic Economics
  • Law and Economics
  • Macroeconomics and Monetary Economics
  • Microeconomics
  • Public Economics
  • Urban, Rural, and Regional Economics
  • Welfare Economics
  • Browse content in Education
  • Adult Education and Continuous Learning
  • Care and Counselling of Students
  • Early Childhood and Elementary Education
  • Educational Equipment and Technology
  • Educational Strategies and Policy
  • Higher and Further Education
  • Organization and Management of Education
  • Philosophy and Theory of Education
  • Schools Studies
  • Secondary Education
  • Teaching of a Specific Subject
  • Teaching of Specific Groups and Special Educational Needs
  • Teaching Skills and Techniques
  • Browse content in Environment
  • Applied Ecology (Social Science)
  • Climate Change
  • Conservation of the Environment (Social Science)
  • Environmentalist Thought and Ideology (Social Science)
  • Social Impact of Environmental Issues (Social Science)
  • Browse content in Human Geography
  • Cultural Geography
  • Economic Geography
  • Political Geography
  • Browse content in Interdisciplinary Studies
  • Communication Studies
  • Museums, Libraries, and Information Sciences
  • Browse content in Politics
  • African Politics
  • Asian Politics
  • Chinese Politics
  • Comparative Politics
  • Conflict Politics
  • Elections and Electoral Studies
  • Environmental Politics
  • European Union
  • Foreign Policy
  • Gender and Politics
  • Human Rights and Politics
  • Indian Politics
  • International Relations
  • International Organization (Politics)
  • International Political Economy
  • Irish Politics
  • Latin American Politics
  • Middle Eastern Politics
  • Political Behaviour
  • Political Economy
  • Political Institutions
  • Political Methodology
  • Political Communication
  • Political Philosophy
  • Political Sociology
  • Political Theory
  • Politics and Law
  • Public Policy
  • Public Administration
  • Quantitative Political Methodology
  • Regional Political Studies
  • Russian Politics
  • Security Studies
  • State and Local Government
  • UK Politics
  • US Politics
  • Browse content in Regional and Area Studies
  • African Studies
  • Asian Studies
  • East Asian Studies
  • Japanese Studies
  • Latin American Studies
  • Middle Eastern Studies
  • Native American Studies
  • Scottish Studies
  • Browse content in Research and Information
  • Research Methods
  • Browse content in Social Work
  • Addictions and Substance Misuse
  • Adoption and Fostering
  • Care of the Elderly
  • Child and Adolescent Social Work
  • Couple and Family Social Work
  • Developmental and Physical Disabilities Social Work
  • Direct Practice and Clinical Social Work
  • Emergency Services
  • Human Behaviour and the Social Environment
  • International and Global Issues in Social Work
  • Mental and Behavioural Health
  • Social Justice and Human Rights
  • Social Policy and Advocacy
  • Social Work and Crime and Justice
  • Social Work Macro Practice
  • Social Work Practice Settings
  • Social Work Research and Evidence-based Practice
  • Welfare and Benefit Systems
  • Browse content in Sociology
  • Childhood Studies
  • Community Development
  • Comparative and Historical Sociology
  • Economic Sociology
  • Gender and Sexuality
  • Gerontology and Ageing
  • Health, Illness, and Medicine
  • Marriage and the Family
  • Migration Studies
  • Occupations, Professions, and Work
  • Organizations
  • Population and Demography
  • Race and Ethnicity
  • Social Theory
  • Social Movements and Social Change
  • Social Research and Statistics
  • Social Stratification, Inequality, and Mobility
  • Sociology of Religion
  • Sociology of Education
  • Sport and Leisure
  • Urban and Rural Studies
  • Browse content in Warfare and Defence
  • Defence Strategy, Planning, and Research
  • Land Forces and Warfare
  • Military Administration
  • Military Life and Institutions
  • Naval Forces and Warfare
  • Other Warfare and Defence Issues
  • Peace Studies and Conflict Resolution
  • Weapons and Equipment

The Oxford Handbook of Cognitive Psychology

  • < Previous chapter
  • Next chapter >

The Oxford Handbook of Cognitive Psychology

48 Problem Solving

Department of Psychological and Brain Sciences, University of California, Santa Barbara

  • Published: 03 June 2013
  • Cite Icon Cite
  • Permissions Icon Permissions

Problem solving refers to cognitive processing directed at achieving a goal when the problem solver does not initially know a solution method. A problem exists when someone has a goal but does not know how to achieve it. Problems can be classified as routine or nonroutine, and as well defined or ill defined. The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing. Current issues and suggested future issues include decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific thinking, everyday thinking, and the cognitive neuroscience of problem solving. Common themes concern the domain specificity of problem solving and a focus on problem solving in authentic contexts.

The study of problem solving begins with defining problem solving, problem, and problem types. This introduction to problem solving is rounded out with an examination of cognitive processes in problem solving, the role of knowledge in problem solving, and historical approaches to the study of problem solving.

Definition of Problem Solving

Problem solving refers to cognitive processing directed at achieving a goal for which the problem solver does not initially know a solution method. This definition consists of four major elements (Mayer, 1992 ; Mayer & Wittrock, 2006 ):

Cognitive —Problem solving occurs within the problem solver’s cognitive system and can only be inferred indirectly from the problem solver’s behavior (including biological changes, introspections, and actions during problem solving). Process —Problem solving involves mental computations in which some operation is applied to a mental representation, sometimes resulting in the creation of a new mental representation. Directed —Problem solving is aimed at achieving a goal. Personal —Problem solving depends on the existing knowledge of the problem solver so that what is a problem for one problem solver may not be a problem for someone who already knows a solution method.

The definition is broad enough to include a wide array of cognitive activities such as deciding which apartment to rent, figuring out how to use a cell phone interface, playing a game of chess, making a medical diagnosis, finding the answer to an arithmetic word problem, or writing a chapter for a handbook. Problem solving is pervasive in human life and is crucial for human survival. Although this chapter focuses on problem solving in humans, problem solving also occurs in nonhuman animals and in intelligent machines.

How is problem solving related to other forms of high-level cognition processing, such as thinking and reasoning? Thinking refers to cognitive processing in individuals but includes both directed thinking (which corresponds to the definition of problem solving) and undirected thinking such as daydreaming (which does not correspond to the definition of problem solving). Thus, problem solving is a type of thinking (i.e., directed thinking).

Reasoning refers to problem solving within specific classes of problems, such as deductive reasoning or inductive reasoning. In deductive reasoning, the reasoner is given premises and must derive a conclusion by applying the rules of logic. For example, given that “A is greater than B” and “B is greater than C,” a reasoner can conclude that “A is greater than C.” In inductive reasoning, the reasoner is given (or has experienced) a collection of examples or instances and must infer a rule. For example, given that X, C, and V are in the “yes” group and x, c, and v are in the “no” group, the reasoning may conclude that B is in “yes” group because it is in uppercase format. Thus, reasoning is a type of problem solving.

Definition of Problem

A problem occurs when someone has a goal but does not know to achieve it. This definition is consistent with how the Gestalt psychologist Karl Duncker ( 1945 , p. 1) defined a problem in his classic monograph, On Problem Solving : “A problem arises when a living creature has a goal but does not know how this goal is to be reached.” However, today researchers recognize that the definition should be extended to include problem solving by intelligent machines. This definition can be clarified using an information processing approach by noting that a problem occurs when a situation is in the given state, the problem solver wants the situation to be in the goal state, and there is no obvious way to move from the given state to the goal state (Newell & Simon, 1972 ). Accordingly, the three main elements in describing a problem are the given state (i.e., the current state of the situation), the goal state (i.e., the desired state of the situation), and the set of allowable operators (i.e., the actions the problem solver is allowed to take). The definition of “problem” is broad enough to include the situation confronting a physician who wishes to make a diagnosis on the basis of preliminary tests and a patient examination, as well as a beginning physics student trying to solve a complex physics problem.

Types of Problems

It is customary in the problem-solving literature to make a distinction between routine and nonroutine problems. Routine problems are problems that are so familiar to the problem solver that the problem solver knows a solution method. For example, for most adults, “What is 365 divided by 12?” is a routine problem because they already know the procedure for long division. Nonroutine problems are so unfamiliar to the problem solver that the problem solver does not know a solution method. For example, figuring out the best way to set up a funding campaign for a nonprofit charity is a nonroutine problem for most volunteers. Technically, routine problems do not meet the definition of problem because the problem solver has a goal but knows how to achieve it. Much research on problem solving has focused on routine problems, although most interesting problems in life are nonroutine.

Another customary distinction is between well-defined and ill-defined problems. Well-defined problems have a clearly specified given state, goal state, and legal operators. Examples include arithmetic computation problems or games such as checkers or tic-tac-toe. Ill-defined problems have a poorly specified given state, goal state, or legal operators, or a combination of poorly defined features. Examples include solving the problem of global warming or finding a life partner. Although, ill-defined problems are more challenging, much research in problem solving has focused on well-defined problems.

Cognitive Processes in Problem Solving

The process of problem solving can be broken down into two main phases: problem representation , in which the problem solver builds a mental representation of the problem situation, and problem solution , in which the problem solver works to produce a solution. The major subprocess in problem representation is representing , which involves building a situation model —that is, a mental representation of the situation described in the problem. The major subprocesses in problem solution are planning , which involves devising a plan for how to solve the problem; executing , which involves carrying out the plan; and monitoring , which involves evaluating and adjusting one’s problem solving.

For example, given an arithmetic word problem such as “Alice has three marbles. Sarah has two more marbles than Alice. How many marbles does Sarah have?” the process of representing involves building a situation model in which Alice has a set of marbles, there is set of marbles for the difference between the two girls, and Sarah has a set of marbles that consists of Alice’s marbles and the difference set. In the planning process, the problem solver sets a goal of adding 3 and 2. In the executing process, the problem solver carries out the computation, yielding an answer of 5. In the monitoring process, the problem solver looks over what was done and concludes that 5 is a reasonable answer. In most complex problem-solving episodes, the four cognitive processes may not occur in linear order, but rather may interact with one another. Although some research focuses mainly on the execution process, problem solvers may tend to have more difficulty with the processes of representing, planning, and monitoring.

Knowledge for Problem Solving

An important theme in problem-solving research is that problem-solving proficiency on any task depends on the learner’s knowledge (Anderson et al., 2001 ; Mayer, 1992 ). Five kinds of knowledge are as follows:

Facts —factual knowledge about the characteristics of elements in the world, such as “Sacramento is the capital of California” Concepts —conceptual knowledge, including categories, schemas, or models, such as knowing the difference between plants and animals or knowing how a battery works Procedures —procedural knowledge of step-by-step processes, such as how to carry out long-division computations Strategies —strategic knowledge of general methods such as breaking a problem into parts or thinking of a related problem Beliefs —attitudinal knowledge about how one’s cognitive processing works such as thinking, “I’m good at this”

Although some research focuses mainly on the role of facts and procedures in problem solving, complex problem solving also depends on the problem solver’s concepts, strategies, and beliefs (Mayer, 1992 ).

Historical Approaches to Problem Solving

Psychological research on problem solving began in the early 1900s, as an outgrowth of mental philosophy (Humphrey, 1963 ; Mandler & Mandler, 1964 ). Throughout the 20th century four theoretical approaches developed: early conceptions, associationism, Gestalt psychology, and information processing.

Early Conceptions

The start of psychology as a science can be set at 1879—the year Wilhelm Wundt opened the first world’s psychology laboratory in Leipzig, Germany, and sought to train the world’s first cohort of experimental psychologists. Instead of relying solely on philosophical speculations about how the human mind works, Wundt sought to apply the methods of experimental science to issues addressed in mental philosophy. His theoretical approach became structuralism —the analysis of consciousness into its basic elements.

Wundt’s main contribution to the study of problem solving, however, was to call for its banishment. According to Wundt, complex cognitive processing was too complicated to be studied by experimental methods, so “nothing can be discovered in such experiments” (Wundt, 1911/1973 ). Despite his admonishments, however, a group of his former students began studying thinking mainly in Wurzburg, Germany. Using the method of introspection, subjects were asked to describe their thought process as they solved word association problems, such as finding the superordinate of “newspaper” (e.g., an answer is “publication”). Although the Wurzburg group—as they came to be called—did not produce a new theoretical approach, they found empirical evidence that challenged some of the key assumptions of mental philosophy. For example, Aristotle had proclaimed that all thinking involves mental imagery, but the Wurzburg group was able to find empirical evidence for imageless thought .

Associationism

The first major theoretical approach to take hold in the scientific study of problem solving was associationism —the idea that the cognitive representations in the mind consist of ideas and links between them and that cognitive processing in the mind involves following a chain of associations from one idea to the next (Mandler & Mandler, 1964 ; Mayer, 1992 ). For example, in a classic study, E. L. Thorndike ( 1911 ) placed a hungry cat in what he called a puzzle box—a wooden crate in which pulling a loop of string that hung from overhead would open a trap door to allow the cat to escape to a bowl of food outside the crate. Thorndike placed the cat in the puzzle box once a day for several weeks. On the first day, the cat engaged in many extraneous behaviors such as pouncing against the wall, pushing its paws through the slats, and meowing, but on successive days the number of extraneous behaviors tended to decrease. Overall, the time required to get out of the puzzle box decreased over the course of the experiment, indicating the cat was learning how to escape.

Thorndike’s explanation for how the cat learned to solve the puzzle box problem is based on an associationist view: The cat begins with a habit family hierarchy —a set of potential responses (e.g., pouncing, thrusting, meowing, etc.) all associated with the same stimulus (i.e., being hungry and confined) and ordered in terms of strength of association. When placed in the puzzle box, the cat executes its strongest response (e.g., perhaps pouncing against the wall), but when it fails, the strength of the association is weakened, and so on for each unsuccessful action. Eventually, the cat gets down to what was initially a weak response—waving its paw in the air—but when that response leads to accidentally pulling the string and getting out, it is strengthened. Over the course of many trials, the ineffective responses become weak and the successful response becomes strong. Thorndike refers to this process as the law of effect : Responses that lead to dissatisfaction become less associated with the situation and responses that lead to satisfaction become more associated with the situation. According to Thorndike’s associationist view, solving a problem is simply a matter of trial and error and accidental success. A major challenge to assocationist theory concerns the nature of transfer—that is, where does a problem solver find a creative solution that has never been performed before? Associationist conceptions of cognition can be seen in current research, including neural networks, connectionist models, and parallel distributed processing models (Rogers & McClelland, 2004 ).

Gestalt Psychology

The Gestalt approach to problem solving developed in the 1930s and 1940s as a counterbalance to the associationist approach. According to the Gestalt approach, cognitive representations consist of coherent structures (rather than individual associations) and the cognitive process of problem solving involves building a coherent structure (rather than strengthening and weakening of associations). For example, in a classic study, Kohler ( 1925 ) placed a hungry ape in a play yard that contained several empty shipping crates and a banana attached overhead but out of reach. Based on observing the ape in this situation, Kohler noted that the ape did not randomly try responses until one worked—as suggested by Thorndike’s associationist view. Instead, the ape stood under the banana, looked up at it, looked at the crates, and then in a flash of insight stacked the crates under the bananas as a ladder, and walked up the steps in order to reach the banana.

According to Kohler, the ape experienced a sudden visual reorganization in which the elements in the situation fit together in a way to solve the problem; that is, the crates could become a ladder that reduces the distance to the banana. Kohler referred to the underlying mechanism as insight —literally seeing into the structure of the situation. A major challenge of Gestalt theory is its lack of precision; for example, naming a process (i.e., insight) is not the same as explaining how it works. Gestalt conceptions can be seen in modern research on mental models and schemas (Gentner & Stevens, 1983 ).

Information Processing

The information processing approach to problem solving developed in the 1960s and 1970s and was based on the influence of the computer metaphor—the idea that humans are processors of information (Mayer, 2009 ). According to the information processing approach, problem solving involves a series of mental computations—each of which consists of applying a process to a mental representation (such as comparing two elements to determine whether they differ).

In their classic book, Human Problem Solving , Newell and Simon ( 1972 ) proposed that problem solving involved a problem space and search heuristics . A problem space is a mental representation of the initial state of the problem, the goal state of the problem, and all possible intervening states (based on applying allowable operators). Search heuristics are strategies for moving through the problem space from the given to the goal state. Newell and Simon focused on means-ends analysis , in which the problem solver continually sets goals and finds moves to accomplish goals.

Newell and Simon used computer simulation as a research method to test their conception of human problem solving. First, they asked human problem solvers to think aloud as they solved various problems such as logic problems, chess, and cryptarithmetic problems. Then, based on an information processing analysis, Newell and Simon created computer programs that solved these problems. In comparing the solution behavior of humans and computers, they found high similarity, suggesting that the computer programs were solving problems using the same thought processes as humans.

An important advantage of the information processing approach is that problem solving can be described with great clarity—as a computer program. An important limitation of the information processing approach is that it is most useful for describing problem solving for well-defined problems rather than ill-defined problems. The information processing conception of cognition lives on as a keystone of today’s cognitive science (Mayer, 2009 ).

Classic Issues in Problem Solving

Three classic issues in research on problem solving concern the nature of transfer (suggested by the associationist approach), the nature of insight (suggested by the Gestalt approach), and the role of problem-solving heuristics (suggested by the information processing approach).

Transfer refers to the effects of prior learning on new learning (or new problem solving). Positive transfer occurs when learning A helps someone learn B. Negative transfer occurs when learning A hinders someone from learning B. Neutral transfer occurs when learning A has no effect on learning B. Positive transfer is a central goal of education, but research shows that people often do not transfer what they learned to solving problems in new contexts (Mayer, 1992 ; Singley & Anderson, 1989 ).

Three conceptions of the mechanisms underlying transfer are specific transfer , general transfer , and specific transfer of general principles . Specific transfer refers to the idea that learning A will help someone learn B only if A and B have specific elements in common. For example, learning Spanish may help someone learn Latin because some of the vocabulary words are similar and the verb conjugation rules are similar. General transfer refers to the idea that learning A can help someone learn B even they have nothing specifically in common but A helps improve the learner’s mind in general. For example, learning Latin may help people learn “proper habits of mind” so they are better able to learn completely unrelated subjects as well. Specific transfer of general principles is the idea that learning A will help someone learn B if the same general principle or solution method is required for both even if the specific elements are different.

In a classic study, Thorndike and Woodworth ( 1901 ) found that students who learned Latin did not subsequently learn bookkeeping any better than students who had not learned Latin. They interpreted this finding as evidence for specific transfer—learning A did not transfer to learning B because A and B did not have specific elements in common. Modern research on problem-solving transfer continues to show that people often do not demonstrate general transfer (Mayer, 1992 ). However, it is possible to teach people a general strategy for solving a problem, so that when they see a new problem in a different context they are able to apply the strategy to the new problem (Judd, 1908 ; Mayer, 2008 )—so there is also research support for the idea of specific transfer of general principles.

Insight refers to a change in a problem solver’s mind from not knowing how to solve a problem to knowing how to solve it (Mayer, 1995 ; Metcalfe & Wiebe, 1987 ). In short, where does the idea for a creative solution come from? A central goal of problem-solving research is to determine the mechanisms underlying insight.

The search for insight has led to five major (but not mutually exclusive) explanatory mechanisms—insight as completing a schema, insight as suddenly reorganizing visual information, insight as reformulation of a problem, insight as removing mental blocks, and insight as finding a problem analog (Mayer, 1995 ). Completing a schema is exemplified in a study by Selz (Fridja & de Groot, 1982 ), in which people were asked to think aloud as they solved word association problems such as “What is the superordinate for newspaper?” To solve the problem, people sometimes thought of a coordinate, such as “magazine,” and then searched for a superordinate category that subsumed both terms, such as “publication.” According to Selz, finding a solution involved building a schema that consisted of a superordinate and two subordinate categories.

Reorganizing visual information is reflected in Kohler’s ( 1925 ) study described in a previous section in which a hungry ape figured out how to stack boxes as a ladder to reach a banana hanging above. According to Kohler, the ape looked around the yard and found the solution in a flash of insight by mentally seeing how the parts could be rearranged to accomplish the goal.

Reformulating a problem is reflected in a classic study by Duncker ( 1945 ) in which people are asked to think aloud as they solve the tumor problem—how can you destroy a tumor in a patient without destroying surrounding healthy tissue by using rays that at sufficient intensity will destroy any tissue in their path? In analyzing the thinking-aloud protocols—that is, transcripts of what the problem solvers said—Duncker concluded that people reformulated the goal in various ways (e.g., avoid contact with healthy tissue, immunize healthy tissue, have ray be weak in healthy tissue) until they hit upon a productive formulation that led to the solution (i.e., concentrating many weak rays on the tumor).

Removing mental blocks is reflected in classic studies by Duncker ( 1945 ) in which solving a problem involved thinking of a novel use for an object, and by Luchins ( 1942 ) in which solving a problem involved not using a procedure that had worked well on previous problems. Finding a problem analog is reflected in classic research by Wertheimer ( 1959 ) in which learning to find the area of a parallelogram is supported by the insight that one could cut off the triangle on one side and place it on the other side to form a rectangle—so a parallelogram is really a rectangle in disguise. The search for insight along each of these five lines continues in current problem-solving research.

Heuristics are problem-solving strategies, that is, general approaches to how to solve problems. Newell and Simon ( 1972 ) suggested three general problem-solving heuristics for moving from a given state to a goal state: random trial and error , hill climbing , and means-ends analysis . Random trial and error involves randomly selecting a legal move and applying it to create a new problem state, and repeating that process until the goal state is reached. Random trial and error may work for simple problems but is not efficient for complex ones. Hill climbing involves selecting the legal move that moves the problem solver closer to the goal state. Hill climbing will not work for problems in which the problem solver must take a move that temporarily moves away from the goal as is required in many problems.

Means-ends analysis involves creating goals and seeking moves that can accomplish the goal. If a goal cannot be directly accomplished, a subgoal is created to remove one or more obstacles. Newell and Simon ( 1972 ) successfully used means-ends analysis as the search heuristic in a computer program aimed at general problem solving, that is, solving a diverse collection of problems. However, people may also use specific heuristics that are designed to work for specific problem-solving situations (Gigerenzer, Todd, & ABC Research Group, 1999 ; Kahneman & Tversky, 1984 ).

Current and Future Issues in Problem Solving

Eight current issues in problem solving involve decision making, intelligence and creativity, teaching of thinking skills, expert problem solving, analogical reasoning, mathematical and scientific problem solving, everyday thinking, and the cognitive neuroscience of problem solving.

Decision Making

Decision making refers to the cognitive processing involved in choosing between two or more alternatives (Baron, 2000 ; Markman & Medin, 2002 ). For example, a decision-making task may involve choosing between getting $240 for sure or having a 25% change of getting $1000. According to economic theories such as expected value theory, people should chose the second option, which is worth $250 (i.e., .25 x $1000) rather than the first option, which is worth $240 (1.00 x $240), but psychological research shows that most people prefer the first option (Kahneman & Tversky, 1984 ).

Research on decision making has generated three classes of theories (Markman & Medin, 2002 ): descriptive theories, such as prospect theory (Kahneman & Tversky), which are based on the ideas that people prefer to overweight the cost of a loss and tend to overestimate small probabilities; heuristic theories, which are based on the idea that people use a collection of short-cut strategies such as the availability heuristic (Gigerenzer et al., 1999 ; Kahneman & Tversky, 2000 ); and constructive theories, such as mental accounting (Kahneman & Tversky, 2000 ), in which people build a narrative to justify their choices to themselves. Future research is needed to examine decision making in more realistic settings.

Intelligence and Creativity

Although researchers do not have complete consensus on the definition of intelligence (Sternberg, 1990 ), it is reasonable to view intelligence as the ability to learn or adapt to new situations. Fluid intelligence refers to the potential to solve problems without any relevant knowledge, whereas crystallized intelligence refers to the potential to solve problems based on relevant prior knowledge (Sternberg & Gregorenko, 2003 ). As people gain more experience in a field, their problem-solving performance depends more on crystallized intelligence (i.e., domain knowledge) than on fluid intelligence (i.e., general ability) (Sternberg & Gregorenko, 2003 ). The ability to monitor and manage one’s cognitive processing during problem solving—which can be called metacognition —is an important aspect of intelligence (Sternberg, 1990 ). Research is needed to pinpoint the knowledge that is needed to support intelligent performance on problem-solving tasks.

Creativity refers to the ability to generate ideas that are original (i.e., other people do not think of the same idea) and functional (i.e., the idea works; Sternberg, 1999 ). Creativity is often measured using tests of divergent thinking —that is, generating as many solutions as possible for a problem (Guilford, 1967 ). For example, the uses test asks people to list as many uses as they can think of for a brick. Creativity is different from intelligence, and it is at the heart of creative problem solving—generating a novel solution to a problem that the problem solver has never seen before. An important research question concerns whether creative problem solving depends on specific knowledge or creativity ability in general.

Teaching of Thinking Skills

How can people learn to be better problem solvers? Mayer ( 2008 ) proposes four questions concerning teaching of thinking skills:

What to teach —Successful programs attempt to teach small component skills (such as how to generate and evaluate hypotheses) rather than improve the mind as a single monolithic skill (Covington, Crutchfield, Davies, & Olton, 1974 ). How to teach —Successful programs focus on modeling the process of problem solving rather than solely reinforcing the product of problem solving (Bloom & Broder, 1950 ). Where to teach —Successful programs teach problem-solving skills within the specific context they will be used rather than within a general course on how to solve problems (Nickerson, 1999 ). When to teach —Successful programs teaching higher order skills early rather than waiting until lower order skills are completely mastered (Tharp & Gallimore, 1988 ).

Overall, research on teaching of thinking skills points to the domain specificity of problem solving; that is, successful problem solving depends on the problem solver having domain knowledge that is relevant to the problem-solving task.

Expert Problem Solving

Research on expertise is concerned with differences between how experts and novices solve problems (Ericsson, Feltovich, & Hoffman, 2006 ). Expertise can be defined in terms of time (e.g., 10 years of concentrated experience in a field), performance (e.g., earning a perfect score on an assessment), or recognition (e.g., receiving a Nobel Prize or becoming Grand Master in chess). For example, in classic research conducted in the 1940s, de Groot ( 1965 ) found that chess experts did not have better general memory than chess novices, but they did have better domain-specific memory for the arrangement of chess pieces on the board. Chase and Simon ( 1973 ) replicated this result in a better controlled experiment. An explanation is that experts have developed schemas that allow them to chunk collections of pieces into a single configuration.

In another landmark study, Larkin et al. ( 1980 ) compared how experts (e.g., physics professors) and novices (e.g., first-year physics students) solved textbook physics problems about motion. Experts tended to work forward from the given information to the goal, whereas novices tended to work backward from the goal to the givens using a means-ends analysis strategy. Experts tended to store their knowledge in an integrated way, whereas novices tended to store their knowledge in isolated fragments. In another study, Chi, Feltovich, and Glaser ( 1981 ) found that experts tended to focus on the underlying physics concepts (such as conservation of energy), whereas novices tended to focus on the surface features of the problem (such as inclined planes or springs). Overall, research on expertise is useful in pinpointing what experts know that is different from what novices know. An important theme is that experts rely on domain-specific knowledge rather than solely general cognitive ability.

Analogical Reasoning

Analogical reasoning occurs when people solve one problem by using their knowledge about another problem (Holyoak, 2005 ). For example, suppose a problem solver learns how to solve a problem in one context using one solution method and then is given a problem in another context that requires the same solution method. In this case, the problem solver must recognize that the new problem has structural similarity to the old problem (i.e., it may be solved by the same method), even though they do not have surface similarity (i.e., the cover stories are different). Three steps in analogical reasoning are recognizing —seeing that a new problem is similar to a previously solved problem; abstracting —finding the general method used to solve the old problem; and mapping —using that general method to solve the new problem.

Research on analogical reasoning shows that people often do not recognize that a new problem can be solved by the same method as a previously solved problem (Holyoak, 2005 ). However, research also shows that successful analogical transfer to a new problem is more likely when the problem solver has experience with two old problems that have the same underlying structural features (i.e., they are solved by the same principle) but different surface features (i.e., they have different cover stories) (Holyoak, 2005 ). This finding is consistent with the idea of specific transfer of general principles as described in the section on “Transfer.”

Mathematical and Scientific Problem Solving

Research on mathematical problem solving suggests that five kinds of knowledge are needed to solve arithmetic word problems (Mayer, 2008 ):

Factual knowledge —knowledge about the characteristics of problem elements, such as knowing that there are 100 cents in a dollar Schematic knowledge —knowledge of problem types, such as being able to recognize time-rate-distance problems Strategic knowledge —knowledge of general methods, such as how to break a problem into parts Procedural knowledge —knowledge of processes, such as how to carry our arithmetic operations Attitudinal knowledge —beliefs about one’s mathematical problem-solving ability, such as thinking, “I am good at this”

People generally possess adequate procedural knowledge but may have difficulty in solving mathematics problems because they lack factual, schematic, strategic, or attitudinal knowledge (Mayer, 2008 ). Research is needed to pinpoint the role of domain knowledge in mathematical problem solving.

Research on scientific problem solving shows that people harbor misconceptions, such as believing that a force is needed to keep an object in motion (McCloskey, 1983 ). Learning to solve science problems involves conceptual change, in which the problem solver comes to recognize that previous conceptions are wrong (Mayer, 2008 ). Students can be taught to engage in scientific reasoning such as hypothesis testing through direct instruction in how to control for variables (Chen & Klahr, 1999 ). A central theme of research on scientific problem solving concerns the role of domain knowledge.

Everyday Thinking

Everyday thinking refers to problem solving in the context of one’s life outside of school. For example, children who are street vendors tend to use different procedures for solving arithmetic problems when they are working on the streets than when they are in school (Nunes, Schlieman, & Carraher, 1993 ). This line of research highlights the role of situated cognition —the idea that thinking always is shaped by the physical and social context in which it occurs (Robbins & Aydede, 2009 ). Research is needed to determine how people solve problems in authentic contexts.

Cognitive Neuroscience of Problem Solving

The cognitive neuroscience of problem solving is concerned with the brain activity that occurs during problem solving. For example, using fMRI brain imaging methodology, Goel ( 2005 ) found that people used the language areas of the brain to solve logical reasoning problems presented in sentences (e.g., “All dogs are pets…”) and used the spatial areas of the brain to solve logical reasoning problems presented in abstract letters (e.g., “All D are P…”). Cognitive neuroscience holds the potential to make unique contributions to the study of problem solving.

Problem solving has always been a topic at the fringe of cognitive psychology—too complicated to study intensively but too important to completely ignore. Problem solving—especially in realistic environments—is messy in comparison to studying elementary processes in cognition. The field remains fragmented in the sense that topics such as decision making, reasoning, intelligence, expertise, mathematical problem solving, everyday thinking, and the like are considered to be separate topics, each with its own separate literature. Yet some recurring themes are the role of domain-specific knowledge in problem solving and the advantages of studying problem solving in authentic contexts.

Future Directions

Some important issues for future research include the three classic issues examined in this chapter—the nature of problem-solving transfer (i.e., How are people able to use what they know about previous problem solving to help them in new problem solving?), the nature of insight (e.g., What is the mechanism by which a creative solution is constructed?), and heuristics (e.g., What are some teachable strategies for problem solving?). In addition, future research in problem solving should continue to pinpoint the role of domain-specific knowledge in problem solving, the nature of cognitive ability in problem solving, how to help people develop proficiency in solving problems, and how to provide aids for problem solving.

Anderson L. W. , Krathwohl D. R. , Airasian P. W. , Cruikshank K. A. , Mayer R. E. , Pintrich P. R. , Raths, J., & Wittrock M. C. ( 2001 ). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. New York : Longman.

Baron J. ( 2000 ). Thinking and deciding (3rd ed.). New York : Cambridge University Press.

Google Scholar

Google Preview

Bloom B. S. , & Broder B. J. ( 1950 ). Problem-solving processes of college students: An exploratory investigation. Chicago : University of Chicago Press.

Chase W. G. , & Simon H. A. ( 1973 ). Perception in chess.   Cognitive Psychology, 4, 55–81.

Chen Z. , & Klahr D. ( 1999 ). All other things being equal: Acquisition and transfer of the control of variable strategy . Child Development, 70, 1098–1120.

Chi M. T. H. , Feltovich P. J. , & Glaser R. ( 1981 ). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

Covington M. V. , Crutchfield R. S. , Davies L. B. , & Olton R. M. ( 1974 ). The productive thinking program. Columbus, OH : Merrill.

de Groot A. D. ( 1965 ). Thought and choice in chess. The Hague, The Netherlands : Mouton.

Duncker K. ( 1945 ). On problem solving.   Psychological Monographs, 58 (3) (Whole No. 270).

Ericsson K. A. , Feltovich P. J. , & Hoffman R. R. (Eds.). ( 2006 ). The Cambridge handbook of expertise and expert performance. New York : Cambridge University Press.

Fridja N. H. , & de Groot A. D. ( 1982 ). Otto Selz: His contribution to psychology. The Hague, The Netherlands : Mouton.

Gentner D. , & Stevens A. L. (Eds.). ( 1983 ). Mental models. Hillsdale, NJ : Erlbaum.

Gigerenzer G. , Todd P. M. , & ABC Research Group (Eds.). ( 1999 ). Simple heuristics that make us smart. Oxford, England : Oxford University Press.

Goel V. ( 2005 ). Cognitive neuroscience of deductive reasoning. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 475–492). New York : Cambridge University Press.

Guilford J. P. ( 1967 ). The nature of human intelligence. New York : McGraw-Hill.

Holyoak K. J. ( 2005 ). Analogy. In K. J. Holyoak & R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 117–142). New York : Cambridge University Press.

Humphrey G. ( 1963 ). Thinking: An introduction to experimental psychology. New York : Wiley.

Judd C. H. ( 1908 ). The relation of special training and general intelligence. Educational Review, 36, 28–42.

Kahneman D. , & Tversky A. ( 1984 ). Choices, values, and frames. American Psychologist, 39, 341–350.

Kahneman D. , & Tversky A. (Eds.). ( 2000 ). Choices, values, and frames. New York : Cambridge University Press.

Kohler W. ( 1925 ). The mentality of apes. New York : Liveright.

Larkin J. H. , McDermott J. , Simon D. P. , & Simon H. A. ( 1980 ). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

Luchins A. ( 1942 ). Mechanization in problem solving.   Psychological Monographs, 54 (6) (Whole No. 248).

Mandler J. M. , & Mandler G. ( 1964 ). Thinking from associationism to Gestalt. New York : Wiley.

Markman A. B. , & Medin D. L. ( 2002 ). Decision making. In D. Medin (Ed.), Stevens’ handbook of experimental psychology, Vol. 2. Memory and cognitive processes (2nd ed., pp. 413–466). New York : Wiley.

Mayer R. E. ( 1992 ). Thinking, problem solving, cognition (2nd ed). New York : Freeman.

Mayer R. E. ( 1995 ). The search for insight: Grappling with Gestalt psychology’s unanswered questions. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 3–32). Cambridge, MA : MIT Press.

Mayer R. E. ( 2008 ). Learning and instruction. Upper Saddle River, NJ : Merrill Prentice Hall.

Mayer R. E. ( 2009 ). Information processing. In T. L. Good (Ed.), 21st century education: A reference handbook (pp. 168–174). Thousand Oaks, CA : Sage.

Mayer R. E. , & Wittrock M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ : Erlbaum.

McCloskey M. ( 1983 ). Intuitive physics.   Scientific American, 248 (4), 122–130.

Metcalfe J. , & Wiebe D. ( 1987 ). Intuition in insight and non-insight problem solving. Memory and Cognition, 15, 238–246.

Newell A. , & Simon H. A. ( 1972 ). Human problem solving. Englewood Cliffs, NJ : Prentice-Hall.

Nickerson R. S. ( 1999 ). Enhancing creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 392–430). New York : Cambridge University Press.

Nunes T. , Schliemann A. D. , & Carraher D. W , ( 1993 ). Street mathematics and school mathematics. Cambridge, England : Cambridge University Press.

Robbins P. , & Aydede M. (Eds.). ( 2009 ). The Cambridge handbook of situated cognition. New York : Cambridge University Press.

Rogers T. T. , & McClelland J. L. ( 2004 ). Semantic cognition: A parallel distributed processing approach. Cambridge, MA : MIT Press.

Singley M. K. , & Anderson J. R. ( 1989 ). The transfer of cognitive skill. Cambridge, MA : Harvard University Press.

Sternberg R. J. ( 1990 ). Metaphors of mind: Conceptions of the nature of intelligence. New York : Cambridge University Press.

Sternberg R. J. ( 1999 ). Handbook of creativity. New York : Cambridge University Press.

Sternberg R. J. , & Gregorenko E. L. (Eds.). ( 2003 ). The psychology of abilities, competencies, and expertise. New York : Cambridge University Press.

Tharp R. G. , & Gallimore R. ( 1988 ). Rousing minds to life: Teaching, learning, and schooling in social context. New York : Cambridge University Press.

Thorndike E. L. ( 1911 ). Animal intelligence. New York: Hafner.

Thorndike E. L. , & Woodworth R. S. ( 1901 ). The influence of improvement in one mental function upon the efficiency of other functions. Psychological Review, 8, 247–261.

Wertheimer M. ( 1959 ). Productive thinking. New York : Harper and Collins.

Wundt W. ( 1973 ). An introduction to experimental psychology. New York : Arno Press. (Original work published in 1911).

Further Reading

Baron, J. ( 2008 ). Thinking and deciding (4th ed). New York: Cambridge University Press.

Duncker, K. ( 1945 ). On problem solving. Psychological Monographs , 58(3) (Whole No. 270).

Holyoak, K. J. , & Morrison, R. G. ( 2005 ). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press.

Mayer, R. E. , & Wittrock, M. C. ( 2006 ). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 287–304). Mahwah, NJ: Erlbaum.

Sternberg, R. J. , & Ben-Zeev, T. ( 2001 ). Complex cognition: The psychology of human thought . New York: Oxford University Press.

Weisberg, R. W. ( 2006 ). Creativity . New York: Wiley.

  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

APS

The Process of Problem Solving

  • Editor's Choice
  • Experimental Psychology
  • Problem Solving

what are the steps in problem solving psychology

In a 2013 article published in the Journal of Cognitive Psychology , Ngar Yin Louis Lee (Chinese University of Hong Kong) and APS William James Fellow Philip N. Johnson-Laird (Princeton University) examined the ways people develop strategies to solve related problems. In a series of three experiments, the researchers asked participants to solve series of matchstick problems.

In matchstick problems, participants are presented with an array of joined squares. Each square in the array is comprised of separate pieces. Participants are asked to remove a certain number of pieces from the array while still maintaining a specific number of intact squares. Matchstick problems are considered to be fairly sophisticated, as there is generally more than one solution, several different tactics can be used to complete the task, and the types of tactics that are appropriate can change depending on the configuration of the array.

Louis Lee and Johnson-Laird began by examining what influences the tactics people use when they are first confronted with the matchstick problem. They found that initial problem-solving tactics were constrained by perceptual features of the array, with participants solving symmetrical problems and problems with salient solutions faster. Participants frequently used tactics that involved symmetry and salience even when other solutions that did not involve these features existed.

To examine how problem solving develops over time, the researchers had participants solve a series of matchstick problems while verbalizing their problem-solving thought process. The findings from this second experiment showed that people tend to go through two different stages when solving a series of problems.

People begin their problem-solving process in a generative manner during which they explore various tactics — some successful and some not. Then they use their experience to narrow down their choices of tactics, focusing on those that are the most successful. The point at which people begin to rely on this newfound tactical knowledge to create their strategic moves indicates a shift into a more evaluative stage of problem solving.

In the third and last experiment, participants completed a set of matchstick problems that could be solved using similar tactics and then solved several problems that required the use of novel tactics.  The researchers found that participants often had trouble leaving their set of successful tactics behind and shifting to new strategies.

From the three studies, the researchers concluded that when people tackle a problem, their initial moves may be constrained by perceptual components of the problem. As they try out different tactics, they hone in and settle on the ones that are most efficient; however, this deduced knowledge can in turn come to constrain players’ generation of moves — something that can make it difficult to switch to new tactics when required.

These findings help expand our understanding of the role of reasoning and deduction in problem solving and of the processes involved in the shift from less to more effective problem-solving strategies.

Reference Louis Lee, N. Y., Johnson-Laird, P. N. (2013). Strategic changes in problem solving. Journal of Cognitive Psychology, 25 , 165–173. doi: 10.1080/20445911.2012.719021

' src=

good work for other researcher

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

what are the steps in problem solving psychology

Careers Up Close: Joel Anderson on Gender and Sexual Prejudices, the Freedoms of Academic Research, and the Importance of Collaboration

Joel Anderson, a senior research fellow at both Australian Catholic University and La Trobe University, researches group processes, with a specific interest on prejudice, stigma, and stereotypes.

what are the steps in problem solving psychology

Experimental Methods Are Not Neutral Tools

Ana Sofia Morais and Ralph Hertwig explain how experimental psychologists have painted too negative a picture of human rationality, and how their pessimism is rooted in a seemingly mundane detail: methodological choices. 

APS Fellows Elected to SEP

In addition, an APS Rising Star receives the society’s Early Investigator Award.

Privacy Overview

  • 7.3 Problem Solving
  • Introduction
  • 1.1 What Is Psychology?
  • 1.2 History of Psychology
  • 1.3 Contemporary Psychology
  • 1.4 Careers in Psychology
  • Review Questions
  • Critical Thinking Questions
  • Personal Application Questions
  • 2.1 Why Is Research Important?
  • 2.2 Approaches to Research
  • 2.3 Analyzing Findings
  • 3.1 Human Genetics
  • 3.2 Cells of the Nervous System
  • 3.3 Parts of the Nervous System
  • 3.4 The Brain and Spinal Cord
  • 3.5 The Endocrine System
  • 4.1 What Is Consciousness?
  • 4.2 Sleep and Why We Sleep
  • 4.3 Stages of Sleep
  • 4.4 Sleep Problems and Disorders
  • 4.5 Substance Use and Abuse
  • 4.6 Other States of Consciousness
  • 5.1 Sensation versus Perception
  • 5.2 Waves and Wavelengths
  • 5.4 Hearing
  • 5.5 The Other Senses
  • 5.6 Gestalt Principles of Perception
  • 6.1 What Is Learning?
  • 6.2 Classical Conditioning
  • 6.3 Operant Conditioning
  • 6.4 Observational Learning (Modeling)
  • 7.1 What Is Cognition?
  • 7.2 Language
  • 7.4 What Are Intelligence and Creativity?
  • 7.5 Measures of Intelligence
  • 7.6 The Source of Intelligence
  • 8.1 How Memory Functions
  • 8.2 Parts of the Brain Involved with Memory
  • 8.3 Problems with Memory
  • 8.4 Ways to Enhance Memory
  • 9.1 What Is Lifespan Development?
  • 9.2 Lifespan Theories
  • 9.3 Stages of Development
  • 9.4 Death and Dying
  • 10.1 Motivation
  • 10.2 Hunger and Eating
  • 10.3 Sexual Behavior, Sexuality, and Gender Identity
  • 10.4 Emotion
  • 11.1 What Is Personality?
  • 11.2 Freud and the Psychodynamic Perspective
  • 11.3 Neo-Freudians: Adler, Erikson, Jung, and Horney
  • 11.4 Learning Approaches
  • 11.5 Humanistic Approaches
  • 11.6 Biological Approaches
  • 11.7 Trait Theorists
  • 11.8 Cultural Understandings of Personality
  • 11.9 Personality Assessment
  • 12.1 What Is Social Psychology?
  • 12.2 Self-presentation
  • 12.3 Attitudes and Persuasion
  • 12.4 Conformity, Compliance, and Obedience
  • 12.5 Prejudice and Discrimination
  • 12.6 Aggression
  • 12.7 Prosocial Behavior
  • 13.1 What Is Industrial and Organizational Psychology?
  • 13.2 Industrial Psychology: Selecting and Evaluating Employees
  • 13.3 Organizational Psychology: The Social Dimension of Work
  • 13.4 Human Factors Psychology and Workplace Design
  • 14.1 What Is Stress?
  • 14.2 Stressors
  • 14.3 Stress and Illness
  • 14.4 Regulation of Stress
  • 14.5 The Pursuit of Happiness
  • 15.1 What Are Psychological Disorders?
  • 15.2 Diagnosing and Classifying Psychological Disorders
  • 15.3 Perspectives on Psychological Disorders
  • 15.4 Anxiety Disorders
  • 15.5 Obsessive-Compulsive and Related Disorders
  • 15.6 Posttraumatic Stress Disorder
  • 15.7 Mood and Related Disorders
  • 15.8 Schizophrenia
  • 15.9 Dissociative Disorders
  • 15.10 Disorders in Childhood
  • 15.11 Personality Disorders
  • 16.1 Mental Health Treatment: Past and Present
  • 16.2 Types of Treatment
  • 16.3 Treatment Modalities
  • 16.4 Substance-Related and Addictive Disorders: A Special Case
  • 16.5 The Sociocultural Model and Therapy Utilization

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connection

Solving puzzles.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

Here is another popular type of puzzle ( Figure 7.8 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Take a look at the “Puzzling Scales” logic puzzle below ( Figure 7.9 ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

Pitfalls to Problem Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but they just need to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to overcome the problem ( Figure 7.10 ). During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene about NASA engineers overcoming functional fixedness to learn more.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 7.3 .

Watch this teacher-made music video about cognitive biases to learn more.

Were you able to determine how many marbles are needed to balance the scales in Figure 7.9 ? You need nine. Were you able to solve the problems in Figure 7.7 and Figure 7.8 ? Here are the answers ( Figure 7.11 ).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/7-3-problem-solving

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Problem Solving

what are the steps in problem solving psychology

Download or send

Choose your language, professional version.

A PDF of the resource, theoretical background, suggested therapist questions and prompts.

Premium Feature

Client version.

A PDF of the resource plus client-friendly instructions where appropriate.

Fillable version (PDF)

A fillable version of the resource. This can be edited and saved in Adobe Acrobat, or other PDF editing software.

Editable version (PPT)

An editable Microsoft PowerPoint version of the resource.

Translation Template

Are you a qualified therapist who would like to help with our translation project?

Languages this resource is available in

  • Chinese (Simplified)
  • Chinese (Traditional)
  • English (GB)
  • English (US)
  • Spanish (International)

Mechanisms associated with this resource

  • Skills deficit

Introduction & Theoretical Background

Problem Solving is a helpful intervention whenever clients present with difficulties, dilemmas, and conundrums, or when they experience repetitive thought such as rumination or worry. Effective problem solving is an essential life skill and this Problem Solving worksheet is designed to guide adults through steps which will help them to generate solutions to ‘stuck’ situations in their lives. It follows the qualities of effective problem solving outlined by Nezu, Nezu & D’Zurilla (2013), namely: clearly defining a problem; generation of alternative solutions; deliberative decision making; and the implementation of the chosen solution.

The therapist’s stance during problem solving should be one of collaborative curiosity. It is not for the therapist to pass judgment or to impose their preferred solution. Instead it is the clinician’s role to sit alongside clients and to help them examine the advantages and disadvantages of their options and, if the client is ‘stuck’ in rumination or worry, to help motivate them to take action to become unstuck – constructive rumination asks “How can I…?” questions instead of “Why…?” questions.

In their description of problem solving therapy Nezu, Nezu & D’Zurilla (2013) describe how it is helpful to elicit a positive orientation towards the problem which involves: being willing to appraise problems as challenges; remain optimistic that problems are solvable; remember that successful problem solving involves time and effort.

Therapist Guidance

  • What is the nature of the problem?
  • What are my goals?
  • What is getting the way of me reaching my goals?
  • “Can you think of any ways that you could make this problem not be a problem any more?”
  • “What’s keeping this problem as a problem? What could you do to target that part of the problem?”
  • “If your friend was bothered by a problem like this what might be something that you recommend they try?”
  • “What would be some of the worst ways of solving a problem like this? And the best?”
  • “How would Batman solve a problem like this?”
  • Consider short term and long-term implications of each strategy
  • Implications may relate to: emotional well-being, choices & opportunities, relationships, self-growth
  • The next step is to consider which of the available options is the best solution. If you do not feel positive about any solutions, the choice becomes “Which is the least-worst?”. Remember that “even not-making-a-choice is a form of choice”.  
  • The last step of problem solving is putting a plan into action. Rumination, worry, and being in the horns of a dilemma are ‘stuck’ states which require a behavioral ‘nudge’ to become unstuck. Once you have put your plan into action it is important to monitor the outcome and to evaluate whether the actual outcome was consistent with the anticipated outcome.

References And Further Reading

  • Beck, A.T., Rush, A.J., Shaw, B.F., & Emery, G. (1979). Cognitive therapy of depression . New York: Guilford. Nezu, A. M., Nezu, C. M., D’Zurilla, T. J. (2013). Problem-solving therapy: a treatment manual . New York: Springer.
  • For clinicians
  • For students
  • Resources at your fingertips
  • Designed for effectiveness
  • Resources by problem
  • Translation Project
  • Help center
  • Try us for free
  • Terms & conditions
  • Privacy Policy
  • Cookies Policy

8 Effective Problem-Solving Strategies

Categories Cognition

8 Effective Problem-Solving Strategies

Sharing is caring!

If you need to solve a problem, there are a number of different problem-solving strategies that can help you come up with an accurate decision. Sometimes the best choice is to use a step-by-step approach that leads to the right solution, but other problems may require a trial-and-error approach. 

Some helpful problem-solving strategies include: Brainstorming Step-by-step algorithms Trial-and-error Working backward Heuristics Insight Writing it down Getting some sleep

Why Use Problem-Solving Strategies

While you can always make a wild guess or pick at random, that certainly isn’t the most accurate way to come up with a solution. Using a more structured approach allows you to:

  • Understand the nature of the problem
  • Determine how you will solve it
  • Research different options
  • Take steps to solve the problem and resolve the issue

There are many tools and strategies that can be used to solve problems, and some problems may require more than one of these methods in order to come up with a solution.

Problem-Solving Strategies

The problem-solving strategy that works best depends on the nature of the problem and how much time you have available to make a choice. Here are eight different techniques that can help you solve whatever type of problem you might face.

Brainstorming

Coming up with a lot of potential solutions can be beneficial, particularly early on in the process. You might brainstorm on your own, or enlist the help of others to get input that you might not have otherwise considered.

Step-by-Step

Also known as an algorithm, this approach involves following a predetermined formula that is guaranteed to produce the correct result. While this can be useful in some situations—such as solving a math problem—it is not always practical in every situation.

On the plus side, algorithms can be very accurate and reliable. Unfortunately, they can also be time-consuming.

And in some situations, you cannot follow this approach because you simply don’t have access to all of the information you would need to do so.

Trial-and-Error

This problem-solving strategy involves trying a number of different solutions in order to figure out which one works best. This requires testing steps or more options to solve the problem or pick the right solution. 

For example, if you are trying to perfect a recipe, you might have to experiment with varying amounts of a certain ingredient before you figure out which one you prefer.

On the plus side, trial-and-error can be a great problem-solving strategy in situations that require an individualized solution. However, this approach can be very time-consuming and costly.

Working Backward

This problem-solving strategy involves looking at the end result and working your way back through the chain of events. It can be a useful tool when you are trying to figure out what might have led to a particular outcome.

It can also be a beneficial way to play out how you will complete a task. For example, if you know you need to have a project done by a certain date, working backward can help you figure out the steps you’ll need to complete in order to successfully finish the project.

Heuristics are mental shortcuts that allow you to come up with solutions quite quickly. They are often based on past experiences that are then applied to other situations. They are, essentially, a handy rule of thumb.

For example, imagine a student is trying to pick classes for the next term. While they aren’t sure which classes they’ll enjoy the most, they know that they tend to prefer subjects that involve a lot of creativity. They utilize this heuristic to pick classes that involve art and creative writing.

The benefit of a heuristic is that it is a fast way to make fairly accurate decisions. The trade-off is that you give up some accuracy in order to gain speed and efficiency.

Sometimes, the solution to a problem seems to come out of nowhere. You might suddenly envision a solution after struggling with the problem for a while. Or you might abruptly recognize the correct solution that you hadn’t seen before. 

No matter the source, insight-based problem-solving relies on following your gut instincts. While this may not be as objective or accurate as some other problem-solving strategies, it can be a great way to come up with creative, novel solutions.

Write It Down

Sometimes putting the problem and possible solutions down in paper can be a useful way to visualize solutions. Jot down whatever might help you envision your options. Draw a picture, create a mind map, or just write some notes to clarify your thoughts.

Get Some Sleep

If you’re facing a big problem or trying to make an important decision, try getting a good night’s sleep before making a choice. Sleep plays an essential role in memory consolidation, so getting some rest may help you access the information or insight you need to make the best choice.

Other Considerations

Even with an arsenal of problem-solving strategies at your disposal, coming up with solutions isn’t always easy. Certain challenges can make the process more difficult. A few issues that might emerge include:

  • Mental set : When people form a mental set, they only rely on things that have worked in the last. Sometimes this can be useful, but in other cases, it can severely hinder the problem-solving process.
  • Cognitive biases : Unconscious cognitive biases can make it difficult to see situations clearly and objectively. As a result, you may not consider all of your options or ignore relevant information.
  • Misinformation : Poorly sourced clues and irrelevant details can add more complications. Being able to sort out what’s relevant and what’s not is essential for solving problems accurately.
  • Functional fixedness : Functional fixedness happens when people only think of customary solutions to problems. It can hinder out-of-the-box thinking and prevents insightful, creative solutions.

Important Problem-Solving Skills

Becoming a good problem solver can be useful in a variety of domains, from school to work to interpersonal relationships. Important problem-solving skills encompass being able to identify problems, coming up with effective solutions, and then implementing these solutions.

According to a 2023 survey by the National Association of Colleges and Employers, 61.4% of employers look for problem-solving skills on applicant resumes.

Some essential problem-solving skills include:

  • Research skills
  • Analytical abilities
  • Decision-making skills
  • Critical thinking
  • Communication
  • Time management 
  • Emotional intelligence

Solving a problem is complex and requires the ability to recognize the issue, collect and analyze relevant data, and make decisions about the best course of action. It can also involve asking others for input, communicating goals, and providing direction to others.

How to Become a Better Problem-Solver

If you’re ready to strengthen your problem-solving abilities, here are some steps you can take:

Identify the Problem

Before you can practice your problem-solving skills, you need to be able to recognize that there is a problem. When you spot a potential issue, ask questions about when it started and what caused it.

Do Your Research

Instead of jumping right in to finding solutions, do research to make sure you fully understand the problem and have all the background information you need. This helps ensure you don’t miss important details.

Hone Your Skills

Consider signing up for a class or workshop focused on problem-solving skill development. There are also books that focus on different methods and approaches.

The best way to strengthen problem-solving strategies is to give yourself plenty of opportunities to practice. Look for new challenges that allow you to think critically, analytically, and creatively.

Final Thoughts

If you have a problem to solve, there are plenty of strategies that can help you make the right choice. The key is to pick the right one, but also stay flexible and willing to shift gears.

In many cases, you might find that you need more than one strategy to make the choices that are right for your life.

Brunet, J. F., McNeil, J., Doucet, É., & Forest, G. (2020). The association between REM sleep and decision-making: Supporting evidences. Physiology & Behavior , 225, 113109. https://doi.org/10.1016/j.physbeh.2020.113109

Chrysikou, E. G, Motyka, K., Nigro, C., Yang, S. I. , & Thompson-Schill, S. L. (2016). Functional fixedness in creative thinking tasks depends on stimulus modality. Psychol Aesthet Creat Arts , 10(4):425‐435. https://doi.org/10.1037/aca0000050

Sarathy, V. (2018). Real world problem-solving. Front Hum Neurosci , 12:261. https://doi.org/10.3389/fnhum.2018.00261

Kendra Cherry

Kendra Cherry, MS.Ed., is an author, educator, and founder of Explore Psychology, an online psychology resource. She is a health writer and editor specializing in psychology, mental health, and wellness. She also writes for Verywell Mind and is the author of the Everything Psychology book (Adams Media). Follow her on Twitter , Facebook , Instagram , and Pinterest .

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Thinking and Intelligence

Problem Solving

OpenStaxCollege

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

PROBLEM-SOLVING STRATEGIES

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( [link] ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link] ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle ( [link] ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below ( [link] ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

PITFALLS TO PROBLEM SOLVING

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

what are the steps in problem solving psychology

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in [link] .

Please visit this site to see a clever music video that a high school teacher made to explain these and other cognitive biases to his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in [link] ? You need nine. Were you able to solve the problems in [link] and [link] ? Here are the answers ( [link] ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1:  blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

Review Questions

A specific formula for solving a problem is called ________.

  • an algorithm
  • a heuristic
  • a mental set
  • trial and error

A mental shortcut in the form of a general problem-solving framework is called ________.

Which type of bias involves becoming fixated on a single trait of a problem?

  • anchoring bias
  • confirmation bias
  • representative bias
  • availability bias

Which type of bias involves relying on a false stereotype to make a decision?

Critical Thinking Questions

What is functional fixedness and how can overcoming it help you solve problems?

Functional fixedness occurs when you cannot see a use for an object other than the use for which it was intended. For example, if you need something to hold up a tarp in the rain, but only have a pitchfork, you must overcome your expectation that a pitchfork can only be used for garden chores before you realize that you could stick it in the ground and drape the tarp on top of it to hold it up.

How does an algorithm save you time and energy when solving a problem?

An algorithm is a proven formula for achieving a desired outcome. It saves time because if you follow it exactly, you will solve the problem without having to figure out how to solve the problem. It is a bit like not reinventing the wheel.

Personal Application Question

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

Problem Solving Copyright © 2014 by OpenStaxCollege is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is an Algorithm in Psychology?

Definition, Examples, and Uses

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what are the steps in problem solving psychology

 James Lacy, MLS, is a fact-checker and researcher.

what are the steps in problem solving psychology

How Does an Algorithm Work?

Examples of algorithms.

  • Reasons to Use Algorithms
  • Potential Pitfalls

Algorithms vs. Heuristics

When solving a problem , choosing the right approach is often the key to arriving at the best solution. In psychology, one of these problem-solving approaches is known as an algorithm. While often thought of purely as a mathematical term, the same type of process can be followed in psychology to find the correct answer when solving a problem or making a decision.

An algorithm is a defined set of step-by-step procedures that provides the correct answer to a particular problem. By following the instructions correctly, you are guaranteed to arrive at the right answer.

At a Glance

Algorithms involve following specific steps in order to reach a solution to a problem. They can be a great tool when you need an accurate solution but tend to be more time-consuming than other methods.

This article discusses how algorithms are used as an approach to problem-solving. It also covers how psychologists compare this approach to other problem-solving methods.

An algorithm is often expressed in the form of a graph, where a square represents each step. Arrows then branch off from each step to point to possible directions that you may take to solve the problem.

In some cases, you must follow a particular set of steps to solve the problem. In other instances, you might be able to follow different paths that will all lead to the same solution.

Algorithms are essential step-by-step approaches to solving a problem. Rather than guessing or using trial-and-error, this approach is more likely to guarantee a specific solution. 

Using an algorithm can help you solve day-to-day problems you face, but it can also help mental health professionals find ways to help people cope with mental health problems.

For example, a therapist might use an algorithm to treat a person experiencing something like anxiety. Because the therapist knows that a particular approach is likely to be effective, they would recommend a series of specific, focused steps as part of their intervention.

There are many different examples of how algorithms can be used in daily life. Some common ones include:

  • A recipe for cooking a particular dish
  • The method a search engine uses to find information on the internet
  • Instructions for how to assemble a bicycle
  • Instructions for how to solve a Rubik's cube
  • A process to determine what type of treatment is most appropriate for certain types of mental health conditions

Doctors and mental health professionals often use algorithms to diagnose mental disorders . For example, they may use a step-by-step approach when they evaluate people.

This might involve asking the individual about their symptoms and their medical history. The doctor may also conduct lab tests, physical exams, or psychological assessments.

Using this information, they then utilize the "Diagnostic and Statistical Manual of Mental Disorders" (DSM-5-TR) to make a diagnosis.

Reasons to Use Algorithms in Psychology

The upside of using an algorithm to solve a problem or make a decision is that yields the best possible answer every time. There are situations where using an algorithm can be the best approach:

When Accuracy Is Crucial

Algorithms can be particularly useful in situations when accuracy is critical. They are also a good choice when similar problems need to be frequently solved.

Computer programs can often be designed to speed up this process. Data then needs to be placed in the system so that the algorithm can be executed for the correct solution.

Artificial intelligence may also be a tool for making clinical assessments in healthcare situations.

When Each Decision Needs to Follow the Same Process

Such step-by-step approaches can be useful in situations where each decision must be made following the same process. Because the process follows a prescribed procedure, you can be sure that you will reach the correct answer each time.

Potential Pitfalls When Using Algorithms

The downside of using an algorithm to solve the problem is that this process tends to be very time-consuming.

So if you face a situation where a decision must be made very quickly, you might be better off using a different problem-solving strategy.

For example, an emergency room doctor making a decision about how to treat a patient could use an algorithm approach. However, this would be very time-consuming and treatment needs to be implemented quickly.

In this instance, the doctor would instead rely on their expertise and past experiences to very quickly choose what they feel is the right treatment approach.

Algorithms can sometimes be very complex and may only apply to specific situations. This can limit their use and make them less generalizable when working with larger populations.

Algorithms can be a great problem-solving choice when the answer needs to be 100% accurate or when each decision needs to follow the same process. A different approach might be needed if speed is the primary concern.

In psychology, algorithms are frequently contrasted with heuristics . Both can be useful when problem-solving, but it is important to understand the differences between them.

What Is a Heuristic?

A heuristic is a mental shortcut that allows people to quickly make judgments and solve problems.

These mental shortcuts are typically informed by our past experiences and allow us to act quickly. However, heuristics are really more of a rule-of-thumb; they don't always guarantee a correct solution.

So how do you determine when to use a heuristic and when to use an algorithm? When problem-solving, deciding which method to use depends on the need for either accuracy or speed.

When to Use an Algorithm

If complete accuracy is required, it is best to use an algorithm. By using an algorithm, accuracy is increased and potential mistakes are minimized.

If you are working in a situation where you absolutely need the correct or best possible answer, your best bet is to use an algorithm. When you are solving problems for your math homework, you don't want to risk your grade on a guess.

By following an algorithm, you can ensure that you will arrive at the correct answer to each problem.

When to Use a Heuristic

On the other hand, if time is an issue, then it may be best to use a heuristic. Mistakes may occur, but this approach allows for speedy decisions when time is of the essence.

Heuristics are more commonly used in everyday situations, such as figuring out the best route to get from point A to point B. While you could use an algorithm to map out every possible route and determine which one would be the fastest, that would be a very time-consuming process. Instead, your best option would be to use a route that you know has worked well in the past.

Psychologists who study problem-solving have described two main processes people utilize to reach conclusions: algorithms and heuristics. Knowing which approach to use is important because these two methods can vary in terms of speed and accuracy.

While each situation is unique, you may want to use an algorithm when being accurate is the primary concern. But if time is of the essence, then an algorithm is likely not the best choice.

Lang JM, Ford JD, Fitzgerald MM. An algorithm for determining use of trauma-focused cognitive-behavioral therapy . Psychotherapy (Chic) . 2010;47(4):554-69. doi:10.1037/a0021184

Stein DJ, Shoptaw SJ, Vigo DV, et al. Psychiatric diagnosis and treatment in the 21st century: paradigm shifts versus incremental integration .  World Psychiatry . 2022;21(3):393-414. doi:10.1002/wps.20998

Bobadilla-Suarez S, Love BC. Fast or frugal, but not both: decision heuristics under time pressure . J Exp Psychol Learn Mem Cogn . 2018;44(1):24-33. doi:10.1037/xlm0000419

Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing artificial intelligence for clinical decision-making .  Front Digit Health . 2021;3:645232. doi:10.3389/fdgth.2021.645232

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Robert Taibbi L.C.S.W.

How to Fix Any Problem: The 3 Step Approach

Solving problems isn't about the what, it's about the how..

Posted April 8, 2015

CC0 public domain

Your son is struggling with fractions, actually close to tears while doing his homework. Your car has been making some awful rumbly sound that has you worried. Your boyfriend is angry with you—he felt you were curt and cold to his mother when you met her last weekend.

Life and problems, we all know the drill. At 8, it’s math. At 20, it’s your beat up old car. At 30, the boyfriend with his nose out of joint. And multiple times a day there's everything else in between. The content is always a moving target—fractions, boyfriend, car—but by having a solid problem-solving process in place, moving through the content becomes a lot easier. We're back to the difference between the what of our lives and the how, and the how is what counts. As the parent, you want to help your son master fractions, but even more, you want him to learn how to not become overwhelmed and discouraged by teaching him how to approach and manage the problems in his life, whatever they may be. And a lot of us adults have the same struggles.

Here’s a simple roadmap for solving everyday problems along with the places it’s easy to get stuck. We’re talking mundane stuff here. We’re not talking about sorting how the next equation for string theory, or how best to arrange your living room furniture—sure that’s partly about problem solving but more about intuition and innate creativity . And even though we're focusing on the everyday, that doesn't mean that they can't feel overwhelming or that they are not difficult or complex. But that said, the basic problem-solving approach doesn't change. Here goes:

1. Define the problem as concretely / specifically as possible. This is about narrowing your—what is it that needs to get fixed? This creates problem partialization—taking big junks of overwhelming misery and breaking them down into smaller, more manageable bites. It also makes it easier to do the next two steps.

The Trap: Too vague and general. "Can’t do factions math" is not a solvable problem. Neither is your "car seems to be breaking down," your boyfriend is "upset," or that you were "curt." Ditto for being lonely , unfulfilled, unhappy, life sucks, or the couples I see who say they can’t communicate. Yes, you may feel that way, but that is the summary statement to a more specific concrete problem. You need to drill down. Be specific. At what point does the trail of fraction concepts for your son break down? Why this problem and not the one before? Rumbly sound—where does it change when you speed up, etc.? Curt—tell me what thought I did or sounded like that gave you that impression. Can’t communicate—you’re talking so you can communicate. Tell me what is exactly happening when you feel like you are not.

The other trap is that your overwhelming feelings have ramped up so far—your son is on the verge of tears—that it makes the drilling down and defining difficult to start. The problem is no longer the factions but anxiety that needs to be fixed. So you hug him or suggest he take a break and go play outside for awhile, or as an adult you do deep breathing, meditation , exercise, drink chamomile tea, or vent to a friend. Once you're back under your threshold, you move forward.

2. Decide what you can do. As the parent, you can walk through the problem with your child or if it is over your head, you can hire a tutor or call the teacher. As the child, you ask the teacher or the smartest kid in the class for help. The car—if you have mechanic skills, you can check it out yourself. If not, take it to a garage. If you don’t have money to fix it, take the bus 'till you can save up the money or see if your dad can lend you the money. Talk to your boyfriend. Apologize for unintentionally hurting his and his mother’s feelings. Offer to talk to her. Find out what specifically bothered him so much. If, as a couple, you feel you don’t communicate, be proactive and initiate conversations about where you both get stuck in conversations and see where they lead.

You get the idea.

The Trap: Rather than focusing on what can and cannot do, you instead, particularly in relationship problems, tie your solution to what you want someone else to do. Rather than having that conversation with your boyfriend you obsess about his need to simply grow up and not be so sensitive and critical. Rather sitting down with your son and walking step-by-step through the math problems, you get mentally hung up on wishing he would try harder and not just whine.

Hitching your problem-solving wagon to someone else changing is a convoluted path to a solution. Sure, you can snap back at your boyfriend for his immaturity or your son about his whining, but it distracts both of you from solving the immediate problem and often only creates another problem. Keep it simple. Your problem, embrace it.

The other trap is that rather than deciding what you can do, you decide to do nothing, to push the problem to the back burner, hope it will go away somehow, miraculously get better. Sometimes deliberately deciding to wait-and-see has merits, especially if you and/or the other is stressed —this is about lowering the anxiety first. Circle back to the fractions tomorrow, realize that you or your boyfriend are under a lot of stress at work and a heavy conversation right now will only make matters worse, and the car noise hasn't gotten worse and you have too much on your plate to this week to tackle it. This is rational decision-making . But simply pushing it way way back is about denial and magical thinking and emotional rather than rational mind. Don't do this.

what are the steps in problem solving psychology

3. Take action. Once you've zeroed in on the problem, consider action steps. It's time to take action. Do something! Acting and moving forward will help lower your anxiety and help stop it from staring you in the face or perpetually circling around your brain as chronic worry. So get an estimate for the car repair, talk to the teacher, find a YouTube video on fractions, write a note to your boyfriend. The action empowers you.

The Trap: The big trap here is thinking that you think you need to find the right solution that guarantees success before you can act. Unless you do—you believe—you'll wind up making a big mistake. This is the Ready, Aim, Fire approach to problems where you spend a lot of time sitting on the couch or endless hours on the Internet doing research, or forever talking to friends trying to figure out the perfect course before doing anything.

The other more practical approach is based on Ready, Fire, Aim. Do something and then see what happens next, and adjust. This is how a lot of big problems are eventually solved—think Edison and his trying out 1,000 of filaments for his light bulb before finding the best one—the trial and error, the creating the feedback loop that helps you discover what does and doesn't work.

So you try the conversation or leave the note with your boyfriend and see what happens next. You call the teacher, or walk through the factions with your son and see if he can with your support connect the dots. You look for a hole in the exhaust system, get a second estimate on the car while also approaching your dad for a loan and looking up bus routes. Whatever you do, don't endlessly mull, brood, and obsess. Perfectionism gets in the way of problem-solving because it can freeze decisive action needed to break through to a solution.

That’s it. All this moving through is a matter of practice and attitude, sometimes support, and like most things, it gets easier with repetition. So give this a try.

You can’t make a mistake.

Feel free to follow me on Twitter

Robert Taibbi L.C.S.W.

Bob Taibbi, L.C.S.W., has 49 years of clinical experience. He is the author of 13 books and over 300 articles and provides training nationally and internationally.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

January 2024 magazine cover

Overcome burnout, your burdens, and that endless to-do list.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

The Stages of the Problem Solving Cycle in Cognitive Psychology – Understanding, Planning, Execution, Evaluation, and Reflection

  • Post author By bicycle-u
  • Post date 08.12.2023

Problem solving is a fundamental aspect of human cognition. It involves the ability to identify and define a problem, generate potential solutions, evaluate those solutions, and select the most appropriate one. The problem solving cycle is a key concept in cognitive psychology that helps us understand how individuals approach and solve problems.

In the problem solving cycle , individuals first must recognize and define the problem they are facing. This involves identifying the specific issue or obstacle that needs to be overcome. Once the problem is clearly defined, individuals can then move on to the next stage of the cycle.

Next, individuals engage in the process of generating potential solutions . This may involve brainstorming ideas, seeking out information or advice, or experimenting with different approaches. The goal is to come up with as many possible solutions as possible, without judgment or evaluation.

Once a range of potential solutions has been generated, individuals then evaluate these solutions based on their feasibility and effectiveness . This involves assessing the advantages and disadvantages of each solution and considering the potential outcomes of implementing them. It may also involve consulting others or seeking additional information to inform the evaluation process.

Finally, individuals select the most appropriate solution from the evaluated options. This decision-making process takes into account various factors such as the individual’s goals, resources, and constraints. Once a solution has been selected, individuals can then implement and evaluate its effectiveness, closing the problem solving cycle.

The problem solving cycle is a dynamic and iterative process that can be applied to a wide range of problems and situations. It provides a framework for understanding how individuals approach and solve problems, and it can be useful in both personal and professional settings. By understanding the various stages of the problem solving cycle, individuals can become more effective problem solvers and make better decisions.

Understanding the Problem Solving Process

In cognitive psychology, the problem solving process is a key concept in understanding how individuals navigate and overcome challenges. Problem solving is a cyclical process that involves identifying a problem, developing a strategy to solve it, implementing the strategy, and then evaluating the results.

Identifying the problem: The first step in the problem solving cycle is identifying the problem at hand. This may involve defining the problem, gathering information and relevant data, and understanding the desired outcome.

Developing a strategy: Once the problem is identified, individuals must develop a strategy or plan of action to solve it. This may involve brainstorming ideas, evaluating potential solutions, and selecting the best approach.

Implementing the strategy: After a strategy is developed, it must be put into action. This may involve executing specific steps, utilizing resources, and adjusting the strategy as needed.

Evaluating the results: The final step in the problem solving cycle is evaluating the results of the implemented strategy. This may involve assessing the effectiveness of the solution, determining if the desired outcome was achieved, and making any necessary adjustments or improvements.

The Role of Cognitive Psychology

Cognitive psychology plays a crucial role in understanding the problem solving process. It focuses on how individuals perceive, think, and reason about problems, as well as the various strategies and mental processes involved in solving them.

Research in cognitive psychology has shown that problem solving is not purely a linear process, but rather a dynamic and iterative cycle. Individuals may iterate through the different stages of the problem solving cycle multiple times as they encounter new information or face unexpected challenges.

The study of problem solving in cognitive psychology has led to the development of various theories and models, such as the Gestalt theory, which emphasizes the importance of insight and reorganizing information, and the information processing model, which highlights the role of attention, memory, and decision-making in problem solving.

The Importance of Problem Solving Skills

Problem solving is a key concept in cognitive psychology. It is a process that involves identifying, analyzing, and coming up with solutions to problems. Problem solving skills are essential in various aspects of life, including personal and professional contexts.

Mastering problem solving skills enables individuals to tackle challenges and overcome obstacles effectively. It helps in critical thinking, decision making, and finding innovative solutions. Problem solving skills are also important in the field of psychology, as they are often used to understand and address complex psychological issues.

Enhancing Cognitive Abilities

Problem solving activities stimulate and enhance cognitive abilities. They require individuals to think critically, analyze information, and use logical reasoning. By engaging in problem solving, individuals improve their cognitive processes, such as memory, attention, and problem representation.

Building Resilience

Developing problem solving skills also helps in building resilience. It teaches individuals to approach challenges with a proactive mindset and seek solutions rather than giving up. This resilience can be applied in various aspects of life, including personal relationships, work, and education.

In conclusion, problem solving skills play a crucial role in cognitive psychology and various aspects of life. They enhance cognitive abilities, promote critical thinking, and build resilience. Developing and honing problem solving skills is essential for personal growth and success in today’s complex world.

The Four Stages of Problem Solving

Problem solving is a cognitive process that involves the use of mental processes to find a solution to a problem. It is a cycle that is often studied in cognitive psychology. The problem solving cycle consists of four stages, which are:

1. Understanding the Problem

In this stage, the individual must first understand and define the problem. This involves gathering information, analyzing the problem, and identifying the key elements that need to be addressed. It is important to have a clear understanding of the problem before moving on to the next stage.

2. Generating Potential Solutions

Once the problem is understood, the next stage involves generating potential solutions. This requires using both logical and creative thinking to come up with possible ways to solve the problem. It is important to consider different perspectives and explore a variety of options.

3. Evaluating and Selecting Solutions

After generating potential solutions, the individual must evaluate and select the most appropriate solution. This involves weighing the pros and cons of each potential solution and considering factors such as feasibility, effectiveness, and practicality. The goal is to select a solution that is likely to lead to the desired outcome.

4. Implementing and Evaluating the Solution

Once a solution has been selected, the final stage involves implementing the solution and evaluating its effectiveness. This may involve taking action, making changes, and monitoring the results. It is important to assess whether the solution has solved the problem and to make adjustments if needed.

In conclusion, problem solving is a cognitive process that involves four stages: understanding the problem, generating potential solutions, evaluating and selecting solutions, and implementing and evaluating the solution. By following this problem solving cycle, individuals can effectively approach and solve a wide range of problems.

Identifying the Problem

The first step in the problem solving cycle is identifying the problem. In cognitive psychology, this step involves recognizing that there is a problem to be solved and understanding what it entails.

When identifying a problem, it is important to clearly define and articulate what the issue is. This can involve breaking the problem down into smaller components or examining the factors that contribute to the problem.

Factors to consider when identifying a problem:

  • What is the desired outcome or goal?
  • What are the obstacles or challenges that need to be overcome?
  • What are the potential causes or explanations for the problem?

Identifying the problem involves gathering information and analyzing it to gain a better understanding of the situation. This can include conducting research, gathering data, or seeking input from others who may have expertise or experience in the area.

Once the problem has been clearly identified, it can then be approached using the problem solving cycle. By breaking down the problem into smaller steps and systematically working through each one, individuals can increase their chances of finding an effective solution.

Defining the Problem

Defining the problem is a crucial step in the problem-solving cycle. In the context of cognitive psychology, a problem can be defined as a situation or task that requires a solution. This could be a complex mathematical equation, a riddle, or a real-life challenge. The process of defining the problem involves clarifying the specific requirements or constraints of the situation and understanding what needs to be solved. By clearly defining the problem, it becomes easier to identify potential strategies and solutions.

When defining a problem, it is important to consider both the immediate and underlying issues. Often, the surface-level problem may not be the root cause, and addressing only the symptoms may not lead to a satisfactory solution. Therefore, it is essential to dig deeper and identify the underlying factors that contribute to the problem.

Clarifying the requirements

One aspect of defining the problem is clarifying the specific requirements or constraints that need to be considered. These requirements can include the desired outcome, the available resources, the time frame, and any limitations or restrictions. By understanding these requirements, it becomes easier to focus on finding a solution that meets the given criteria.

Understanding the problem space

Another important aspect of defining the problem is understanding the problem space. The problem space refers to the set of all possible solutions and strategies that can be explored to solve the problem. By understanding the problem space, individuals can develop a clearer understanding of the scope of the problem and the potential avenues for finding a solution.

Generating Solution Options

In cognitive psychology, problem solving is a key concept that explores how individuals go about finding solutions to problems. One important aspect of the problem solving cycle is generating solution options.

When faced with a problem, individuals engage in cognitive processes to come up with potential solutions. This often involves brainstorming, where individuals generate a list of possible options.

There are various strategies that individuals can use to generate solution options. One common approach is divergent thinking, which involves thinking creatively and generating a large number of potential solutions. This can be done by considering different perspectives, exploring alternative possibilities, and challenging assumptions.

Another strategy is convergent thinking, which involves evaluating and narrowing down the potential solutions. This can be done by considering the feasibility and practicality of each option, as well as weighing the potential risks and benefits.

It is important for individuals to consider a wide range of solution options, as this increases the likelihood of finding an effective solution. This can be achieved by using techniques such as mind mapping, where individuals visually organize their thoughts and ideas to generate new connections and possibilities.

By generating a variety of solution options, individuals can increase their chances of finding the most suitable and effective solution to a problem. This stage of the problem solving cycle is crucial in the overall problem solving process.

Evaluating and Selecting the Best Solution

Once you have gone through the problem solving cycle and generated potential solutions, the next step is to evaluate and select the best solution. This is an essential part of the problem solving process, as it involves critically analyzing each potential solution and determining which one is the most effective and feasible.

When evaluating potential solutions, it is important to consider various factors. One key factor is the effectiveness of each solution in actually solving the problem at hand. Will the solution address the root cause of the problem, or just temporarily alleviate the symptoms?

In addition to effectiveness, it is also important to consider the feasibility of each solution. Is the solution realistic and practical to implement? Does it require significant resources or time that may not be available? These are all important considerations to take into account when evaluating potential solutions.

Furthermore, it is important to consider the potential consequences of each solution. Will the solution create any new problems or unintended side effects? Will it have any negative impacts on other areas or stakeholders? These potential consequences must be carefully considered before making a final decision.

Finally, it is important to approach the evaluation process with an open and flexible mindset. It is not uncommon for new information or perspectives to emerge during the evaluation process, which may alter the assessment of potential solutions. Remaining open to new information and being willing to adapt the evaluation criteria is crucial in selecting the best solution.

By carefully evaluating each potential solution and considering factors such as effectiveness, feasibility, and potential consequences, you can effectively select the best solution to the problem at hand. This is an essential step in the problem solving cycle, as it moves you closer to a successful resolution.

Implementing the Solution

Once the problem-solving cycle has been completed in cognitive psychology, the next step is to implement the solution. This phase involves taking the proposed solution and putting it into action.

Before implementation, it is crucial to evaluate the solution thoroughly. This evaluation helps ensure that the proposed solution is practical and feasible.

Evaluating the Solution

The evaluation process involves considering possible obstacles and risks that could hinder the successful implementation of the solution. By identifying these potential challenges, steps can be taken to mitigate them.

In addition, evaluating the solution also involves conducting a cost-benefit analysis. This analysis takes into account the potential costs and benefits associated with implementing the solution. It helps determine whether the solution is worth pursuing.

Putting the Solution into Action

Once the solution has been thoroughly evaluated, it is time to put it into action. This requires careful planning and coordination.

During the implementation phase, it is important to closely monitor the progress and make any necessary adjustments. This ensures that the solution is effectively addressing the problem at hand.

Furthermore, clear communication is vital during implementation. All relevant stakeholders should be informed and involved in the process to ensure everyone is working towards a common goal.

By implementing the solution effectively, the problem-solving cycle in cognitive psychology can come to a successful conclusion.

Monitoring and Evaluating the Outcome

Monitoring and evaluating the outcome is a crucial step in the problem-solving process in cognitive psychology. After identifying and implementing a solution, it is important to assess whether the problem has been effectively solved and whether the desired outcome has been achieved.

Evaluating the Effectiveness of the Solution

One way to monitor and evaluate the outcome is to assess the effectiveness of the solution. This involves determining whether the chosen solution has successfully addressed the problem and whether it has led to the desired result. Cognitive psychologists often use various measures and metrics to evaluate the effectiveness of problem-solving strategies. These may include objective measures such as test scores or subjective measures such as self-report questionnaires.

By evaluating the effectiveness of the solution, cognitive psychologists can determine whether further adjustments or modifications are necessary. If the outcome is not satisfactory, they can go back to the problem-solving cycle and repeat the steps to find a more suitable solution.

Reflecting on the Process

In addition to evaluating the effectiveness of the solution, it is also important to reflect on the problem-solving process itself. This involves considering the strategies and techniques used, as well as identifying any obstacles or challenges encountered. By reflecting on the process, cognitive psychologists can gain valuable insights into how they approached the problem and how they can improve their problem-solving skills in the future.

Reflection can be done through self-reflection or by seeking feedback from others, such as colleagues or experts in the field. This feedback can provide alternative perspectives and help identify areas for improvement.

In conclusion, monitoring and evaluating the outcome is a critical aspect of the problem-solving cycle in cognitive psychology. By assessing the effectiveness of the solution and reflecting on the process, cognitive psychologists can continually improve their problem-solving skills and contribute to the development of this field.

The Role of Cognitive Processes in Problem Solving

In the field of cognitive psychology, problem solving is a fundamental aspect of human thinking. It involves the use of various cognitive processes to analyze a problem, develop possible solutions, and determine the best course of action.

One key cognitive process involved in problem solving is perception. This process allows individuals to perceive and understand the problem at hand, by gathering information from the environment and organizing it into meaningful patterns. Perception helps identify the relevant aspects of a problem and guides the problem-solving process.

Another important cognitive process in problem solving is reasoning. Reasoning involves logical thinking and the ability to draw conclusions based on available information. It helps individuals make sense of the problem and generate possible solutions. Reasoning also helps evaluate the potential outcomes of each solution and select the most appropriate one.

Memory plays a crucial role in problem solving as well. It allows individuals to recall relevant information from past experiences and apply it to the current problem. Memory aids in recognizing patterns, generating hypotheses, and retrieving information necessary for problem solving. Without memory, it would be challenging to solve problems efficiently.

Moreover, attention and concentration are essential cognitive processes in problem solving. They help individuals focus on the relevant aspects of a problem and block out distractions. Attention allows individuals to allocate cognitive resources effectively and process information in a systematic manner. Concentration enables individuals to stay engaged in problem solving and persevere until a solution is found.

The role of cognitive processes in problem solving is vital as they provide the framework for effective problem-solving strategies. Understanding how perception, reasoning, memory, attention, and concentration contribute to problem solving helps researchers and practitioners develop interventions and techniques to improve problem-solving skills.

In conclusion, cognitive processes are crucial in problem solving. Perception, reasoning, memory, attention, and concentration work together to help individuals analyze problems, generate solutions, and make informed decisions. By studying and understanding these cognitive processes, researchers can enhance problem-solving abilities, ultimately leading to more effective problem-solving strategies in various fields of study and practice.

How Cognitive Biases can Impact Problem Solving

Cognitive biases are inherent tendencies in human thinking that can lead to errors or deviations from rationality. These biases can have a significant impact on problem solving, as they can influence the way individuals perceive, interpret, and evaluate information.

Confirmation Bias

One common cognitive bias that can affect problem solving is confirmation bias. This bias leads individuals to favor information that confirms their existing beliefs or hypotheses while disregarding or downplaying information that contradicts them. In problem-solving scenarios, confirmation bias can prevent individuals from considering alternative solutions or exploring different perspectives, potentially leading to a less effective problem-solving process.

Availability Heuristic

The availability heuristic is another cognitive bias that can impact problem solving. This bias involves relying on easily accessible information or examples when making judgments or decisions. In problem-solving situations, this bias can lead individuals to overlook less accessible information or fail to consider all relevant factors. This can limit the effectiveness of problem solving by restricting the range of potential solutions or failing to consider alternative approaches.

  • Overcoming cognitive biases in problem solving

Recognizing and overcoming cognitive biases is crucial for effective problem solving. Strategies such as actively seeking out diverse perspectives, questioning assumptions, and considering alternative explanations can help mitigate the impact of cognitive biases. Additionally, fostering an environment that encourages open-mindedness, critical thinking, and intellectual humility can also support more effective problem-solving processes.

By understanding how cognitive biases can impact problem solving, psychologists and individuals alike can work towards improving their problem-solving skills and decision-making processes. By recognizing and addressing these biases, individuals can enhance their ability to approach problems with greater objectivity, flexibility, and creativity.

The Relationship Between Problem Solving and Decision Making

Problem solving and decision making are closely interconnected in cognitive psychology. When faced with a problem, individuals engage in a cognitive process known as problem solving, which involves identifying and evaluating possible solutions in order to reach a desired goal or outcome. Decision making, on the other hand, refers to the act of choosing one particular solution from the options generated during the problem-solving process.

The problem-solving cycle, a key concept in cognitive psychology, highlights the iterative nature of problem solving and decision making. This cycle consists of several steps, including problem identification, problem analysis, solution generation, solution evaluation, and solution implementation. During the problem identification phase, individuals recognize and define the problem they are facing. Problem analysis involves gathering information and analyzing the underlying causes and factors contributing to the problem. Once a thorough analysis is conducted, individuals can generate potential solutions through creative thinking and brainstorming.

After generating potential solutions, individuals must evaluate the effectiveness and feasibility of each option. This involves considering the potential consequences and weighing the pros and cons of each alternative. By carefully assessing each solution, individuals can make an informed decision and choose the most suitable course of action. Finally, the chosen solution is implemented, and individuals monitor the outcomes to determine whether the problem has been effectively resolved.

It is important to note that problem solving and decision making are not linear processes, but rather they involve feedback loops and revisions as new information becomes available or as the initial solution proves to be ineffective. Successful problem solving and decision making require flexibility, critical thinking, and adaptability to changing circumstances.

In summary, problem solving and decision making are intertwined cognitive processes within the problem-solving cycle. Problem solving involves identifying and evaluating possible solutions, while decision making involves choosing the most appropriate solution. By understanding the relationship between problem solving and decision making, individuals can enhance their problem-solving skills and make more effective decisions in various aspects of life and work.

The Effect of Expertise on Problem Solving

In the cognitive psychology field, the problem solving cycle is a key concept that involves several stages: understanding the problem, devising a plan, executing the plan, and evaluating the solution. An important factor that can influence problem solving abilities is expertise.

Experts, who have extensive knowledge and experience in a specific domain, often exhibit superior problem solving skills compared to novices. This is because experts have a large mental database of problem-solving strategies and a deep understanding of the underlying concepts. They can quickly recognize patterns and make accurate decisions based on their knowledge.

Research has shown that experts are able to solve problems more efficiently and effectively than novices. They are able to quickly identify the relevant information and ignore irrelevant details, which allows them to focus on the core of the problem. Experts also have a better ability to generate and evaluate multiple potential solutions, leading to more creative problem solving.

Furthermore, experts are more likely to use metacognitive strategies, such as self-monitoring and self-regulation, during the problem solving process. They are able to reflect on their own thinking and adjust their strategies as needed. This metacognitive awareness helps experts to overcome obstacles and adapt their problem solving approach as necessary.

However, it is important to note that expertise is domain-specific. An individual may be an expert in one area but not in another. For example, a chess grandmaster may struggle with solving complex math problems. Therefore, expertise does not guarantee proficiency in all problem-solving domains.

In conclusion, expertise plays a significant role in problem solving. Experts have a deeper understanding of the problem domain, possess a larger repertoire of strategies, and exhibit metacognitive awareness. These factors contribute to their more efficient and effective problem solving abilities compared to novices.

Developing Problem Solving Skills through Practice

In the field of psychology, problem solving is considered an essential cognitive skill that helps individuals navigate through various challenges and obstacles. The problem solving cycle, a key concept in cognitive psychology, emphasizes the importance of practice in developing and honing problem solving skills.

Practice plays a crucial role in problem solving as it helps individuals familiarize themselves with different problem-solving techniques and strategies. By engaging in regular practice, individuals can strengthen their analytical thinking, creative problem solving, and decision-making abilities.

Through practice, individuals learn to approach problems systematically, breaking down complex tasks into smaller, more manageable steps. This systematic approach allows individuals to identify the root causes of a problem, generate potential solutions, and evaluate the effectiveness of each solution.

In addition to improving analytical thinking, practice also helps individuals develop their creative problem solving skills. By repeatedly facing various problems, individuals become more comfortable with thinking outside the box and exploring unconventional solutions. This creative thinking enables individuals to come up with innovative and effective solutions to complex problems.

Moreover, practice enhances individuals’ decision-making abilities. As individuals engage in problem solving practice, they become more skilled at assessing different options, weighing the pros and cons, and making informed decisions. This ability to make sound decisions is crucial in both personal and professional contexts.

In conclusion, developing problem solving skills requires consistent practice. By engaging in regular problem solving practice, individuals can improve their analytical thinking, creative problem solving, and decision-making abilities. The problem solving cycle emphasizes the importance of practice in developing these skills, and individuals who actively engage in practice are more likely to become adept problem solvers.

Teaching Problem Solving Skills in Education

Problem solving skills are an essential component of education, as they enable students to analyze and tackle complex issues across various subject areas. By teaching problem solving skills, educators help students develop critical thinking abilities and cognitive strategies that can be applied in real-life situations.

The Problem Solving Cycle

One effective approach to teaching problem solving skills is through the use of the problem solving cycle. The problem solving cycle is a key concept in cognitive psychology, which involves a systematic approach to identifying, analyzing, and resolving problems.

First, students are introduced to a problem or a question that requires analysis and solution. They are encouraged to define the problem clearly and understand its scope. This initial step helps students develop problem awareness and identify potential barriers or constraints that may affect the problem-solving process.

Next, students engage in information gathering and analysis. They gather relevant data, facts, and evidence, and apply critical thinking skills to evaluate and interpret the information. This step helps students develop analytical skills and generate possible solutions.

Once students have gathered and analyzed the information, they move on to the generation of potential solutions. This involves brainstorming and exploring different approaches to the problem, encouraging creativity and flexibility in thinking. Students are encouraged to think outside the box and consider multiple perspectives.

After generating potential solutions, students evaluate each option based on effectiveness, feasibility, and potential consequences. They consider the advantages and disadvantages of each solution, weighing the pros and cons. This step helps students develop decision-making skills and enhances their ability to critically evaluate potential solutions.

Finally, students select the most appropriate solution and implement it. They develop an action plan, outlining the steps needed to solve the problem. This requires effective communication skills, as students may need to collaborate and communicate their ideas with others.

Benefits of Teaching Problem Solving Skills

Teaching problem solving skills in education offers numerous benefits to students. Firstly, it enhances their cognitive abilities, allowing them to think critically and logically. This helps students become more independent learners and problem solvers.

Additionally, teaching problem solving skills improves students’ creativity and innovation. By encouraging them to think outside the box and explore different solutions, educators foster a mindset of curiosity and exploration.

Moreover, problem solving skills are transferable to various contexts, both within and outside of the classroom. Students can apply these skills to academic subjects, as well as to real-life situations, such as social issues, personal challenges, and future career paths.

In conclusion, teaching problem solving skills in education is crucial for students’ cognitive development and future success. By implementing the problem solving cycle and fostering critical thinking abilities, educators empower students with the skills necessary to navigate complex challenges and become lifelong learners.

Real-World Applications of the Problem Solving Cycle

The problem solving cycle is a fundamental concept in cognitive psychology that has numerous applications in real-world situations. This cycle involves a series of steps that individuals go through in order to identify, analyze, and solve problems.

1. Business

In the business world, problem solving is essential for success. From identifying market trends and determining customer needs to finding solutions to production issues or administrative challenges, the problem solving cycle is used to tackle a variety of business-related problems.

2. Education

The problem solving cycle is also highly applicable in education. Teachers often use this approach to help students develop critical thinking skills and solve complex problems. By following this cycle, students learn to break down problems, gather relevant information, analyze various options, and come up with effective solutions.

3. Medicine

Medical professionals frequently employ the problem solving cycle when diagnosing and treating patients. By systematically gathering patient history, evaluating symptoms, conducting tests, and analyzing data, doctors are able to identify the underlying problem and develop appropriate treatment plans.

4. Engineering

In the field of engineering, the problem solving cycle is crucial for designing and implementing solutions. Engineers use this approach to identify and address technical challenges, improve existing systems, and develop innovative technologies. By following this cycle, engineers can efficiently solve complex problems and ensure the success of their projects.

5. Everyday Life

Lastly, the problem solving cycle is applicable to everyday life. Whether it’s figuring out the best route to work, resolving conflicts in relationships, or making important decisions, individuals use this cycle to identify issues, explore possible solutions, and make informed choices.

The problem solving cycle is a versatile concept that finds widespread applications in various domains. From business and education to medicine and engineering, this approach facilitates effective problem solving and decision making. By following the steps of the cycle, individuals and organizations can overcome challenges and achieve their goals.

The Future of Problem Solving Research

In the field of cognitive psychology, research on problem solving is an ongoing and dynamic area of study. As technology continues to advance and our understanding of the cognitive processes involved in problem solving deepens, the future of problem solving research looks promising.

Advancements in Technology

Advancements in technology have already had a significant impact on problem solving research. The use of computer simulations and virtual environments has allowed researchers to create realistic problem-solving scenarios and collect data in a controlled environment. This technology has also allowed for the development of intelligent tutoring systems that can provide personalized feedback and guidance to individuals as they work through various problem-solving tasks.

In the future, we can expect even more sophisticated technologies to be developed, which will enhance our ability to study problem solving. For example, virtual reality technology may allow researchers to create immersive problem-solving environments that closely mimic real-life situations. This could provide researchers with valuable insights into how individuals approach and solve complex problems in a realistic setting.

Integration of Cognitive Processes

As our understanding of cognitive processes continues to grow, future research on problem solving will likely focus on the integration of various cognitive processes. Problem solving is a complex task that involves numerous cognitive processes, such as attention, memory, decision-making, and reasoning. Understanding how these processes interact and influence problem-solving performance will be crucial in developing effective strategies for problem solving.

Researchers may also explore the role of emotions in problem solving. Emotions can have a significant impact on cognitive processes and decision-making. Understanding how emotions influence problem-solving performance may provide valuable insights into how individuals can improve their problem-solving abilities.

Collaborative Problem Solving

Collaborative problem solving, or problem solving in a group setting, is another area that holds great potential for future research. Many real-world problems require collaboration and teamwork to solve effectively. Research on collaborative problem solving can provide valuable insights into how individuals interact and communicate with each other during problem-solving tasks, and how team dynamics impact problem-solving performance.

Furthermore, advancements in communication technology have made it easier than ever for individuals to collaborate remotely. Studying how individuals solve problems in virtual teams or online communities can provide valuable insights into the dynamics of collaborative problem solving in today’s interconnected world.

Continued Development of the Problem Solving Cycle

The problem solving cycle, which involves the stages of problem identification, solution generation, solution implementation, and solution evaluation, will continue to be a key concept in problem solving research. Researchers will seek to understand how individuals move through these stages, the strategies they employ at each stage, and how their problem-solving performance can be optimized.

By understanding the cognitive processes involved in each stage of the problem solving cycle, researchers can develop interventions and strategies to help individuals become more effective problem solvers.

In conclusion, the future of problem solving research in cognitive psychology looks promising. Advancements in technology, a deeper understanding of cognitive processes, the study of collaborative problem solving, and the continued development of the problem solving cycle will all contribute to our understanding of problem solving and help individuals become more effective in solving complex problems.

Questions and answers:

What is the problem-solving cycle.

The problem-solving cycle is a key concept in cognitive psychology that refers to the sequence of steps or processes involved in solving a problem.

What are the stages of the problem-solving cycle?

The problem-solving cycle typically consists of four stages: problem identification, problem definition, strategy selection, and solution implementation.

How does problem identification occur in the problem-solving cycle?

Problem identification involves recognizing that there is a problem or a discrepancy between a desired state and the current state.

What is problem definition in the problem-solving cycle?

Problem definition involves clearly specifying or defining the problem in a way that allows for a focused approach to finding a solution.

What is strategy selection in the problem-solving cycle?

Strategy selection involves choosing an appropriate approach or method to solve the problem, such as using a specific algorithm or heuristic.

What is the problem-solving cycle in cognitive psychology?

The problem-solving cycle is a concept in cognitive psychology that outlines the steps individuals go through when tackling a problem. It involves identifying the problem, gathering information, generating possible solutions, evaluating the solutions, and implementing the best one.

How does the problem-solving cycle help in problem-solving?

The problem-solving cycle provides a structured approach to problem-solving by breaking it down into manageable steps. By following this cycle, individuals can better understand the problem, explore various solutions, evaluate their effectiveness, and ultimately make an informed decision on how to solve the problem.

Related posts:

  • A Comprehensive Guide to the Problem Solving Cycle in Psychology – Strategies, Techniques, and Applications
  • The Importance of Implementing the Problem Solving Cycle in Education to Foster Critical Thinking and Problem-Solving Skills in Students
  • The Step-by-Step Problem Solving Cycle for Effective Solutions
  • The Comprehensive Guide to the Problem Solving Cycle in PDF Format
  • The Importance of the Problem Solving Cycle in Business Studies – Strategies for Success
  • A Comprehensive Guide on the Problem Solving Cycle – Step-by-Step Approach with Real-Life Example
  • The Seven Essential Steps of the Problem Solving Cycle
  • Exploring the Problem Solving Cycle in Computer Science – Strategies, Techniques, and Tools

Chapter 7: Thinking and Intelligence

Solving problems.

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem-solving strategies can be applied, hopefully resulting in a solution.

Video 1. Problem Solving explains strategies used for solving problems.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them. For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve the desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backward is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C., and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backward heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Video 2.  What problem-solving method could you use to solve Einstein’s famous riddle?

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connections: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Figure 1 . How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Figure 2. Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 3). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Figure 3 . The puzzle reads, “Since the scales now balance…and balance when arranged this way, then how many marbles will it require to balance with that top?

Were you able to determine how many marbles are needed to balance the scales in the Puzzling Scales? You need nine. Were you able to solve the other problems above? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Pitfalls to Problem-Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem?

Video 3.   Cognitive Biases: What They Are , Why They’re Important provides an introduction to the many cognitive biases that prevent us from always thinking clearly and rationally.

Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.  Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene where a group of NASA engineers is given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

Confirmation bias   is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. This bias proves that first impressions do matter and that we tend to look for information to confirm our initial judgments of others.

Video 4.  Watch this video from the Big Think to learn more about confirmation bias.

Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . To use a common example, would you guess there are more murders or more suicides in America each year? When asked, most people would guess there are more murders. In truth, there are twice as many suicides as there are murders each year. However, murders seem more common because we hear a lot more about murders on an average day. Unless someone we know or someone famous takes their own life, it does not make the news. Murders, on the other hand, we see in the news every day. This leads to the erroneous assumption that the easier it is to think of instances of something, the more often that thing occurs.

Video 5.  Watch the following video for an example of the availability heuristic.

Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 2 below.

Learn more about heuristics and common biases through the article, “ 8 Common Thinking Mistakes Our Brains Make Every Day and How to Prevent Them ” by  Belle Beth Cooper.

You can also watch this clever music video explaining these and other cognitive biases.

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY: Attribution
  • Psychology in Real Life: Choice Blindness. Authored by : Patrick Carroll for Lumen Learning. License : CC BY: Attribution
  • Problem-Solving. Authored by : OpenStax College. Located at : http://cnx.org/contents/[email protected]:Lk3YnvuC@6/Problem-Solving . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/content/col11629/latest/.
  • Actors Headshots . Authored by : Vanity Studios. Located at : https://www.flickr.com/photos/149481436@N03/34277183806/in/photostream/ . License : CC BY: Attribution
  • Image of man. Provided by : Pixabay. Located at : https://pixabay.com/en/boy-portrait-outdoors-facial-men-s-3566903/ . License : CC0: No Rights Reserved
  • https://pixabay.com/en/boy-portrait-outdoors-facial-men-s-3566903/. Authored by : Simon Robben. Provided by : Pexels. Located at : https://www.pexels.com/photo/face-facial-hair-fine-looking-guy-614810/ . License : Public Domain: No Known Copyright
  • image of businessman. Authored by : RoyalAnwar. Provided by : Pixabay. Located at : https://pixabay.com/en/model-businessman-corporate-2911332/ . License : CC0: No Rights Reserved
  • man in black shirt. Authored by : songjayjay. Provided by : Pixabay. Located at : https://pixabay.com/en/face-men-s-asia-shirts-blacj-young-1391628/ . License : CC0: No Rights Reserved
  • woman headshot. Authored by : Richard Ha. Provided by : Flickr. Located at : https://www.flickr.com/photos/richardha101/31951459743/in/photolist-QFrzNX-V9Amf2-UM2ZU5-HMQxnd-WmpZx1-5ztiGT-ovm92d-28C1Eyi-qhwZzM-8szjMV-YRsM5B-LCTNFR-LtgVC9-LCUgd8-8gRLbQ-REArrY-WQNThG-ph52sx-2bC2DwH-qE61yp-28NspiC-21h8cj4-RVoBBc-29GiNJ3-21QEU6M-M1YTcp-PePwTJ-LALKtr-RVoBtg-Ry1bpy-FVr9BB-282GDDG-V7zSQJ-NwmdK9-29bSs5N-29mSb5G-272dN8p-26brtas-28tTQWf-RS1osg-WHoUSc-25uETMH-D7crwK-28m9fEh-25taZPB-JCwqE7-241e8Xp-265Ce4A-22V7VVo-25N7i4q . License : CC BY: Attribution
  • businesswoman headshot. Authored by : Richard Rives. Provided by : Flickr. Located at : https://www.flickr.com/photos/richpat2/38251159285/in/photostream/ . License : CC BY: Attribution
  • Can you solve Einsteinu2019s Riddle? . Authored by : Dan Van der Vieren. Provided by : Ted-Ed. Located at : https://www.youtube.com/watch?v=1rDVz_Fb6HQ&index=3&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a . License : Other . License Terms : Standard YouTube License
  • BBC Choice Blindness. Authored by : BBC. Provided by : ChoiceBlindnessLab. Located at : https://www.youtube.com/watch?v=wRqyw-EwgTk . License : Other . License Terms : Standard YouTube License
  • Using Choice Blindness to Shift Political Attitudes and Voter Intentions. Provided by : ChoiceBlindnessLab. Located at : https://www.youtube.com/watch?v=_htNx0eWmgs . License : Other . License Terms : Standard YouTube License

Footer Logo Lumen Candela

Privacy Policy

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

Means-End Analysis

Identifying the steps needed to solve a problem.

By the Mind Tools Content Team

what are the steps in problem solving psychology

Means-End Analysis is a simple tool that helps you to identify the practical steps needed to solve a problem or to reach a desired state.

In this article we'll explore Means-End Analysis, and we'll look at how you can apply it.

About the Tool

Means-End Analysis is essentially an early form of Gap Analysis . It was created by researchers Allen Newell and Herbert Simon in the late 1950s, and it was then published their 1972 book, "Human Problem Solving."

Newell and Simon were creating an effective problem-solving program for early computers, and Means-End Analysis was a direct result of this research. They named the tool "Means-End" because it helps you define the means needed to reach a desired end.

Means-End Analysis might seem quite simplistic at first glance. However, when you begin using it, you'll find that it's a practical and useful method for solving simple problems.

How to Use the Tool

Step 1: define your initial state (problem).

Start by defining the problem you're trying to solve. It might help to write the problem down on a piece of paper, or even draw out a diagram.

It's important to you make sure you're trying to solve the right problem, and not just a symptom of a deeper issue. If you're struggling to do this, you can use tools such as Root Cause Analysis , Cause and Effect Analysis , CATWOE , and the 5 Whys to help define your problem, and to make sure that you're addressing the real issue.

Step 2: Visualize Your Goal State

Next, picture the ideal state you'd like to be in. This is the outcome you'd like to see, once the problem is solved.

Again, it might be helpful to write this out on paper.

Step 3: List the Differences Between States

Now, look at the differences between your initial state and your goal state. And then explore the obstacles that are stopping you from reaching this state. Make a list of these differences and obstacles.

If the obstacles seem overwhelmingly large, consider using Drill Down to break them down into easy-to-understand chunks.

Step 4: Create Sub-Goals

Once you have a list of the differences and obstacles that you need to overcome, you need to create sub-goals that will help you address each of these.

Think of these sub-goals as steps that will ultimately lead you to your desired goal state – look at each obstacle you've listed, and then create the plans you need to overcome them.

Step 5: Take Action

The last step is to take action on your analysis.

If you're dealing with a simple problem, you'll be able to identify all of the actions that you need to take to solve your problem quickly. ( Action Plans are useful here.)

However, if you're solving a difficult problem, or planning a new project, you'll likely have to do further analysis and planning. The Simplex Process is useful for solving complex problems, while our project management section will help you plan more complex projects.

Means-End Analysis is a simple problem-solving tool that you can use to solve well-defined problems, and to kick-start the planning stage of a new project.

To use the tool, first look at your initial state (the state you're in right now). Then, picture your desired goal state – this is the state you want to be in once you've solved the problem or completed the project.

Next, make a list of the obstacles that are standing in the way of your goal state, and create sub-goals that will guide you in overcoming all those obstacles.

Finally, take action on your analysis.

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Achieving economies of scale.

Understanding Why Bigger Can Be Better

How to Guides

Persuasive Presenting

How to Drive Your Message Home

Add comment

Comments (0)

Be the first to comment!

what are the steps in problem solving psychology

Enhance your in-demand workplace skills

Top skills - leadership, management, communication and more - are available to develop using the 3,000+ resources available from Mind Tools.

Join Mind Tools today!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Most Popular

Newest Releases

Article a41tgcl

The Nervous Presenter's Survival Guide

Article ayrzn2y

Using the COIN Conversation Feedback Model

Mind Tools Store

About Mind Tools Content

Discover something new today

How to terminate employment.

Letting People Go With Respect and Compassion

How to Resolve Conflict

5 Tips for Saving Workplace Relationships

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Developing emotional intelligence.

Enhancing Your EQ

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Share Podcast

HBR IdeaCast podcast series

Stuck on a Problem? Try Switching Up Your Approach

A conversation with Cheryl Strauss Einhorn on decision-making dexterity.

  • Apple Podcasts
  • Google Podcasts

Many leaders confidently go about tackling challenges. After all, relying on their experience got them to where they are. But taking the same approach over and over again can actually hold you back. Sometimes you need to switch up your tactics to break through to the next level. Decision-making expert Cheryl Strauss Einhorn says the first step is to understand your personal problem-solving style. Then she explains a framework to assess the situation and select the best approach. Einhorn is founder and CEO of Decisive. She also wrote the book  Problem Solver: Maximizing Your Strengths to Make Better Decisions  and the HBR article “ When Your Go-To Problem-Solving Approach Fails .”

CURT NICKISCH: Welcome to the HBR IdeaCast from Harvard Business Review. I’m Curt Nickisch.

At this stage in your career, whether you realize it or not, you probably lean on the same framework to make decisions. Call it a habit or a pattern, whether it’s unconscious or deliberate. Like it or not, you have developed your own tried and true decision-making style. But is it really the best way?

Often the model that you turn to to solve problems and make decisions is the one you’ve grown comfortable with, but it’s not necessarily the most effective one for that situation. Even the best leaders sometimes need a refresh, and that’s especially true when your default doesn’t seem to be working in a new scenario.

Our guest today studies the behaviors and psychology behind making decisions. In fact, she has identified five different archetypes. She says that the key to solving the latest challenge you face might be in understanding your own style and knowing when to switch up your approach.

Cheryl Strauss Einhorn is the founder and CEO of Decisive, a decision sciences consultancy. She also wrote the book Problem Solver and the HBR article “When Your Go-To Problem Solving Approach Fails.” Cheryl, thanks for joining.

CHERYL STRAUSS EINHORN: Thank you so much for having me.

CURT NICKISCH: So we’re going to talk about the main kinds of decision makers that you’ve identified in a bit. But I want to start by asking, why do we tend to fall back on certain patterns or behaviors around decision making? Where does that come from?

CHERYL STRAUSS EINHORN: Well, there’s really two reasons. First, we have comfortable ways of being. If you think about it, most of us are as people who are right-handed, more comfortable doing things with our right hand. Or if we’re left-handed, left-hand. And our dominant ways of being as decision-makers are similar. It’s a comfortable way that we work in the world. And then the second point is that the way that we present ourselves, those habits and patterns that are comfortable, they speak to an underlying set of values, and those are the values that underpin how we make our decisions.

CURT NICKISCH: And is this any different for business leaders that are thrust into new situations, it’s almost like maybe you’re forced to use your left hand, where normally you wouldn’t?

CHERYL STRAUSS EINHORN: I think for somebody who’s very experienced, they have habits and patterns of behaving that have really worked well for them. And I think they then therefore may tend to have a stronger bias to do those things that have worked well. And so it is in really trying to pry open that cognitive space to allow for new information and new thinking that can really give them the opportunity therefore to do something different.

CURT NICKISCH: So it almost sounds like it might actually be harder for a business leader because they’re thinking of themselves, “The way I do things has been successful. It’s gotten me to this point, and because of that, you might have a little bit of a failure of imagination.

CHERYL STRAUSS EINHORN: And also a real comfort that you have this data set behind you of success. And so I think that that’s right.

CURT NICKISCH: So before we get into trying to solve a problem when your standard approach just isn’t working, we should talk about the different kinds of problem solvers that you’ve identified through your work and research: these are adventurers, detectives, listeners, thinkers, and visionaries. Can you quickly run through each of those and just give us the main attributes?

CHERYL STRAUSS EINHORN: So I gave them each fun names because we think in language. The adventurer is somebody who makes decisions easily, they tend to go with their gut, but therefore they may downplay the evidence and input from others, especially if it contradicts their gut reaction.

For detectives, and I’m a detective, we’re people who like to follow the data. A downside of that may be that we overvalue facts and we undervalue people.

Listeners are our most collaborative and cooperative decision makers. They generally want to solicit the input of others, but sometimes they have difficulty accessing their own inner voice.

Thinkers are people who have the action in between their ears. They want to understand the why. They thrive on identifying multiple pathways and outcome, but they can struggle to make decision in a timely manner as they tend to end up in a frame blindness looking at one option against the other, which may miss the bigger picture.

And then we have our visionaries. They pride themselves on seeing pathways that others don’t, but therefore they may have a scarcity bias or want to avoid the ordinary even when it can be effective. And so I hope what you can see here is that each of these approaches brings a different underlying value structure and therefore they’re optimizing for different things in the way that they solve problems.

CURT NICKISCH: I just thought to myself what style I probably am. And I bet a lot of listeners did the same thing. Let me give you an example of something you might have to do as a manager:  catering for a business meeting. You’ve got a bunch of people in, maybe people from different teams, not your normal meeting, and you have to decide how to feed everybody for lunch during this long meeting. How would each of those archetypes or personality styles choose that differently?

CHERYL STRAUSS EINHORN: Well, I think that this is something that many people can relate to, right? So in the catering example, the adventurer might look at the menu of things that she could be offering and she’s going to immediately pick one and say, “That looks good.” Because she’s going to feel a natural instinct and she can get the decision over pretty quickly because she feels confident.

The detective is going to look at the different ingredients and think about what would be a really good option that everybody might be able to eat and she’s going to be anchored in that detail for instance, “Oh, I can see that this would be something that would be acceptable to a lot of people,” and she’ll make the choice based on those facts.

For the listener, she might really want to be taking into account the different eating needs that everybody has and how hot the room might be. And she might be thinking about what would be comfortable if it had to sit out, for example, and how to really make sure that everybody feels welcome in that moment because focused on the people.

CURT NICKISCH: Does she actually go out and ask people what they want or do a poll?

CHERYL STRAUSS EINHORN: Absolutely. She might go out and ask people. She might say, “Hey, I’d like to ask everybody, ‘Are there any food allergies?’.” Because she absolutely is focused on making sure that the people feel included and that she’s doing this in a collaborative, cooperative way.

For the thinker, she may look at the different options and weigh one against another. “This meal might make everybody feel really full, but this meal might be more well-balanced and so on,” and really spend time thinking about how can she mitigate the downside because the thinker has a loss aversion. They would rather make sure that the decision doesn’t fail than optimize for the best possible outcome or the best outcome possible.

And then the visionary might look at the choices and say, “Well, I like this dish, but I like the sauce from something else,” and might ask if she can create something that’s not even exactly on the menu.

CURT NICKISCH: So that’s kind of fascinating, and I think that kind of helps each of us listening sort of even better identify what type we might have. When does this normally come up where you realize that your style doesn’t always work?

CHERYL STRAUSS EINHORN: Well, there are times where we have something that I call situationality that can get in the way. Situationality is the culmination of many factors within context. It includes our location, our life stage, our decision ownership, and our team dynamics, and sometimes that can be a very good thing.

So if you’re an adventurer for example, and you normally have a gut inclination that tells you how you’d like to proceed, if you’re in a brand new environment, maybe you’re starting a new job, to show up as a listener and take time to hear maybe the pathway that this organization wants you to follow that can help you to build a relationship and to also take a temperature, “Was my gut inclination aligned with how this organization actually wants to make this decision?”

CURT NICKISCH: The key lesson there is that that style got you to get that job, but it doesn’t always mean that that style is going to be the most successful in that job.

CHERYL STRAUSS EINHORN: Or it might not be successful right at the outset when you’re just initially meeting the people and learning about the job responsibilities itself for that particular organization. I think that’s exactly right. At other times situationality can get in our way. We might have a dominant way of being, and then something happens and all of a sudden we end up in a situation with a lot of friction.

And I’ll give you an example. I was working with a visionary CEO of a geospatial technology company. As a visionary, he really is focused on this big picture vision of the good that he can bring to the world with his new technology, and it gives him a lot of flexibility for how to get to that vision.

But at one point, when he was accepted into a prestigious National Science Foundation program, he ended up hearing information that really caused him concern. He acted as a detective, shrinking his worldview to really focus and zero in on these details that he didn’t like and got so stuck in the weeds that he had a lot of problems with the leadership of the program.

In working together, we were able to examine that all of a sudden the detective had intruded in this situation to override his visionary. Once we were able to look at that, he was able to realign that in being the visionary and holding onto this picture of the good that he could be bringing to the world, he was better able to lift himself out of those details to get back on board that the leadership of this program was actually trying to help him all along to bring his beautiful vision to the world, and that decreased the friction and enabled him to succeed.

CURT NICKISCH: I definitely see a strong case here for changing your style depending on the situation. What do you do first as you realize you’re hitting your head against the wall on a problem or something that you can’t seem to figure out? What’s the first question that you ask yourself in that situation?

CHERYL STRAUSS EINHORN: I think the first thing you want to do is to define the problem. What’s the negative experience that you’re having in the workplace that requires a decision? And then ask yourself to assess the location and team dynamics. Where are you working? Are you in an office or remote? Are you part of a team? Are you independent? And so on.

And then from there, I think you can consider your own career stage. Are you starting? Are you at the peak? Might you be counting your days until retirement? And then you can think about the other people’s perspective that you’re working with. Who are those stakeholders? How are they trying to make the situation work or not work? And then you can look at your own level of decision ownership, right? Is it your decision to make or how much will you be impacted by the decision outcome?

And then you can connect this situationality back to your problem solver profile. And you can look at whether or not you’re showing up in one of the other profiles, and then you can return to look at your own problem solver profile because it’s usually returning back to what that dominant profile is that you can lean into the strengths of that approach to help you right the ship and make more effective decisions with others.

CURT NICKISCH: So what else can you do to try to overcome the blind spots or the patterns behavior that you typically fall back on?

CHERYL STRAUSS EINHORN: I think the first thing is to gain awareness. So for instance, for an adventurer, she has an optimism bias. She knows that if she makes a decision and it goes awry, guess what? The next decision is always ahead. And so she might tend to gloss over facts or important details. And so recognizing that there is that optimism bias can really be very useful to help you check and challenge it.

Similarly, for the detective who likes evidence, she’s often somebody who feels very comfortable doing research, and therefore she can have an underlying confirmation bias where she can go and identify how a specific piece of information favors the hypothesis that she has, but that’s not as good or as rigorous as looking for disconfirming data. And so again, knowing your problem solver profile, the strengths and the related cognitive biases is the first step to being able to really build your awareness so that you can have an opportunity to check and challenge what you normally do.

CURT NICKISCH: I thought it was interesting what you said earlier about somebody close to retirement, how that might change the decision they make or how they approach it. How else can this change depending on the stage of your career?

CHERYL STRAUSS EINHORN: Well, I think in this stage of your career, we were talking about before that you might have somebody who’s very experienced, so they have a way of thinking about how a decision should be made that provides them knowledge, but it also may mean that they have more biases associated with the way that it’s been done. If you’re a seasoned professional, you may be able to speak to a problem that you’ve solved before with expertise, and that might make it more difficult to reconsider how you approach the problem. That’s not always true, but certainly the experience content to narrow what we think the actual answer should be instead of expanding it.

CURT NICKISCH: Yeah, I wonder if sometimes you realize that the decision that you’re struggling with is actually not your decision, or maybe you have claimed too much of it, then you realize? How much does decision ownership play into this process?

CHERYL STRAUSS EINHORN: I think decision ownership is something that’s underappreciated, right? Thinking about, is it your decision to make? How much will you or your organization be impacted? And how important is the decision to you or your organization? Impact and importance are obviously not the same thing, because impact is the effect on someone or something and importance is the significance or the value. So you can have a decision that can have a significant impact, but be of little importance and vice versa.

So thinking about whether or not it’s your decision to actually make and how much it requires input and sign off from others can really help you to see whether or not you have worked well enough to include the voices of the other stakeholders. Because holistic problem solving occurs when you are actively including the other people who are going to be impacted by the decision that’s being made.

CURT NICKISCH: Is somebody who is a listener, are they just by default more successful in these situations? Is it basically just trying to change your style so that you are more of a listener? Or is decision ownership more than that?

CHERYL STRAUSS EINHORN: That’s a very interesting point you’re making, because for a listener, they would actively want to be including people to make a decision. For a detective, they may or may not include other people because they naturally want to go and find the data. For an adventurer, they’d want to make the decision pretty quickly because they have a pretty strong instinct on what that decision should be and so on. So each of the different problem solver profiles might view decision ownership differently?

CURT NICKISCH: Yeah. A listener could make the mistake of listening to the wrong people.

CHERYL STRAUSS EINHORN: Well, a listener usually has a trusted group of advisors, and therefore they can have an underlying liking bias where they overweight information that comes from people that they have an affinity for. That may make it more difficult for them to bring in outside voices beyond that. And it also may make it difficult at times for them to really identify their own inner voice.

CURT NICKISCH: Once you’ve learned your style, understand its shortcomings and have gotten better about switching up your approach to fit the scenario that you’re in, does this become a new habit or do you really have to keep working on it deliberately all the time as you go along?

CHERYL STRAUSS EINHORN: I think the problem solver profiles give you a beautiful opportunity to be a more active listener. If you recognize, for example, that your problem solver profile is one that may have friction with another problem solver profile, really listening for clues as to how somebody else is approaching the decision can help you use the skills of the other problem solver to work better together. And at the same time, once you really have this opportunity to learn all the profiles, you can actively try them on. If you are a detective, you could go to the supermarket as a visionary. Or you might take a vacation as an adventurer and so on. And so by using the different profiles that are not yours, you can have an opportunity to see where the discomfort is and then to try to work through that discomfort so that you can become more dynamic. And over time, it will become easier as you begin to lean into trying on the different profiles for yourself, in decisions where you feel comfortable stepping out of that natural habit and pattern of making decisions.

CURT NICKISCH: The other thing I’m kind of realizing is that part of the situationality is the organization that you’re in. We talk about organizations as being very data-driven or analytical, right? And it may actually favor certain kinds of decision making and undervalue other kinds. And so, seeing how you fit in that organization can really make a big difference.

CHERYL STRAUSS EINHORN: That can definitely make a big difference. I’ve been doing a program lately with the federal government. Each of these organizations, whether it’s the Treasury or the IRS and so on, they each have a real process for how things take place. So in one of our recent workshops, we had a discussion about where’s the place for the adventurer? How does this person actually fit into an organization like this? One of the things that we talked about is that the adventurer is such a nice person to have at the table because they really can help the trains to move on time and build a momentum.

The other thing that they can do, for example, in an organization that seems maybe slower, more aligned with thinkers and detectives, is that they also don’t get anchored on a particular pathway forward. They have a beautiful flexibility to be able to hear a lot of ideas, instinctively be able to switch between them and to identify why it is that they feel like a specific pathway forward might be the best way to go.

And so recognizing that the organization can seem to favor certain types of profiles and then recognizing how the intellectual diversity can still work to augment how the organization works, I think, is something that is really beautiful.

CURT NICKISCH: How does this factor when you’re working in a team? You have your own decision-making style, but if you’re working on a team that’s putting different styles together and has a different dynamic and I’m just curious how that plays out.

CHERYL STRAUSS EINHORN: So if you have a team that’s been together for a long time and you have a variety of profiles, let’s say that your CEO is an adventurer, but you have a team that’s on that senior leadership group that’s primarily thinkers, detectives, listeners, these have very different speeds of decision-making. So with a group like that, you may as the CEO, want to send out, “Gee, in advance, here’s an email framing the situation, the goal that we’re working on.” And it gives people a little bit of time to go at their own speed to do their own investigative process, the thinker to look at the options, the listener to make sure that they’ve canvassed, the stakeholders, the detectives, to gather their evidence.

So by the time they’re gathered around that conference room table, everybody’s actually ready for the decision-making instead of having to sit in the problem-solving. If you have a team that’s never worked together, you’re coming in the room, you don’t really know who people are in terms of their problem-solver profile, you might be able to ask people, “What is it that you need in order to make a decision?” And then you can hear, do they talk about facts? Do they talk about including stakeholders? Do they talk about understanding the options at the table?

Again, that active listening can help you then go into a situation with somebody who you’ve never worked with before, being able to better sync up on how your different problem-solver profiles can work well together.

CURT NICKISCH: Cheryl, you coach individuals, you also work in organizations. I’m just curious what the biggest misunderstanding is that people have about making decisions that you think can be corrected or cleared up?

CHERYL STRAUSS EINHORN: I think one of the biggest things is people don’t understand why there’s friction between people when solving problems, and they sort of throw their hands up initially and they can think about, “I’m uncomfortable with this personality.”

Well, decision-making is actually a part of personality that by knowing the problem-solver profiles can help you unblock your relationships to make better decisions together. As soon as people recognize themselves in the profiles, they have this light bulb go on, “This is why I’m behaving this way. This is what I value in my decisions.”

And it’s not personal that in understanding that your way is just one of five ways, it gives you an opening for how to understand what is somebody else’s incentive structure, what is their motivation for why they’re approaching the decision the way that they are. And that gives you a way to find this intersection of how to work well with them so that you can strengthen that relationship and make better decisions together.

CURT NICKISCH: Well, Cheryl, I think you’ve given listeners a little better sense of who they are and why they approach decisions and problems the way they do. Thanks for coming on the show to talk about it.

CHERYL STRAUSS EINHORN: Thank you so much for having me today.

CURT NICKISCH: That’s Cheryl Strauss Einhorn, founder and CEO of Decisive. She wrote the book Problem Solver and the HBR article When Your Go-To Problem Solving Approach Fails.

And we have nearly 1,000 episodes, plus more podcasts to help you manage your team, your organization, and your career, find them at HBR.org/podcasts or search HBR in Apple Podcasts, Spotify, or wherever you listen.

Thanks to our team, Senior Producer Mary Dooe, Associate Producer Hannah Bates, Audio Product Manager Ian Fox, and Senior Production Specialist Rob Eckhardt. Thank you for listening to the HBR IdeaCast . We’ll be back with a new episode on Tuesday. I’m Curt Nickisch.

  • Subscribe On:

Latest in this series

This article is about decision making and problem solving.

  • Personal strategy and style
  • Managing yourself
  • Leadership styles
  • Leading teams
  • Cognitive bias

Partner Center

Logo for

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Problem Solving

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A  problem-solving strategy  is a plan of action used to find a solution. Different strategies have different action plans associated with them (Table 10.2). For example, a well-known strategy is  trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error , you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Table 10 .2 

Another type of strategy is an algorithm. An  algorithm  is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a  heuristic  is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards  is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

EVERYDAY CONNECTION: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 10.7) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

"A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle (Figure 10.8) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 10.9). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A  mental set  is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness  is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to solve the problem (Figure 10.10). During the  Apollo 13  mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

igure a shows a book of matches, a box of thumbtacks, and a candle. Figure b shows the candle standing in the box that held the thumbtacks. A thumbtack attaches the box holding the candle to the wall

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An  anchoring bias  occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The  confirmation bias  is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behaviour exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis.  Hindsight bias  leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did.  Representative bias  describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the  availability heuristic  is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision .  Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 10.3.

Were you able to determine how many marbles are needed to balance the scales in Figure 10.9? You need nine. Were you able to solve the problems in Figure 10.7 and Figure 10.8? Here are the answers (Figure 10.11).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

A problem solving strategy were you continue to try different solutions until you solved your problem

a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome

mental shortcuts that are used to solve problems

where you persist in approaching a problem in a way that has worked in the past but is clearly not working now

a type of mental set where you cannot perceive an object being used for something other than what it was designed for

when you focus on one piece of information when making a decision or solving a problem

tendency to focus on information that confirms your existing beliefs

leads you to believe that the event you just experienced was predictable, even though it really wasn’t

a faulty way of thinking, in which you unintentionally stereotype someone or something

you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision

Introduction to Psychology Copyright © 2021 by Southern Alberta Institution of Technology (SAIT) is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

IMAGES

  1. The 5 Steps of Problem Solving

    what are the steps in problem solving psychology

  2. Problem-Solving Strategies: Definition and 5 Techniques to Try

    what are the steps in problem solving psychology

  3. 7 Steps to Improve Your Problem Solving Skills

    what are the steps in problem solving psychology

  4. What Is Problem-Solving? Steps, Processes, Exercises to do it Right

    what are the steps in problem solving psychology

  5. Problem solving infographic 10 steps concept Vector Image

    what are the steps in problem solving psychology

  6. problem-solving-steps-poster

    what are the steps in problem solving psychology

VIDEO

  1. How to Drastically Decrease Your Anxiety From Jordan Peterson #shorts

  2. #psychology rule

  3. what is psychology 😂😂😂😂😂😂

  4. DEVELOPMENTAL PSYCHOLOGY LECTURE: EQUIFINALITY AND MULTIFINALITY

  5. Understanding psychological concepts

  6. what psychology is ? 🙄🔥🙃

COMMENTS

  1. Problem-Solving Strategies and Obstacles

    Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include: Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions.

  2. Psychological Steps Involved in Problem Solving

    Here are the steps involved in problem solving, approved by expert psychologists. 1. Identifying the Problem. Identifying the problem seems like the obvious first stem, but it's not exactly as simple as it sounds. People might identify the wrong source of a problem, which will render the steps thus carried on useless.

  3. 7.3 Problem-Solving

    Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks. With 3 disks, the puzzle can be solved in 7 moves. The ... GESTALT PSYCHOLOGY AND PROBLEM SOLVING. As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and ...

  4. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  5. Problem Solving

    The major cognitive processes in problem solving are representing, planning, executing, and monitoring. The major kinds of knowledge required for problem solving are facts, concepts, procedures, strategies, and beliefs. Classic theoretical approaches to the study of problem solving are associationism, Gestalt, and information processing.

  6. Problem-Solving Therapy: Definition, Techniques, and Efficacy

    Problem-solving therapy is a brief intervention that provides people with the tools they need to identify and solve problems that arise from big and small life stressors. It aims to improve your overall quality of life and reduce the negative impact of psychological and physical illness. Problem-solving therapy can be used to treat depression ...

  7. The Process of Problem Solving

    In a series of three experiments, the researchers asked participants to solve series of matchstick problems. In matchstick problems, participants are presented with an array of joined squares. Each square in the array is comprised of separate pieces. Participants are asked to remove a certain number of pieces from the array while still ...

  8. 7.3 Problem Solving

    Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7) is a 4×4 grid.

  9. The Psychology of Problem Solving

    The Psychology of Problem Solving organizes in one volume much of what psychologists know about problem solving and the factors that contribute to its success or failure. There are chapters by leading experts in this field, including Miriam Bassok, Randall Engle, Anders Ericsson, Arthur Graesser, Keith Stanovich, Norbert Schwarz, and Barry ...

  10. Solving Problems the Cognitive-Behavioral Way

    Problem-solving is one technique used on the behavioral side of cognitive-behavioral therapy. The problem-solving technique is an iterative, five-step process that requires one to identify the ...

  11. Problem Solving

    Problem Solving is a helpful intervention whenever clients present with difficulties, dilemmas, and conundrums, or when they experience repetitive thought such as rumination or worry. Effective problem solving is an essential life skill and this Problem Solving worksheet is designed to guide adults through steps which will help them to generate ...

  12. How to Solve Problems Like an Expert

    Problem solving is nothing more and nothing less searching for means to reduce the differences between your goal state and your current state. Yes, that's right: All problem solving, at bottom ...

  13. 8 Effective Problem-Solving Strategies

    Analytical abilities. Decision-making skills. Creativity. Critical thinking. Leadership. Communication. Time management. Emotional intelligence. Solving a problem is complex and requires the ability to recognize the issue, collect and analyze relevant data, and make decisions about the best course of action.

  14. Problem Solving

    Solving Puzzles. Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link]) is a 4×4 grid.

  15. Problem-solving

    Problem-solving. Somewhat less open-ended than creative thinking is problem solving, the analysis and solution of tasks or situations that are complex or ambiguous and that pose difficulties or obstacles of some kind (Mayer & Wittrock, 2006). Problem solving is needed, for example, when a physician analyzes a chest X-ray: a photograph of the ...

  16. The Algorithm Problem Solving Approach in Psychology

    In psychology, one of these problem-solving approaches is known as an algorithm. While often thought of purely as a mathematical term, the same type of process can be followed in psychology to find the correct answer when solving a problem or making a decision. An algorithm is a defined set of step-by-step procedures that provides the correct ...

  17. How to Fix Any Problem: The 3 Step Approach

    3. Take action. Once you've zeroed in on the problem, consider action steps. It's time to take action. Do something! Acting and moving forward will help lower your anxiety and help stop it from ...

  18. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  19. The Problem Solving Cycle: A Key Concept in Cognitive Psychology

    The problem-solving cycle is a concept in cognitive psychology that outlines the steps individuals go through when tackling a problem. It involves identifying the problem, gathering information, generating possible solutions, evaluating the solutions, and implementing the best one.

  20. Solving Problems

    Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4.

  21. Means-End Analysis

    Step 5: Take Action. The last step is to take action on your analysis. If you're dealing with a simple problem, you'll be able to identify all of the actions that you need to take to solve your problem quickly. ( Action Plans are useful here.) However, if you're solving a difficult problem, or planning a new project, you'll likely have to do ...

  22. Stuck on a Problem? Try Switching Up Your Approach

    Sometimes you need to switch up your tactics to break through to the next level. Decision-making expert Cheryl Strauss Einhorn says the first step is to understand your personal problem-solving ...

  23. UPS Education on Instagram: "Thinking & Problem Solving

    Thinking & Problem Solving | Part-1 | Psychology Entrance Video by Arvind Otta #psychology 易 Psychology Entrances 易 Preparing for Psychology...

  24. Problem Solving

    Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 10.7) is a 4×4 grid.